Communicating Computer Science

Motivation & Learning Theory

14 October 2022

Sebastian Wild

COMP335 (2022-23) University of Liverpool version 2022-10-21 00:27 H

Outline

3 Motivation & Learning Theory

- 3.1 A Warning
- 3.2 Motivating Learners
- 3.3 Theories of Learning

Goal for this unit

- Give you the **vocabulary** to talk about theories of learning.
- List some best practices for teaching.

3.1 A Warning

Pre-session activity

Not every theory that "appears plausible" is true

Don't follow advice blindly!
 In particular: Do <u>not</u> separate your class by learning styles.

- $\rightsquigarrow\,$ This example demonstrates the importance of empirical research in education.
- But there is a lot of truth in the original observation:
 - We can represent the same material in different ways.
 - ▶ *visual, auditory, read/write,* and *kinesthetic* are good categories for representations.
 - Different representations of material do help.
 But you want to show them together. That helps everyone.
- ... and comparing VARK profiles still kinda fun 😌

3.2 Motivating Learners

Forms of motivation

extrinsic motivation

"carrot and stick"

- marks/grades
- ▶ rewards (Gold Stars, Dojo points, teacher's awards, ...)
- punishment
- ► fear/pressure

intrinsic motivation

- interest in a task
- task is enjoyable, fun
- ambition to achieve a specific goal
- curiosity
- largely agreed:

intrinsic motivation is much stronger extrinsic measures may do more harm than they help

 → How can be foster intrinsic motivation? Where does it come from?

Background vector created by rawpixel.com - www.freepik.com

Expectancy-Value Theory

Key factors for (intrinsic) motivation:

1. Subjective *value* of a goal

"Do I care about this? Does it help me?"

2. *Expectations* for attainment of a goal

"Am I likely to succeed? Do I have the skills?"

more details: https://www.queensu.ca/teachingandlearning/modules/students/15_motivation.html

Barriers for motivation can arise from both factors!

How can we make learning matter to students?

- Connect material to learners' environment
 - Solve a (small) real problem
 - Explain how something works that students use every day
 - Discuss the history of a topic
 - ▶ Show how something can serve society at large / a greater cause
- Use humor and stories
- Give students choices (over topics, learning paths, modes of learning)
- Embed creative tasks
- It's hard! And it takes lots of creativity!

Social motivation

- Apart from learning material, social context plays important role
 - It can be motivating if there is a sense of belonging
 - Good group work can add to a tasks value
- But: classroom climate can also alienate if you feel as an *outsider*
 - underrepresented gender, culture, race, age, religion, sexual orientation
 - English as additional language
 - neurodiversity, learning impairments, disabilities

Best practices

- Establish class social rules, classroom as safe zone
- Avoid stereotypes
- Use diverse personas in examples

Growth Mindset vs. Fixed Mindset

Growth Mindset

- "Mistakes are opportunities to grow."
- "I am not yet there."
- "This is hard; I'll have to break it down / ask for a hint / keep trying."
- "She seems ahead in maths, maybe we can offer her stretch tasks."

Fixed Mindset

- "Mistakes show everyone how stupid I am."
- "I cannot do this."
- "I'm not good at math." (What's the point of trying?)
- "She is a maths brain." (So no need to challenge her.)

Good news: No scientific evidence for fixed mental capabilities!

- $\rightsquigarrow\,$ fixed mindset is only within us!
- \rightsquigarrow Ban it from your teaching.

3.3 Theories of Learning

Learning Theories

What does it mean to *learn* something?

Behaviorism / Instructionism

- Learning = measurable change in learner's behavior
 - Pavlov's dog (reinforcement learning)
 - repetition, drill exercises
- Teacher delivers material to learner
 - teacher has the key active role
 - teacher decides structure, content, activities
 - learning mostly seen as one-way street: from teacher to learner
- emphasis on summative assessment

Constructivism

- Learning = change in learner's mind, learning as a transformation
 - Piaget's observation of children
 - through experience, concepts form
 - exploratory/discovery tasks, play
- teacher = guide on learning journey
 - learner has key role; teacher only facilitates
 - teacher set environment, organizes learning opportunities
- emphasis on learner's experience

Piaget's counter experiment https://www.youtube.com/watch?v=gnArvcWaH6I

Constructivism-only fallacy

- ▶ It is tempting to condemn instructionism and to focus on open exploratory activities
 - works great for children already motivated to learn something
 - often overwhelms others! "What do I have to do now?"
- → Provide guidance & scaffolding
 - use quizzes to trigger exploring a specific question
 - de-brief: "This is what could be observed here."

Cognitive load theory

- Working memory is very limited
 - \blacktriangleright \approx 7 chunks
- But: each chunk can be complex *schema* if it is already internalized
- → need tasks of appropriate size/complexity
- → need to connect concepts to existing knowledge

https://blog.teachcomputing.org/pedagogy-bytes-quick-reads-for-busy-educators/

Bloom's Taxonomy

Streamlined version of Bloom's Taxonomy for CS as used for ACM Curricula Recommendations

3 levels of mastery

► Familiarity:

The student understands what a concept is or what it means. This level of mastery concerns a basic awareness of a concept as opposed to expecting real facility with its application. It provides an answer to the question "What do you know about this?"

Usage:

The student is able to use or apply a concept in a concrete way. Using a concept may include, for example, appropriately using a specific concept in a program, using a particular proof technique, or performing a particular analysis. It provides an answer to the question "What do you know how to do?"

Assessment:

The student is able to consider a concept from multiple viewpoints and/or justify the selection of a particular approach to solve a problem. This level of mastery implies more than using a concept; it involves the ability to select an appropriate approach from understood alternatives. It provides an answer to the question "Why would you do that?"

 \rightsquigarrow Use the taxonomy to balance assessments