il

4 4

1B HEAH [[.
T2 L N0 -
1ML E R0 E
“HMO DML = 0-:
10 BRL T =L
HNHMKER T
)L e H T
JILImOWN M-+
1ML E0O!
(EAH AT UOL
T NETBE UL
2= 0B H< 6
lnmvzmb <t
1AM OZH:
)HLHUMH =
1O AHIE
LOZ2HOHEF
OMLBEHRDC
ldHL 2 HC
><C O [[[y [T

_| |

Machines & Models

5 October 2023

Sebastian Wild

COMP526 (Fall 2023)

Univers

sity of Liverpool

version 2023-10-04 21:44H

Learning Outcomes

1.

Understand the difference between
empirical running time and algorithm
analysis.

Understand worst /best / average case
models for input data.

Know the RAM machine model.

Know the definitions of asymptotic

notation (Big-Oh classes and relatives).

Understand the reasons to make
asymptotic approximations.

Be able to analyze simple algorithms.

Unit 1: Machines & Models

Outline

1 Machines & Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh

What is an algorithm? (>)
An algorithm is a sequence of instructions.

think: recipe

. e.g. Python script
More precisely:

1. mechanically executable
~s 1o “common sense” needed

] ——

L

2. finite description # finite computation!

3. solves a problem, i.e., a class of problem instances

x +y,notonly 17 + 4

> input-processing-output abstraction
Typical example: bubblesort

) ~> not a specific program
input(s) output(s) but the underlying idea

Algorithm

What is a data structure?

A data structure is

1. arule for encoding data
(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree

1.1 Algorithm analysis

Good algorithms
Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

can be complicated in distributed systems

» fast running time

» moderate memory space usage

Algorithm analysis is a way to

» compare different algorithms,

» predict their performance in an application

Running time experiments

Why not simply run and time it?

» results only apply to

» single test machine

tested inputs

>
> tested implementation
>
#

universal truths

» instead: consider and analyze algorithms on an abstract machine

~+ provable statements for model survives Pentium 4

~ testable model hypotheses

~» Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

> worst-case performance:
consider the worst of all inputs as our cost metric

» best-case performance:
consider the best of all inputs as our cost metric

> average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n.

~ performance is only a function of 7.

1.2 The RAM Model

Machine models
The machine model decides
» what algorithms are possible
» how they are described (= programming language)

» what an execution costs

Goal: Machine models should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

honest

~+ usually some compromise is needed

smart investment
banker

Random Access Machines

Random access maChlne (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures
by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

» unlimited memory MEM[O], MEM[1], MEM[2], .. .
> fixed number of registers Ry, ..., R, (say r = 100)

» memory cells MEM[i] and registers R; store w-bit integers, i. e., numbers in [0..2% — 1]

w is the word width/size; typically ~ 2% =xn

» Instructions:
> load & store: R; := MEM[R;] MEM[R;] := R;
» operations on registers: Ry := R; + R j (arithmetic is modulo 2°1)
also Ri - R]', R,‘ -Rj, Ri div Rj, Ri mod R]'
C-style Operations (bitwise and/or/xor, left/right shift)

» conditional and unconditional jumps

» cost: number of executed instructions

we will see further models later

~» The RAM is the standard model for sequential computation.

https://www.springer.com/gp/book/9783030252083

Pseudocode

» Programs for the random-access machine are very low level and detailed

~ assembly/machine language

Typical simplifications when describing and analyzing algorithms:

/code that humans understand (easily)
» more abstract pseudocode

» control flow using if, for, while, etc.
» variable names instead of fixed registers and memory cells

» memory management (next slide)

» count dominant operations (e. g. memory accesses)
instead of all RAM instructions

honest

In both cases: We can go to full detail where needed.

smart investment
banker

Memory management & Pointers

> A random-access machine is a bit like a bare CPU . . . without any operating system
~+ cumbersome to use
» All high-level programming languages add memory management to that:

» Instruction to allocate a contiguous piece of memory of a given size (like malloc).

> used to allocate a new array (of a fixed size) or
> a new object/record (with a known list of instance variables)

» There’s a similar instruction to free allocated memory again.

» A pointer is a memory address (i.e., the i of MEM[i]).

» Support for procedures (a.k.a. functions, methods) calls including recursive calls

» (this internally requires maintaining call stack)

We will mostly ignore how all this works in COMP526.

10

1.3 Asymptotics & Big-Oh

Why asymptotics?

Algorithm analysis focuses On (the limiting behavior for infinitely) large inputs.

» abstracts from unnecessary detail e
» simplifies analysis

> often necessary for sensible comparison

Asymptotics = approximation around co

Example: Consider a function f () given by
2n? = 3n|log,(n + 1)| + 7n — 3|log,(n + 1)] + 120 ~ 2n?

0 10 20 30 40 50 60 70 80 90 100

11

Asymptotic tools —

» “Tilde Notation”:

> “Big-Oh Notation”:

» “Little-Oh Notation”:

Formal & definitive definition

if, and only if

fn)~g(n) M Tim 22 =1

. f and g are asymptotically equivalent”

also write ‘=’ instead
f(n) E/O(g(n)) iff f(n) is bounded for 1 > ng
g(n)
» iff liISi‘S::p %‘ < o
Variants: Big-Omega”
W, .
> f(n) € Q(g(n)) iff g(n)e O(f(n))
> f(n)e @(g(n)) iff f(n)€O(g(n)) and f(n) € Q(g(n))
BlgTheta

. f(n)

f(n) €o(g(n)) iff lim g(n)

f(n) € w(g(n)) iflim = o

12

Asymptotic tools — Intuition

> f(n)=O(g(n)): f(n)is at most g(n)
up to constant factors and
for sufficiently large n

> f(n)=O(g(n): f(n)is equal to g(n)
up to constant factors and
for sufficiently large n

A [Plots can be misleading!] [Example L’.']

cg(n)

f(n)

. \
n
no r

c2 8(n)

< czg(”)
f(n)
c1 8(n)

gm £ i)

no

13

https://cs.stackexchange.com/a/16714

Asymptotics — Example 1
Basic examples:

» 2013 +10n1In(n) +5 ~ 20n® = @)

> 31g(n?) +1g(lg(n) = O(logn)
> 1010 = O(1)

Use wolframalpha to compute/check limits.

14

https://www.wolframalpha.com/

Asymptotics — Frequently used facts

» Rules:

» c-f(n) = O(f(n)) for constant ¢ # 0

>

» Frequently used orders of growth:

>

>
>
>
>
>

O(f +g) = O(max{f, g}) largestsummand determines ®-class

logarithmic @(log 7’1) Note: a,b > 0 constants ~» ©(log, (1)) = ©(log, (1))

linear ©(n)

linearithmic ©(nlogn)
quadratic ©(n?)

polynomial O(n°) for constant ¢

exponential O(c") for constant ¢

Note: @ > b > 0 constants ~» b" = o(a")

15

Asymptotics — Example 2
Square-and-multiply algorithm
for computing x™ with m € N

Inputs:
» m as binary number (array of bits)
> 1 = #bits in m

> x a floating-point number

» Cost: C = #multiplications

1 def pow(x, m):
2 # compute binary representation of exponent
3 exponent_bits = bin(m)[2:]

4 result =1

5 for bit in exponent_bits:

6 result *= result

7 if bit =="1"

8 result *= x

9 return result

» C = n (line 4) + #one-bits binary representation of 1 (line 5)

~n<C<2n

16

https://de.wikipedia.org/wiki/Bin%C3%A4re_Exponentiation

	Machines & Models
	 Learning Outcomes
	 What is an algorithm?
	 What is a data structure?
	Algorithm analysis
	 Good algorithms
	 Running time experiments
	 Data Models

	The RAM Model
	 Machine models
	 Random Access Machines
	 Pseudocode
	 Memory management & Pointers

	Asymptotics & Big-Oh
	 Why asymptotics?
	 Asymptotic tools – Formal & definitive definition
	 Asymptotic tools – Intuition
	 Asymptotics – Example 1
	 Asymptotics – Frequently used facts
	 Asymptotics – Example 2

