ALGORITHMS WEFFICIENT CIENTALGORITHMS \$EFF EFFICIENTALGORITHMS ENTALGORITHMS \$EFFICI FFICIENTALGORITHMS F E FICIENTALGORITHMS \$ EF GORITHMS WEFFICIENTAL

Machines \& Models

5 October 2023
Sebastian Wild

Learning Outcomes

1. Understand the difference between empirical running time and algorithm analysis.
2. Understand worst / best /average case models for input data.
3. Know the RAM machine model.
4. Know the definitions of asymptotic notation (Big-Oh classes and relatives).
5. Understand the reasons to make asymptotic approximations.

Unit 1: Machines \mathcal{E} Models

6. Be able to analyze simple algorithms.

Outline

1 Machines \& Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics \& Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions.

More precisely:
e. g. Python script

1. mechanically executable
\rightsquigarrow no "common sense" needed

2. finite description
= finite computation!
3. solves a problem, i.e., a class of problem instances

$$
x+y, \text { not only } 17+4
$$

- input-processing-output abstraction

Typical example: bubblesort
\rightsquigarrow not a specific program but the underlying idea

What is a data structure?

A data structure is

1. a rule for encoding data (in computer memory), plus
2. algorithms to work with it (queries, updates, etc.)
typical example: binary search tree

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good "usually" means
can be complicated in distributed systems

- fast running time
- moderate memory space usage

Algorithm analysis is a way to

- compare different algorithms,
- predict their performance in an application

Running time experiments

Why not simply run and time it?

- results only apply to
- single test machine
- tested inputs
- tested implementation
- ...

\neq universal truths
- instead: consider and analyze algorithms on an abstract machine
\rightsquigarrow provable statements for model
survives Pentium 4
\rightsquigarrow testable model hypotheses
$\rightsquigarrow \quad$ Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

- worst-case performance:
consider the worst of all inputs as our cost metric
- best-case performance:
consider the best of all inputs as our cost metric
- average-case performance: consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n.
\rightsquigarrow performance is only a function of n.
1.2 The RAM Model

Machine models

The machine model decides

- what algorithms are possible
- how they are described (= programming language)
- what an execution costs

Goal: Machine models should be detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.
$\rightsquigarrow \quad$ usually some compromise is needed

Random Access Machines

Random access machine (RAM)

- unlimited memory MEM[0], MEM[1], MEM[2], ...
- fixed number of registers $R_{1}, \ldots, R_{r} \quad(\operatorname{say} r=100)$
- memory cells MEM[i] and registers R_{i} store w-bit integers, i. e., numbers in $\left[0 . .2^{w}-1\right]$ w is the word width/size; typically $w \propto \lg n \leadsto 2^{w} \approx n$
- Instructions:
- load \& store: $R_{i}:=\operatorname{MEM}\left[R_{j}\right] \quad \operatorname{MEM}\left[R_{j}\right]:=R_{i}$
- operations on registers: $R_{k}:=R_{i}+R_{j} \quad$ (arithmetic is modulo 2^{w} !)
also $R_{i}-R_{j}, R_{i} \cdot R_{j}, R_{i} \operatorname{div} R_{j}, R_{i} \bmod R_{j}$
C -style operations (bitwise and/or/xor, left/right shift)
- conditional and unconditional jumps
- cost: number of executed instructions
\rightsquigarrow The RAM is the standard model for sequential computation.

Pseudocode

- Programs for the random-access machine are very low level and detailed
\approx assembly/machine language

Typical simplifications when describing and analyzing algorithms:

- more abstract pseudocode ${ }^{\text {code that humans understand (easily) }}$
more abstract pseudocode
- control flow using if, for, while, etc.
- variable names instead of fixed registers and memory cells
- memory management (next slide)
- count dominant operations (e.g. memory accesses) instead of all RAM instructions

In both cases: We can go to full detail where needed.

Memory management \& Pointers

- A random-access machine is a bit like a bare CPU ... without any operating system
$\rightsquigarrow \quad$ cumbersome to use
- All high-level programming languages add memory management to that:
- Instruction to allocate a contiguous piece of memory of a given size (like malloc).
- used to allocate a new array (of a fixed size) or
- a new object/record (with a known list of instance variables)
- There's a similar instruction to free allocated memory again.
- A pointer is a memory address (i.e., the i of MEM[i]).
- Support for procedures (a.k.a. functions, methods) calls including recursive calls
- (this internally requires maintaining call stack)

We will mostly ignore how all this works in COMP526.
1.3 Asymptotics \& Big-Oh

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

$$
\text { Asymptotics }=\text { approximation around } \infty
$$

Example: Consider a function $f(n)$ given by $2 n^{2}-3 n\left\lfloor\log _{2}(n+1)\right\rfloor+7 n-3\left\lfloor\log _{2}(n+1)\right\rfloor+120 \sim 2 n^{2}$

Asymptotic tools - Formal \& definitive definition

if, and only if

- "Tilde Notation": $\quad f(n) \sim g(n)$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$
"f and g are asymptotically equivalent"
- "Big-Oh Notation": $\quad f(n) \in O(g(n)) \quad$ iff $\quad\left|\frac{f(n)}{g(n)}\right|$ is bounded for $n \geq n_{0}$

$$
\begin{aligned}
& \text { need supremum since limit might not exist! } \\
& \qquad \text { iff } \limsup _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|<\infty
\end{aligned}
$$

Variants:

- $f(n) \in \Omega(g(n)) \quad$ iff $\quad g(n) \in O(f(n))$
- $f(n) \in$ "BigTheta" $_{\boldsymbol{\prime}}^{\boldsymbol{\Theta}}(g(n))$ iff $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$
- "Little-Oh Notation": $\quad f(n) \in o(g(n)) \quad$ iff $\quad \lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|=0$

$$
f(n) \in \omega(g(n)) \text { if lim }=\infty
$$

Asymptotic tools - Intuition

- $f(n)=O(g(n)): \quad f(n)$ is at most $g(n)$ up to constant factors and for sufficiently large n

- $f(n)=\Theta(g(n)): \quad f(n)$ is equal to $g(n)$ up to constant factors and for sufficiently large n

Asymptotics - Example 1

Basic examples:

- $20 n^{3}+10 n \ln (n)+5 \sim 20 n^{3}=\Theta\left(n^{3}\right)$
- $3 \lg \left(n^{2}\right)+\lg (\lg (n))=\Theta(\log n)$
- $10^{100}=O(1)$

Use wolframalpha to compute/check limits.

Asymptotics - Frequently used facts

- Rules:
- $c \cdot f(n)=\Theta(f(n))$ for constant $c \neq 0$
- $\Theta(f+g)=\Theta(\max \{f, g\})$ largest summand determines Θ-class
- Frequently used orders of growth:
- logarithmic $\Theta(\log n) \quad$ Note: $a, b>0$ constants $\rightsquigarrow \Theta\left(\log _{a}(n)\right)=\Theta\left(\log _{b}(n)\right)$
- linear $\Theta(n)$
- linearithmic $\Theta(n \log n)$
- quadratic $\Theta\left(n^{2}\right)$
- polynomial $O\left(n^{c}\right)$ for constant c
- exponential $O\left(c^{n}\right)$ for constant c Note: $a>b>0$ constants $\rightsquigarrow b^{n}=o\left(a^{n}\right)$

Asymptotics - Example 2

Square-and-multiply algorithm for computing x^{m} with $m \in \mathbb{N}$

```
def pow(x,m):
    # compute binary representation of exponent
    exponent_bits = \boldsymbol{bin}(m)[2:]
    result = 1
    for bit in exponent_bits:
        result *= result
        if bit == '1':
            result *= x
    return result
```

- Cost: $C=\#$ multiplications
- $C=n$ (line 4) + \#one-bits binary representation of m (line 5)
$\leadsto n \leq C \leq 2 n$

