ALGORITHMS WEFFICIENT CIENTALGORITHMS ${ }^{\text {E EFF }} \mathrm{F}$ EFFICIENTALGORITHMS ENTALGORITHMS \$EFFICI FFICIENTALGORITHMS \$ E FICIENTALGORITHMS \$ EF GORITHMS WEFFICIENTAL

Efficient Sorting -
 The Power of Divide \& Conquer

13 October 2023
Sebastian Wild

Learning Outcomes

1. Know principles and implementation of mergesort and quicksort.
2. Know properties and performance characteristics of mergesort and quicksort.
3. Know the comparison model and understand the corresponding lower bound.
4. Understand counting sort and how it circumvents the comparison lower bound.
5. Know ways how to exploit presorted inputs.

Unit 3: Efficient Sorting

Outline

Efficient Sorting

3.1 Mergesort
3.2 Quicksort
3.3 Comparison-Based Lower Bound
3.4 Integer Sorting
3.5 Adaptive Sorting
3.6 Python's list sort
3.7 Order Statistics
3.8 Further D\&C Algorithms

Why study sorting?

- fundamental problem of computer science that is still not solved
- building brick of many more advanced algorithms
- for preprocessing
- as subroutine
- playground of manageable complexity to practice algorithmic techniques

Here:

- "classic" fast sorting method
- exploit partially sorted inputs
- parallel sorting

Part I

The Basics

Rules of the game

- Given:
- array $A[0 . . n)=A[0 . . n-1]$ of n objects
- a total order relation \leq among $A[0], \ldots, A[n-1]$
(a comparison function)
Python: elements support <= operator (__le_())
Java: Comparable class (x.compareTo(y) <= 0)
- Goal: rearrange (i.e., permute) elements within A, so that A is sorted, i.e., $A[0] \leq A[1] \leq \cdots \leq A[n-1]$
- for now: A stored in main memory (internal sorting) single processor (sequential sorting)

3.1 Mergesort

Merging sorted lists

Merging sorted lists

Mergesort

```
procedure mergesort( \(A[l . . r)\) )
    \(n:=r-l\)
    if \(n \leq 1\) return
    \(m:=l+\left\lfloor\frac{n}{2}\right\rfloor\)
    mergesort \((A[\) l..m \(m)\)
    mergesort \((A[m . . r))\)
    merge( \(A[\) l..m \(), A[m . . r)\), buf)
    copy buf to \(A[l . . r)\)
```

- recursive procedure
- merging needs
- temporary storage buf for result (of same size as merged runs)
- to read and write each element twice (once for merging, once for copying back)

Analysis: count "element visits" (read and/or write)

$$
C(n)=\left\{\begin{array}{ll}
0 & n \leq 1 \\
C(\lfloor n / 2\rfloor)+C(\lceil n / 2\rceil)+2 n & n \geq 2
\end{array} \quad\left(\begin{array}{l}
\text { precisely(!) solvable without assumption } n=2^{k}: \\
C(n)=2 n \lg (n)+\left(2-\{\lg (n)\}-2^{1-\{\lg (n)\}}\right) 2 n \\
\text { with }\{x\}:=x-\lfloor x\rfloor
\end{array}\right)\right.
$$

Simplification $n=2^{k} \quad$ same for best and worst case!

$$
C\left(2^{k}\right)=\left\{\begin{array}{ll}
0 & k \leq 0 \\
2 \cdot C\left(2^{k-1}\right)+2 \cdot 2^{k} & k \geq 1
\end{array}=2 \cdot 2^{k}+2^{2} \cdot 2^{k-1}+2^{3} \cdot 2^{k-2}+\cdots+2^{k} \cdot 2^{1}=2 k \cdot 2^{k}\right.
$$

$$
C(n)=2 n \lg (n)=\Theta(n \log n) \quad(\text { arbitrary } n: C(n) \leq C(\text { next larger power of } 2) \leq 4 n \lg (n)+2 n=\Theta(n \log n))
$$

Mergesort - Discussion

0 optimal time complexity of $\Theta(n \log n)$ in the worst case

\square
stable sorting method i.e., retains relative order of equal-key items

4
memory access is sequential (scans over arrays)requires $\Theta(n)$ extra space
there are in-place merging methods,
but they are substantially more complicated and not (widely) used

3.2 Quicksort

Partitioning around a pivot

Partitioning around a pivot

- no extra space needed
- visits each element once
- returns rank/position of pivot

Partitioning - Detailed code

Beware: details easy to get wrong; use this code! (if you ever have to)

```
procedure partition \((A, b)\)
    \(/ /\) input: array \(A[0 . . n)\), position of pivot \(b \in[0 . . n)\)
    \(\operatorname{swap}(A[0], A[b])\)
    \(i:=0, \quad j:=n\)
    while true do
        do \(i:=i+1\) while \(i<n\) and \(A[i]<A[0]\)
        do \(j:=j-1\) while \(j \geq 1\) and \(A[j]>A[0]\)
        if \(i \geq j\) then break (goto 11)
        else \(\operatorname{swap}(A[i], A[j])\)
    end while
    \(\operatorname{swap}(A[0], A[j])\)
    return \(j\)
```

Loop invariant (5-10):

Quicksort

${ }^{1}$ procedure quicksort($A[1 . . r)$)
$2 \quad$ if $r-\ell \leq 1$ then return
3 $\quad b:=\operatorname{choosePivot}(A[l . . r))$
$j:=\operatorname{partition}(A[l . . r), b)$
quicksort($A[1 . . j)$)
quicksort($A[j+1 . . r))$

- recursive procedure
- choice of pivot can be
- fixed position \rightsquigarrow dangerous!
- random
- more sophisticated, e.g., median of 3

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

- recursion tree of quicksort = binary search tree from successive insertion
- comparisons in quicksort = comparisons to built BST
- comparisons in quicksort \approx comparisons to search each element in BST

Quicksort - Worst Case

- Problem: BSTs can degenerate
- Cost to search for k is $k-1$
\rightsquigarrow Total cost $\sum_{k=1}^{n}(k-1)=\frac{n(n-1)}{2} \sim \frac{1}{2} n^{2}$
\rightsquigarrow quicksort worst-case running time is in $\Theta\left(n^{2}\right)$
 terribly slow!

But, we can fix this:

Randomized quicksort:

- choose a random pivot in each step
\rightsquigarrow same as randomly shuffling input before sorting

Randomized Quicksort - Analysis

- $C(n)=$ element visits (as for mergesort)
\rightsquigarrow quicksort needs $\sim 2 \ln (2) \cdot n \lg n \approx 1.39 n \lg n$ in expectation
- also: very unlikely to be much worse:
e. g., one can prove: $\operatorname{Pr}[$ cost $>10 n \lg n]=O\left(n^{-2.5}\right)$ distribution of costs is "concentrated around mean"
- intuition: have to be constantly unlucky with pivot choice

Quicksort - Discussion

fastest general-purpose method
$\Theta(n \log n)$ average caseworks in-place (no extra space required)

0memory access is sequential (scans over arrays)$\Theta\left(n^{2}\right)$ worst case (although extremely unlikely)not a stable sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

3.3 Comparison-Based Lower Bound

Lower Bounds

- Lower bound: mathematical proof that no algorithm can do better.
- very powerful concept: bulletproof impossibility result
\approx conservation of energy in physics
- (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound
\rightsquigarrow can speak of "optimal algorithms"
- To prove a statement about all algorithms, we must precisely define what that is!
- already know one option: the word-RAM model
- Here: use a simpler, more restricted model.

The Comparison Model

- In the comparison model data can only be accessed in two ways:
- comparing two elements
- moving elements around (e.g. copying, swapping)
- Cost: number of these operations.

That's good!
Keeps algorithms general!

- This makes very few assumptions on the kind of objects we are sorting.
- Mergesort and Quicksort work in the comparison model.
\rightsquigarrow Every comparison-based sorting algorithm corresponds to a decision tree.
- only model comparisons \rightsquigarrow ignore data movement
- nodes = comparisons the algorithm does
- next comparisons can depend on outcomes \rightsquigarrow different subtrees
- child links = outcomes of comparison
- leaf $=$ unique initial input permutation compatible with comparison outcomes

Comparison Lower Bound

Example: Comparison tree for a sorting method for $A[0 . .2]$:

- Execution $=$ follow a path in comparison tree.
\rightsquigarrow height of comparison tree $=$ worst-case \# comparisons
- comparison trees are binary trees
$\rightsquigarrow \ell$ leaves \rightsquigarrow height $\geq\lceil\lg (\ell)\rceil$
- comparison trees for sorting method must have $\geq n$! leaves
\rightsquigarrow height $\geq \lg (n!) \sim n \lg n$
more precisely: $\lg (n!)=n \lg n-\lg (e) n+O(\log n)$
- Mergesort achieves $\sim n \lg n$ comparisons \rightsquigarrow asymptotically comparison-optimal!
- Open (theory) problem: Sorting algorithm with $n \lg n-\lg (e) n+o(n)$ comparisons?

$$
\approx 1.4427
$$

3.4 Integer Sorting

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- Not necessarily; only in the comparison model!
\rightsquigarrow Lower bounds show where to change the model!
- Here: sort n integers
- can do a lot with integers: add them up, compute averages, ...
\rightsquigarrow we are not working in the comparison model
\rightsquigarrow above lower bound does not apply!
- but: a priori unclear how much arithmetic helps for sorting ...

Counting sort

- Important parameter: size/range of numbers
- numbers in range $[0 . . U)=\{0, \ldots, U-1\} \quad$ typically $U=2^{b} \rightsquigarrow b$-bit binary numbers
- We can sort n integers in $\Theta(n+U)$ time and $\Theta(U)$ space when $b \leq w$:

Counting sort

```
procedure countingSort( \(A[0 . . n)\) )
    // A contains integers in range [0..U).
    \(C[0 . . U):=\) new integer array, initialized to 0
    // Count occurrences
    for \(i:=0, \ldots, n-1\)
        \(C[A[i]]:=C[A[i]]+1\)
    \(i:=0\) // Produce sorted list
    for \(k:=0, \ldots\) - 1
        for \(j:=1, \ldots C[k]\)
            \(A[i]:=k ; \quad i:=i+1\)
```

- count how often each possible value occurs
- produce sorted result directly from counts
- circumvents lower bound by using integers as array index / pointer offset

```
Can sort n integers in range [0..U) with U =O(n) in time and space \Theta(n).
```


Integer Sorting - State of the art

- $O(n)$ time sorting also possible for numbers in range $U=O\left(n^{c}\right)$ for constant c.
- radix sort with radix 2^{w}
- Algorithm theory
- suppose $U=2^{w}$, but w can be an arbitrary function of n
- how fast can we sort n such w-bit integers on a w-bit word-RAM?
- for $w=O(\log n)$: linear time (radix/counting sort)
- for $w=\Omega\left(\log ^{2+\varepsilon} n\right)$: linear time (signature sort)
- for w in between: can do $O(n \sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!
- for the rest of this unit: back to the comparisons model!

Part II

Exploiting presortedness

3.5 Adaptive Sorting

Adaptive sorting

- Comparison lower bound also holds for the average case $\rightsquigarrow\lfloor\lg (n!)\rfloor \mathrm{cmps}$ necessary
- Mergesort and Quicksort from above use $\sim n \lg n \mathrm{cmps}$ even in best case

Can we do better if the input is already "almost sorted"?

Scenarios where this may arise naturally:

- Append new data as it arrives, regularly sort entire list (e.g., log files, database tables)
- Compute summary statistics of time series of measurements that change slowly over time (e. g., weather data)
- Merging locally sorted data from different servers (e.g., map-reduce frameworks)
\rightsquigarrow Ideally, algorithms should adapt to input: the more sorted the input, the faster the algorithm . . . but how to do that!?

Warmup: check for sorted inputs

- Any method could first check if input already completely in order!

0 Best case becomes $\Theta(n)$ with $n-1$ comparisons!Usually $n-1$ extra comparisons and pass over data "wasted"
\uparrow Only catches a single, extremely special case ...

- For divide \& conquer algorithms, could check in each recursive call!
$₫$ Potentially exploits partial sortedness!
usually adds $\Omega(n \log n)$ extra comparisons

For Mergesort, can instead check before merge with a single comparison

- If last element of first run \leq first element of second run, skip merge

How effective is this idea?

```
procedure mergesortCheck(A[l..r))
    n := r-l
    if }n\leq1\mathrm{ return
    m:=l+\lfloor\frac{n}{2}\rfloor
    mergesortCheck(A[l..m))
    mergesortCheck(A[m..r))
    if }A[m-1]>A[m
    merge(A[l..m), A[m..r),buf)
    copy buf to A[l..r)
```


Mergesort with sorted check - Analysis

- Simplified cost measure: merge cost $=$ size of output of merges
\approx number of comparisons
\approx number of memory transfers / cache misses
- Example input: $n=64$ numbers in sorted runs of 16 numbers each:

Merge costs:

128 with sorted check
Sorted check can help a lot!

Alignment issues

- In previous example, each run of length ℓ saved us $\ell \lg (\ell)$ in merge cost.
$=$ exactly the cost of creating this run in mergesort had it not already existed

$$
\rightsquigarrow \text { best savings we can hope for! }
$$

\rightsquigarrow Are overall merge costs $\mathcal{H}\left(\ell_{1}, \ldots, \ell_{r}\right):=\underbrace{n \lg (n)}_{\text {mergesort }}-\underbrace{\sum_{i=1}^{r} \ell_{i} \lg \left(\ell_{i}\right)}_{\text {savings from runs }}$?

Merge costs:

Natural Bottom-Up Mergesort

- Can we do better by explicitly detecting runs?
procedure bottomUpMergesort($A[0 . . n)$)
$Q:=$ new Queue // runs to merge
// Phase 1: Enqueue singleton runs
for $i=0, \ldots, n-1$ do
Q.enqueue $((i, i+1))$
// Phase 2: Merge runs level-wise
while Q.size ()≥ 2
Q^{\prime} := new Queue
while Q.size ()≥ 2
$\left(i_{1}, j_{1}\right):=Q$. .dедиеие ()
$\left(i_{2}, j_{2}\right):=Q$. . ееяиеие ()
$\operatorname{merge}\left(A\left[i_{1} . . j_{1}\right), A\left[i_{2} . . j_{2}\right)\right.$,buf)
copy buf to $A\left[i_{1} . . j_{2}\right)$
Q^{\prime}. enqueue $\left(\left(i_{1}, j_{2}\right)\right)$
if \neg Q.isEmpty() // lonely run
Q^{\prime}.епqиеие(Q. .dеquеие())
$Q:=Q^{\prime}$
procedure naturalMergesort $(A[0 . . n)$)
$Q:=$ new Queue; $i:=0 \quad$ find run $A[i . . j)$
while $i<n \quad \swarrow$ starting at i
$j:=i+1$
while $A[j] \geq A[j-1]$ do $j:=j+1$
Q.enquеие $((i, j)) ; \quad i:=j$
while Q.size ()≥ 2

$$
Q^{\prime}:=\text { new Queue }
$$

while Q.size ()≥ 2
$\left(i_{1}, j_{1}\right):=Q$. dequене()
$\left(i_{2}, j_{2}\right):=Q$.dequеие()
$\operatorname{merge}\left(A\left[i_{1} . . j_{1}\right), A\left[i_{2} . . j_{2}\right)\right.$,buf $)$
copy buf to $A\left[i_{1} . . j_{2}\right)$
Q^{\prime}.enqueue $\left(\left(i_{1}, j_{2}\right)\right)$
if \neg Q.isEmpty() // lonely run
Q^{\prime}. епqиеие (Q.dequeиe()) $Q:=Q^{\prime}$

Natural Bottom-Up Mergesort - Analysis

- Works well runs of roughly equal size, regardless of alignment ...

Merge costs:

216 Standard mergesort with sorted check

128 Natural bottom-up mergesort

Natural Bottom-Up Mergesort - Analysis [2]

- ... but less so for uneven run lengths

246 Natural bottom-up mergesort

196 Standard mergesort with sorted check
. . . can't we have both at the same time?!

Good merge orders

Let's take a step back and breathe.

- Conceptually, there are two tasks:

1. Detect and use existing runs in the input $\rightsquigarrow \ell_{1}, \ldots, \ell_{r}$

2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)

Merge cost $=$ total area of

$$
\begin{aligned}
& =\text { total length of paths to all array entries } \\
& =\sum_{w \text { leaf }} w e i g h t(w) \cdot \operatorname{depth}(w)
\end{aligned}
$$

well-understood problem with known algorithms
optimal merge tree $=$ optimal binary search tree for leaf weights $\ell_{1}, \ldots, \ell_{r}$ (optimal expected search cost)

Nearly-Optimal Mergesort

Nearly-Optimal Mergesorts:

Fast, Practical Sorting Methods That
Optimally Adapt to Existing Runs
J. Ian Munro

University of Watertoo, Canad

Sebastian Wild
Univesity of Waterton, Conud

- Abstract

We preesent tux stable men and find nenarly poptimal merging orders with nesgigibe overhead Previous methoods eithect requir

 state-cid the art implementations of stable sorting methods
2012 ACM Subject Classification Theery of conmputation \rightarrow Surting and searching
Keywords and phrases adaptive serting, nearly-optimal tinary sarch tracs, Timsort
Digital Obiect Identifier 10 A290/UPICs ESA 201863
Related Version arXiv: 1805. 04154
Supplement Material zenodo: 1241162 (eade to xeproduce runing t time gtudy)
Funding This work was supported by the Natural Sciencess and Enginerring Fesearch Comeril eol
(inum and the Canada Reserch Chairs Progranme
1 Introduction
Sorting is a fundamental building block for numerous tasks and ubbiquitous in both the theory and practice of computing. While practical and theoretically (closeto) optin compartson-tased sorting methods are knowni, instance-optimal sorting, Le., methods thal adopt to the actual input and exploit specific structural properties if preesent, is still an are sf active research. We survey some recent developnents in Section 1.1
also foumd wide adteptiton in practice, eg., in Oracle's Java runtime library: adapting to the also lound wide aloption in practicee eg. en in Oractes Java runtime libraty: aldapting to the
presence of duplicate keys and using existing sorted segments, called rums. The former it achieved by a so-called fat-pivet partitioning variant of quicksort $|8|$, which is also used in th OpenBSD implementation of quort from the C standiard library. It is an unstable sortin
method, though, i.e, the relative order of elements with equal keys might be destroyed in the proces. It is bence used in Jara solely for primitive type arrays.
(Q)

- In 2018, with Ian Munro, I combined research on nearly-optimal BSTs with mergesort
$\rightsquigarrow 2$ new algorithms: Peeksort and Powersort
- both adapt provably optimal to existing runs even in worst case:
mergecost $\leq \mathcal{H}\left(\ell_{1}, \ldots, \ell_{r}\right)+2 n$
- both are lightweight extensions of existing methods with negligible overhead
- both fast in practice

Peeksort

- based on top-down mergesort
- "peek" at middle of array \& find closest run boundary

\rightsquigarrow split there and recurse (instead of at midpoint)
- can avoid scanning runs repeatedly:

- find full run straddling midpoint
- remember length of known runs at boundaries

\rightsquigarrow with clever recursion, scan each run only once.

Peeksort - Code

```
procedure peeksort \(\left(A[\ell . . r), \Delta_{\ell}, \Delta_{r}\right)\)
    if \(r-\ell \leq 1\) then return
    if \(\ell+\Delta_{\ell}==r \vee \ell==r+\Delta_{r}\) then return
    \(m:=\ell+\lfloor(r-\ell) / 2\rfloor\)
    \(i:= \begin{cases}\ell+\Delta_{\ell} & \text { if } \ell+\Delta_{\ell} \geq m \\ \text { extendRunLeft }(A, m) & \text { else }\end{cases}\)
    \(j:= \begin{cases}r+\Delta_{r} \leq m & \text { if } r+\Delta_{r} \leq m \leq m \\ \operatorname{extendRunRight}(A, m) & \text { else }\end{cases}\)
    \(g:= \begin{cases}i & \text { if } m-i<j-m \\ j & \text { else }\end{cases}\)
    \(\Delta_{g}:= \begin{cases}j-i & \text { if } m-i<j-m \\ i-j & \text { else }\end{cases}\)
    peeksort \(\left(A[\ell . . g), \Delta_{\ell}, \Delta_{g}\right)\)
    peeksort \(\left(A[g, r), \Delta_{g}, \Delta_{r}\right)\)
    \(\operatorname{merge}(A[\ell, g), A[g . . r), b u f)\)
    copy buf to \(A[\ell . . r)\)
```

- Parameters:

- initial call: peeksort $\left(A[0 . . n), \Delta_{0}, \Delta_{n}\right)$ with $\Delta_{0}=\operatorname{extendRunRight}(A, 0)$ $\Delta_{n}=n-\operatorname{extendRunLeft}(A, n)$
- helper procedure

```
\({ }_{1}\) procedure extendRunRight \((A[0 . . n), i)\)
    \(j:=i+1\)
    while \(j<n \wedge A[j-1] \leq A[j]\)
            \(j:=j+1\)
    return \(j\)
```

(extendRunLeft similar)

Peeksort - Analysis

- Consider tricky input from before again:

246 Natural bottom-up mergesort
196 Standard mergesort with sorted check

- One can prove: Mergecost always $\leq \mathcal{H}\left(\ell_{1}, \ldots, \ell_{r}\right)+2 n$
\rightsquigarrow We can have the best of both worlds!
3.6 Python's list sort

Sorting in Python

- CPython
- Python is only a specification of a programming language
- The Python Foundation maintains CPython as the official reference implementation of the Python programming language
- If you don't specifically install something else, python will be CPython
- part of Python are list. sort resp. sorted built-in functions
- implemented in C
- use Timsort, custom Mergesort variant by Tim Peters

Sept 2021: Python uses Powersort!
in CPython 3.11 and PyPy 7.3.6

```
msg400864 -Author: Tim Peters (tim.peters) *
I created a PR that implements the powersort merge strategy:
https://github.com/python/cpython/pull/28108
Across all the time this issue report has been open, that strategy continues to be the top contender. Enough already ;-) It's indeed a more difficult change to make to the code, but that's in relative terms. In absolute terms, it's not at all a hard change.
Laurent, if you find that some variant of ShiversSort actually runs faster than that, let us know here! I'm a big fan of Vincent's innovations too, but powersort seems to do somewhat better "on average" than even his lengthadaptive ShiversSort (and implementing that too would require changing code outside of merge_collapse()).
```


Timsort (original version)

```
procedure Timsort( \(A[0 . . n\) ))
    \(i\) := 0; runs := new Stack()
    while \(i<n\)
        \(j:=\operatorname{ExtendRunRight}(A, i)\)
        runs.push( \(i, j\) ); \(i:=j\)
        while rule \(\mathrm{A} / \mathrm{B} / \mathrm{C} / \mathrm{D}\) applicable
            merge corresponding runs
    while runs.size() \(\geq 2\)

- above shows the core algorithm; many more algorithm engineering tricks

- Advantages:
- profits from existing runs
- locality of reference for merges
- But: not optimally adaptive! (next slide) Reason: Rules A-D (Why exactly these?!)

\section*{Timsort bad case}
- On certain inputs, Timsort's merge rules don't work well:

- As \(n\) increases, Timsort's cost approach \(1.5 \cdot \mathcal{H}\), i. e., \(50 \%\) more merge costs than necessary
- intuitive problem: regularly very unbalanced merges

\section*{Powersort}
\(\rightsquigarrow\) Timsort's merge rules aren't great, but overall algorithm has appeal . . . can we keep that?
```

procedure Powersort $(A[0 . . n)$)
$i:=0$; runs := new Stack()
$j:=\operatorname{ExtendRunRight}(A, i)$
runs.push((i,j),0); $i:=j$
while $i<n$
$j:=\operatorname{ExtendRunRight}(A, i)$
$p:=\operatorname{power}($ runs.top ()$,(i, j), n)$
while $p \leq$ runs.top().power
merge topmost 2 runs
runs.push($(i, j), p)$; $i:=j$
while runs.size ($) \geq 2$
merge topmost 2 runs

```

0

abcdef-0
run stack


\section*{Powersort - Run-Boundary Powers}

- (virtual) perfect balanced binary tree
- midpoint intervals "snap" to closest virtual tree node \(\rightsquigarrow\) assigns each run boundary a depth \(=\) its power
\(\rightsquigarrow\) merge tree follows virtual tree


\section*{Powersort - Run-Boundary Powers are Local}


Computation of powers only depends on two adjacent runs.

\section*{Powersort - Computing powers}
- Computing the power of (run boundary between) two runs
- \(\leftrightarrows=\) normalized midpoint interval
- power \(=\min \ell\) s.t. \((\) contains \(c \cdot 2^{-\ell}\)

procedure power \(\left(\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), n\right)\)
\[
\begin{aligned}
& n_{1}:=j_{1}-i_{1} \\
& n_{2}:=j_{2}-i_{2} \\
& a:=\frac{i_{1}+\frac{1}{2} n_{1}-1}{n} \\
& b:=\frac{i_{2}+\frac{1}{2} n_{2}-1}{n} / / \text { interval }(a, b] \\
& \ell:=0 \\
& \text { while }\left\lfloor a \cdot 2^{\ell}\right\rfloor==\left\lfloor b \cdot 2^{\ell}\right\rfloor \\
& \quad \ell:=\ell+1 \\
& \text { return } \ell
\end{aligned}
\]
- with bitwise trickery \(O(1)\) time possible


\section*{Powersort - Discussion}

0 Retains all advantages of Timsort
- good locality in memory accesses
- no recursion
- all the tricks in Timsort
optimally adapts to existing runs
minimal overhead for finding merge order

\section*{Part III}

\section*{Divide \(\mathcal{E}\) Conquer beyond sorting}

\section*{Divide and conquer}

\section*{Divide and conquer idiom (Latin: divide et impera)}
to make a group of people disagree and fight with one another so that they will not join together against one
\(\rightsquigarrow \quad\) in politics as in algorithms, many independent, small problems are better than a big one!

\section*{Divide-and-conquer algorithms:}
1. Break problem into smaller, independent subproblems. (Divide!)
2. Recursively solve all subproblems. (Conquer!)
3. Assemble solution for original problem from solutions for subproblems.

\section*{Examples:}
- Mergesort
- Quicksort
- Binary search
- (arguably) Tower of Hanoi
3.7 Order Statistics

\section*{Selection by Rank}
- Standard data summary of numerical data: (Data scientists, listen up!)
- mean, standard deviation
- min/max (range)
- histograms
easy to compute in \(\Theta(n)\) time
- median, quartiles, other quantiles (a.k.a. order statistics)
- Given: array \(A[0 . . n)\) of numbers and number \(k \in[0 . . n)\).
- Goal: find element that would be in position \(k\) if \(A\) was sorted ( \(k\) th smallest element).
-k= \(n / 2\rfloor \rightsquigarrow\) median; \(k=\lfloor n / 4\rfloor \rightsquigarrow\) lower quartile
\(k=0 \rightsquigarrow\) minimum; \(\quad k=n-\ell \rightsquigarrow \ell\) th largest

\section*{Quickselect}
- Key observation: Finding the element of rank \(k\) seems hard.

But computing the rank of a given element is easy!
\(\rightsquigarrow\) Pick any element \(A[b]\) and find its rank \(j\).
- \(j=k\) ? \(\rightsquigarrow\) Lucky Duck! Return chosen element and stop
\(\triangleright j<k\) ? \(\rightsquigarrow \ldots\) not done yet. But: The \(j+1\) elements smaller than \(\leq A[b]\) can be excluded!
\(-j>k ? \rightsquigarrow\) similarly exclude the \(n-j\) elements \(\geq A[b]\)
- partition function from Quicksort:
- returns the rank of pivot
- separates elements into smaller/larger
\(\rightsquigarrow\) can use same building blocks
(recursion can be replaced by loop)
```

procedure quickselect $(A[l . . r), k)$
if $r-\ell \leq 1$ then return $A[l]$
$b:=\operatorname{choosePivot}(A[l . . r))$
$j:=\operatorname{partition}(A[l . . r), b)$
if $j==k$
return $A[j]$
else if $j<k$
quickselect $(A[j+1 . . n), k-j-1)$
else // $j>k$
quickselect $(A[0 . . j), k)$

```

\section*{Quickselect Discussion}
q \(\Theta\left(n^{2}\right)\) worst case (like Quicksort)
\(₫\) can prove: expected \(\operatorname{cost} \Theta(n)\)
\(\oiint\) no extra space needed
0 adaptations possible to find several order statistics


For practical purposes, Quickselect is fine.

Yeah ... maybe. But can we select by rank in \(O(n)\) worst case?
(1)

\section*{Better Pivots}

It turns out, we can!
- All we need is better pivots!
- If pivot was the exact median, we would at least halve \#elements in each step
- Then the total cost of all partitioning steps is \(\leq 2 n=\Theta(n)\).

But: finding medians is (basically) our original problem!

- It totally suffices to find an element of rank \(\alpha n\) for \(\alpha \in(\varepsilon, 1-\varepsilon)\) to get overall costs \(\Theta(n)\) !

\section*{The Median-of-Medians Algorithm}
```

procedure choosePivotMoM(A[l..r))
$m:=\lfloor n / 5\rfloor$
for $i:=0, \ldots, m-1$
$\operatorname{sort}(A[5 i . .5 i+4])$
// collect median of 5
Swap $A[i]$ and $A[5 i+2]$
return quickselectMoM(A[0..m), $\left.\left\lfloor\frac{m-1}{2}\right\rfloor\right)$
procedure quickselectMoM $(A[l . . r), k)$
if $r-\ell \leq 1$ then return $A[l]$
$b:=$ choosePivotMoM(A[l..r))
$j:=\operatorname{partition}(A[l . . r), b)$
if $j==k$
return $A[j]$
else if $j<k$
quickselectMoM(A[j+1..n), $k-j-1)$
else // $j>k$
quickselectMoM(A[0..j), k)

```

\section*{Analysis:}
- Note: 2 mutually recursive procedures \(\rightsquigarrow\) effectively 2 recursive calls!
1. recursive call inside choosePivotMoM on \(m \leq \frac{n}{5}\) elements
2. recursive call inside quickselectMoM

\(\rightsquigarrow\) partition excludes \(\sim 3 \cdot \frac{m}{2} \sim \frac{3}{10} n\) elem.
\(\rightsquigarrow C(n) \leq \Theta(n)+C\left(\frac{1}{5} n\right)+C\left(\frac{7}{10} n\right)\)
ansatz: overall \(\quad \leq \Theta(n)+C\left(\frac{1}{5} n+\frac{7}{10} n\right)\)
cost linear \(=\Theta(n)+C\left(\frac{9}{10} n\right) \rightsquigarrow C(n)=\Theta(n)\)

\subsection*{3.8 Further D\&C Algorithms}

\section*{Majority}
- Given: Array \(A[0 . . n)\) of objects
- Goal: Check of there is an object \(x\) that occurs at \(>\frac{n}{2}\) positions in \(A\) if so, return \(x\)
- Naive solution: check each \(A[i]\) whether it is a majority \(\rightsquigarrow \Theta\left(n^{2}\right)\) time

Can be solved faster using a simple Divide \& Conquer approach:
- If \(A\) has a majority, that element must also be a majority of at least one half of \(A\).
\(\rightsquigarrow\) Can find majority (if it exists) of left half and right half recursively
\(\rightsquigarrow\) Check these \(\leq 2\) candidates.
- Costs similar to mergesort \(\Theta(n \log n)\)

\section*{Majority - Linear Time}

We can actually do much better!
```

1 def $\operatorname{MJRTY}(A[0 . . n))$
$c:=0$
for $i:=1, \ldots, n-1$
if $c==0$
$x:=A[i] ; c:=1$
else
if $A[i]==x$ then $c:=c+1$ else $c:=c-1$
return x

```
- \(\operatorname{MJRTY}(A[0 . . n))\) returns candidate majority element

- either that candidate is the majority element or none exists(!)

1 Clearly \(\Theta(n)\) time

\section*{Closest pair}
- Given: Array \(P[0 . . n)\) of points in the plane each has \(x\) and \(y\) coordinates: \(P[i] . x\) and \(P[i] . y\)
- Goal: Find pair \(P[i], P[j]\) that is closest in (Euclidean) distance
- Naive solution: compute distance of each pair \(\rightsquigarrow \Theta\left(n^{2}\right)\) time
- Can be done in \(O(n \log n)\) time using a clever divide \& conquer algorithm. (Details not part of the module material.)```

