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Learning Outcomes
1. Know and use typical notions for strings

(substring, prefix, suffix, etc.).

2. Understand principles and
implementation of the KMP, BM, and RK
algorithms.

3. Know the performance characteristics of the
KMP, BM, and RK algorithms.

4. Be able to solve simple stringology
problems using the KMP failure function.

Unit 4: String Matching

1



Outline

4 String Matching
4.1 String Notation
4.2 Brute Force
4.3 String Matching with Finite Automata
4.4 Constructing String Matching Automata
4.5 The Knuth-Morris-Pratt algorithm
4.6 Beyond Optimal? The Boyer-Moore Algorithm
4.7 The Rabin-Karp Algorithm



4.1 String Notation



Ubiquitous strings
string = sequence of characters
▶ universal data type for . . . everything!

▶ natural language texts
▶ programs (source code)
▶ websites
▶ XML documents
▶ DNA sequences
▶ bitstrings
▶ . . . a computer’s memory ⇝ ultimately any data is a string

⇝ many different tasks and algorithms

▶ This unit: finding (exact) occurrences of a pattern text.
▶ Ctrl+F
▶ grep
▶ computer forensics (e. g. find signature of file on disk)
▶ virus scanner

▶ basis for many advanced applications
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Notations
▶ alphabet Σ: finite set of allowed characters; 𝜎 = |Σ| “a string over alphabet Σ”

▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . . )

▶ “what you can type on a keyboard”, Unicode
comprehensive standard character set
including emoji and all known symbols

characters
▶ {0, 1}; nucleotides {𝐴, 𝐶, 𝐺, 𝑇}; . . .

▶ Σ𝑛 = Σ × · · · × Σ: strings of length 𝑛 ∈ ℕ0 (𝑛-tuples)

▶ Σ★ =
⋃

𝑛≥0 Σ
𝑛 : set of all (finite) strings over Σ

▶ Σ+ =
⋃

𝑛≥1 Σ
𝑛 : set of all (finite) nonempty strings over Σ

▶ � ∈ Σ0: the empty string (same for all alphabets)

▶ for 𝑆 ∈ Σ𝑛 , write 𝑆[𝑖] (other sources: 𝑆𝑖) for 𝒊th
zero-based (like arrays)!

character (0 ≤ 𝑖 < 𝑛)

▶ for 𝑆, 𝑇 ∈ Σ★, write 𝑆𝑇 = 𝑆 · 𝑇 for concatenation of 𝑆 and 𝑇

▶ for 𝑆 ∈ Σ𝑛 , write 𝑆[𝑖.. 𝑗] or 𝑆𝑖 , 𝑗 for the substring 𝑆[𝑖] · 𝑆[𝑖 + 1] · · · 𝑆[𝑗] (0 ≤ 𝑖 ≤ 𝑗 < 𝑛)
▶ 𝑆[0.. 𝑗] is a prefix of 𝑆; 𝑆[𝑖..𝑛 − 1] is a suffix of 𝑆
▶ 𝑆[𝑖.. 𝑗) = 𝑆[𝑖.. 𝑗 − 1] (endpoint exclusive) ⇝ 𝑆 = 𝑆[0..𝑛)
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String matching – Definition
Search for a string (pattern) in a large body of text
▶ Input:

▶ 𝑇 ∈ Σ𝑛 : The text (haystack) being searched within
▶ 𝑃 ∈ Σ𝑚 : The pattern (needle) being searched for; typically 𝑛 ≫ 𝑚

▶ Output:
▶ the first occurrence (match) of 𝑃 in 𝑇: min

{
𝑖 ∈ [0..𝑛 − 𝑚) : 𝑇[𝑖..𝑖 + 𝑚) = 𝑃

}
▶ or NO_MATCH if there is no such 𝑖 (“𝑃 does not occur in 𝑇”)

▶ Variant: Find all occurrences of 𝑃 in 𝑇.
⇝ Can do that iteratively (update 𝑇 to 𝑇[𝑖 + 1..𝑛) after match at 𝑖)

▶ Example:
▶ 𝑇 = “Where is he?”
▶ 𝑃1 = “he” ⇝ 𝑖 = 1
▶ 𝑃2 = “who” ⇝ NO_MATCH

▶ string matching is implemented in Java in String.indexOf, in Python as str.find
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4.2 Brute Force



Abstract idea of algorithms
String matching algorithms typically use guesses and checks:

▶ A guess is a position 𝑖 such that 𝑃 might start at 𝑇[𝑖].
Possible guesses (initially) are 0 ≤ 𝑖 ≤ 𝑛 − 𝑚.

▶ A check of a guess is a comparison of 𝑇[𝑖 + 𝑗] to 𝑃[𝑗].

▶ Note: need all 𝑚 checks to verify a single correct guess 𝑖,
but it may take (many) fewer checks to recognize an incorrect guess.

▶ Cost measure: #character comparisons

⇝ #checks ≤ 𝑛 · 𝑚 (number of possible checks)
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Brute-force method

1 procedure bruteForceSM(𝑇[0..𝑛), 𝑃[0..𝑚))
2 for 𝑖 := 0, . . . , 𝑛 − 𝑚 − 1 do
3 for 𝑗 := 0, . . . , 𝑚 − 1 do
4 if 𝑇[𝑖 + 𝑗] ≠ 𝑃[𝑗] then break inner loop
5 if 𝑗 == 𝑚 then return 𝑖

6 return NO_MATCH

▶ try all guesses 𝑖

▶ check each guess (left to right);
stop early on mismatch

▶ essentially the implementation
in Java!

▶ Example:
𝑇 = abbbababbab
𝑃 = abba

⇝ 15 char cmps
(vs 𝑛 · 𝑚 = 44)
not too bad!

a b b b a b a b b a b
a b b a

a
a

a
a b b

a
a b b a
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Brute-force method – Discussion
Brute-force method can be good enough
▶ typically works well for natural language text
▶ also for random strings

but: can be as bad as it gets!
a a a a a a a a a a a
a a a b

a a a b
a a a b

a a a b
a a a b

a a a b
a a a b

a a a b

▶ Worst possible input: 𝑃 = 𝑎𝑚−1𝑏,
𝑇 = 𝑎𝑛

▶ Worst-case performance: (𝑛 −𝑚 + 1) ·𝑚

⇝ for 𝑚 ≤ 𝑛/2 that is Θ(𝑚𝑛)

▶ Bad input: lots of self-similarity in 𝑇! ⇝ can we exploit that?

▶ brute force does ‘obviously’ stupid repetitive comparisons ⇝ can we avoid that?
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Roadmap
▶ Approach 1 (this week): Use preprocessing on the pattern 𝑃 to eliminate guesses

(avoid ‘obvious’ redundant work)
▶ Deterministic finite automata (DFA)
▶ Knuth-Morris-Pratt algorithm
▶ Boyer-Moore algorithm
▶ Rabin-Karp algorithm

▶ Approach 2 (⇝ Unit 8): Do preprocessing on the text 𝑇
Can find matches in time independent of text size(!)

▶ inverted indices
▶ Suffix trees
▶ Suffix arrays
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4.3 String Matching with Finite Automata



Theoretical Computer Science to the rescue!
▶ string matching = deciding whether 𝑇 ∈ Σ★ · 𝑃 · Σ★

▶ Σ★ · 𝑃 · Σ★ is regular formal language

⇝ ∃ deterministic finite automaton (DFA) to recognize Σ★ · 𝑃 · Σ★

⇝ can check for occurrence of 𝑃 in |𝑇 | = 𝑛 steps!

Job done! WTF!?

We are not quite done yet.

▶ (Problem 0: programmer might not know automata and formal languages . . . )

▶ Problem 1: existence alone does not give an algorithm!

▶ Problem 2: automaton could be very big!
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String matching with DFA
▶ Assume first, we already have a deterministic automaton
▶ How does string matching work?

Example:
𝑇 = aabacaababacaa
𝑃 = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

text: a a b a c a a b a b a c a a
state: 0 1 1 2 3 0 1 1 2 3 4 5 6 7 7
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String matching DFA – Intuition
Why does this work?

▶ Main insight:

State 𝑞 means:
“we have seen 𝑃[0..𝑞) until here
(but not any longer prefix of 𝑃)”

𝑇 = aabacaababacaa
𝑃 = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

text: a a b a c a a b a b a c a a
state: 0 1 1 2 3 0 1 1 2 3 4 5 6 7 7

▶ If the next text character 𝑐 does not match, we know:
(i) text seen so far ends with 𝑃[0...𝑞) · 𝑐

(ii) 𝑃[0...𝑞) · 𝑐 is not a prefix of 𝑃
(iii) without reading 𝑐, 𝑃[0..𝑞) was the longest prefix of 𝑃 that ends here.

𝑇 = · · · 𝑃[0..𝑞) c
𝑃[0..𝑞′)

with 𝑞′ < 𝑞

⇝ New longest matched prefix will be (weakly) shorter than 𝑞

⇝ All information about the text needed to determine it is contained in 𝑃[0...𝑞) · 𝑐!
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4.4 Constructing String Matching Automata



NFA instead of DFA?
It remains to construct the DFA.

▶ trivial part: 0 1 2 3 4 5 6 7
a

Σ

b a b a c a

Σ

▶ that actually is a nondeterministic finite automaton (NFA) for Σ★𝑃 Σ★

⇝ We could use the NFA directly for string matching:
▶ at any point in time, we are in a set of states
▶ accept when one of them is final state

Example:

text: a a b a c a a b a b a c a a
state: 0 0, 1 0, 1 0, 2 0, 1, 3 0 0, 1 0, 1 0, 2 0, 1, 3 0, 2, 4 0, 1, 3, 5 0, 6 0, 1, 7 0, 1, 7

But maintaining a whole set makes this slow . . .
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Computing DFA directly
You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has exponential state blow up!
I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:
Suppose we add character 𝑃[𝑗] to automaton 𝐴 𝑗−1 for 𝑃[0.. 𝑗)
▶ add new state and matching transition ⇝ easy
▶ for each 𝑐 ≠ 𝑃[𝑗], we need 𝛿(𝑗 , 𝑐) (transition from 𝑗 when reading 𝑐)
▶ 𝛿(𝑗 , 𝑐) = length of the longest prefix of 𝑃[0.. 𝑗)𝑐 that is a suffix of 𝑃[1.. 𝑗)𝑐

= state of automaton after reading 𝑃[1.. 𝑗)𝑐
≤ 𝑗 ⇝ can use known automaton 𝐴𝑗−1 for that!

⇝ can directly compute 𝐴 𝑗 from 𝐴 𝑗−1!

seems to require simulating automata 𝑚 · 𝜎 times

State 𝑞 means:
“we have seen 𝑃[0..𝑞) until here
(but not any longer prefix of 𝑃)”
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Computing DFA efficiently
▶ KMP’s second insight: simulations in one step differ only in last symbol

⇝ simply maintain state 𝑥, the state after reading 𝑃[1.. 𝑗).
▶ copy its transitions
▶ update 𝑥 by following transitions for 𝑃[𝑗]

1 procedure constructDFA(𝑃[0..𝑚))
2 // 𝛿[𝑞][𝑐] = target state when reading 𝑐 in state 𝑞
3 for 𝑐 ∈ Σ do
4 𝛿[0][𝑐] := 0
5 𝛿[0][𝑃[0]] := 1
6 𝑥 := 0
7 for 𝑗 = 1, . . . , 𝑚 − 1 do
8 for 𝑐 ∈ Σ do // copy transitions
9 𝛿[𝑗][𝑐] := 𝛿[𝑥][𝑐]

10 𝛿[𝑗][𝑃[𝑗]] := 𝑗 + 1 // match edge
11 𝑥 := 𝛿[𝑥][𝑃[𝑗]] // update 𝑥

Example: 𝑃[0..6) = ababac

𝛿(𝑐, 𝑞) 0 1 2 3 4 5

a 1 1 3 1 5 1
b 0 2 0 4 0 4
c 0 0 0 0 0 6
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String matching with DFA – Discussion
▶ Time:

▶ Matching: 𝑛 table lookups for DFA transitions
▶ building DFA: Θ(𝑚𝜎) time (constant time per transition edge).
⇝ Θ(𝑚𝜎 + 𝑛) time for string matching.

▶ Space:
▶ Θ(𝑚𝜎) space for transition matrix.

fast matching time actually: hard to beat!

total time asymptotically optimal for small alphabet (for 𝜎 = 𝑂(𝑛/𝑚))

substantial space overhead, in particular for large alphabets
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4.5 The Knuth-Morris-Pratt algorithm



Failure Links
▶ Recall: String matching with is DFA fast,

but needs table of 𝑚 × 𝜎 transitions.
▶ in fast DFA construction, we used that all simulations differ only by last symbol

⇝ KMP’s third insight: do this last step of simulation from state 𝑥 during matching!
. . . but how?

▶ Answer: Use a new type of transition, the failure links
▶ Use this transition (only) if no other one fits.
▶ × does not consume a character. ⇝ might follow several failure links

0 1 2 3 4 5 6 7a

Σ − 𝑎

b

×

a

×

b

×

a

×

c

×

a

×

Σ

⇝ Computations are deterministic (but automaton is not a real DFA.)
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Failure link automaton – Example
Example: 𝑇 = abababaaaca, 𝑃 = ababaca

0 1 2 3 4 5 6 7a

Σ − 𝑎

b

×

a

×

b

×
a

×

c

×
a

×

Σ

𝑇 : a b a b a b a a b a b
𝑃 : a b a b a × to state 3

(a) (b) (a) b a × to state 1
a b a b

𝑞: 1 2 3 4 5 3, 4 5 3, 1, 0, 1 2 3 4
(after reading this character)
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The Knuth-Morris-Pratt Algorithm
1 procedure KMP(𝑇[0..𝑛), 𝑃[0..𝑚))
2 fail[0..𝑚] := failureLinks(𝑃)
3 𝑖 := 0 // current position in 𝑇

4 𝑞 := 0 // current state of KMP automaton
5 while 𝑖 < 𝑛 do
6 if 𝑇[𝑖] == 𝑃[𝑞] then
7 𝑖 := 𝑖 + 1; 𝑞 := 𝑞 + 1
8 if 𝑞 == 𝑚 then
9 return 𝑖 − 𝑞 // occurrence found

10 else // i.e. 𝑇[𝑖] ≠ 𝑃[𝑞]
11 if 𝑞 ≥ 1 then
12 𝑞 := fail[𝑞] // follow one ×
13 else
14 𝑖 := 𝑖 + 1
15 end while
16 return NO_MATCH

▶ only need single array fail for
failure links

▶ (procedure failureLinks later)

Analysis: (matching part)

▶ always have fail[𝑗] < 𝑗 for 𝑗 ≥ 1

⇝ in each iteration
▶ either advance position in text

(𝑖 := 𝑖 + 1)
▶ or shift pattern forward

(guess 𝑖 − 𝑞)

▶ each can happen at most 𝑛 times

⇝ ≤ 2𝑛 symbol comparisons!
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Computing failure links
▶ failure links point to error state 𝑥 (from DFA construction)

⇝ run same algorithm, but store fail[𝑗] := 𝑥 instead of copying all transitions

1 procedure failureLinks(𝑃[0..𝑚))
2 fail[0] := 0
3 𝑥 := 0
4 for 𝑗 := 1, . . . , 𝑚 − 1 do
5 fail[𝑗] := 𝑥

6 // update failure state using failure links:
7 while 𝑃[𝑥] ≠ 𝑃[𝑗]
8 if 𝑥 == 0 then
9 𝑥 := −1; break

10 else
11 𝑥 := fail[𝑥]
12 end while
13 𝑥 := 𝑥 + 1
14 end for

Analysis:
▶ 𝑚 iterations of for loop

▶ while loop always decrements 𝑥

▶ 𝑥 is incremented only once per
iteration of for loop

⇝ ≤ 𝑚 iterations of while loop in total

⇝ ≤ 2𝑚 symbol comparisons
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Knuth-Morris-Pratt – Discussion
▶ Time:

▶ ≤ 2𝑛 + 2𝑚 = 𝑂(𝑛 + 𝑚) character comparisons
▶ clearly must at least read both 𝑇 and 𝑃

⇝ KMP has optimal worst-case complexity!

▶ Space:
▶ Θ(𝑚) space for failure links

total time asymptotically optimal (for any alphabet size)

reasonable extra space
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The KMP prefix function
▶ It turns out that the failure links are useful beyond KMP

▶ a slight variation is more widely used: (for historic reasons)
the (KMP) prefix function 𝐹 : [1..𝑚 − 1] → [0..𝑚 − 1]:

𝐹[𝑗] is the length of the longest prefix of 𝑃[0.. 𝑗]
that is a suffix of 𝑃[1.. 𝑗].

▶ Can show: fail[𝑗] = 𝐹[𝑗 − 1] for 𝑗 ≥ 1, and hence

fail[𝑗] = length of the
longest prefix of 𝑃[0.. 𝑗)
that is a suffix of 𝑃[1.. 𝑗).

memorize this!
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4.6 Beyond Optimal? The Boyer-Moore Algorithm



Motivation
▶ KMP is an optimal algorithm, isn’t it? What else could we hope for?

▶ KMP is “only” optimal in the worst-case (and up to constant factors)

▶ how many comparisons do we need for the following instance?
𝑇 = aaaaaaaaaaaaaaaa, 𝑃 = xxxxx

▶ there are no matches
▶ we can certify the correctness of that output with only 4 comparisons:

𝑇 a a a a a a a a a a a a a a a a
x

x
x

x

⇝ We did not even read most characters!
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Boyer-Moore Algorithm
▶ Let’s check guesses from right to left!

▶ If we are lucky, we can eliminate several shifts in one shot!

must avoid (excessive) redundant checks, e. g., for 𝑇 = 𝑎𝑛 , 𝑃 = 𝑏𝑎𝑚−1

⇝ New rules:
▶ Bad character jumps: Upon mismatch at 𝑇[𝑖] = 𝑐:
▶ If 𝑃 does not contain 𝑐, shift 𝑃 entirely past 𝑖!
▶ Otherwise, shift 𝑃 to align the last occurrence of 𝑐 in 𝑃 with 𝑇[𝑖].

▶ Good suffix jumps:
Upon a mismatch, shift so that the already matched suffix of 𝑃 aligns with a
previous occurrence of that suffix (or part of it) in 𝑃.
(Details follow; ideas similar to KMP failure links)

⇝ two possible shifts (next guesses); use larger jump.
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Boyer-Moore Algorithm – Code

1 procedure boyerMoore(𝑇[0..𝑛), 𝑃[0..𝑚))
2 � := computeLastOccurrences(𝑃)
3 𝛾 := computeGoodSuffixes(𝑃)
4 𝑖 := 0 // current guess
5 while 𝑖 ≤ 𝑛 − 𝑚

6 𝑗 := 𝑚 − 1 // next position in 𝑃 to check
7 while 𝑗 ≥ 0 ∧ 𝑃[𝑗] == 𝑇[𝑖 + 𝑗] do
8 𝑗 := 𝑗 − 1
9 if 𝑗 == −1 then

10 return 𝑖

11 else
12 𝑖 := 𝑖 + max

{
𝑗 − �[𝑇[𝑖 + 𝑗]], 𝛾[𝑗]

}
13 return NO_MATCH

▶ � and 𝛾 explained below

▶ shift forward is larger of two
heuristics

▶ shift is always positive (see
below)
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Bad character examples

𝑃 = a l d o
𝑇 = w h e r e i s w a l d o

o
o

a l d o

⇝ 6 characters not looked at

𝑃 = m o o r e
𝑇 = b o y e r m o o r e

e
(r) e

(m) o o r e

⇝ 4 characters not looked at
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Last-Occurrence Function
▶ Preprocess pattern 𝑃 and alphabet Σ

▶ last-occurrence function �[𝑐] defined as
▶ the largest index 𝑖 such that 𝑃[𝑖] = 𝑐 or
▶ −1 if no such index exists

▶ Example: 𝑃 = moore

𝑐 m o r e all others

�[𝑐] 0 2 3 4 −1

𝑃 = m o o r e
𝑇 = b o y e r m o o r e

e
(r) e

𝑖 = 0, 𝑗 = 4, 𝑇[𝑖 + 𝑗] = 𝑟, �[𝑟] = 3

⇝ shift by 𝑗 − �[𝑇[𝑖 + 𝑗]] = 1

▶ � easily computed in 𝑂(𝑚 + 𝜎) time.

▶ store as array �[0..𝜎).
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Good suffix examples
1. 𝑃 = sells␣shells

s h e i l a ␣ s e l l s ␣ s h e l l s
h e l l s

(e) (l) (l) (s)

2. 𝑃 = odetofood

i l i k e f o o d f r o m m e x i c o
o f o o d

(o) (d)

▶ Crucial ingredient: longest suffix of 𝑃[𝑗+1..𝑚)

matched suffix

that occurs earlier in 𝑃.

▶ 2 cases (as illustrated above)
1. complete suffix occurs in 𝑃 ⇝ characters left of suffix are not known to match
2. part of suffix occurs at beginning of 𝑃
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Good suffix jumps
▶ Precompute good suffix jumps 𝛾[0..𝑚):

▶ For 0 ≤ 𝑗 < 𝑚, 𝛾[𝑗] stores shift if search failed at 𝑃[𝑗]
▶ At this point, had 𝑇[𝑖+𝑗+1 .. 𝑖+𝑚) = 𝑃[𝑗+1 .. 𝑚), but 𝑇[𝑖] ≠ 𝑃[𝑗]

⇝ 𝛾[𝑗] is the shift 𝑚 − ℓ for the largest ℓ such that
▶ 𝑃[𝑗+1..𝑚) is a suffix of 𝑃[0..ℓ ) and 𝑃[𝑗] ≠ 𝑃[𝑗−(𝑚 − ℓ )]

h e l l s
× (e) (l) (l) (s)

–OR–
▶ 𝑃[0..ℓ ) is a suffix of 𝑃[𝑗+1..𝑚)

o f o o d
(o) (d)

▶ Computable (similar to KMP failure function) in Θ(𝑚) time.

▶ Note: You do not need to know how to find the values 𝛾[𝑗] for the exam,
but you should be able to find the next guess on examples.
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Boyer-Moore algorithm – Discussion
Worst-case running time ∈ 𝑂(𝑛 + 𝑚 + 𝜎) if 𝑃 does not occur in 𝑇.
(follows from not at all obvious analysis!)

As given, worst-case running time Θ(𝑛𝑚) if we want to report all occurrences
▶ To avoid that, have to keep track of implied matches.

(tricky because they can be in the “middle” of 𝑃)
▶ Note: KMP reports all matches in 𝑂(𝑛 + 𝑚) without modifications!

On typical English text, Boyer Moore probes only approx. 25% of the characters in 𝑇!
⇝ Faster than KMP on English text.

requires moderate extra space Θ(𝑚 + 𝜎)
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4.7 The Rabin-Karp Algorithm



Space – The final frontier
▶ Knuth-Morris-Pratt has great worst case and real-time guarantees

▶ Boyer-Moore has great typical behavior

▶ What else to hope for?

▶ All require Ω(𝑚) extra space;
can be substantial for large patterns!

▶ Can we avoid that?
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Rabin-Karp Fingerprint Algorithm – Idea

Idea: use hashing (but without explicit hash tables)

▶ Precompute & store only hash of pattern

▶ Compute hash for each guess

▶ If hashes agree, check characterwise

Example: (treat (sub)strings as decimal numbers)

𝑃 = 59265
𝑇 = 3141592653589793238

Hash function: ℎ(𝑥) = 𝑥 mod 97
⇝ ℎ(𝑃) = 95.

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8
ℎ(31415) = 84

ℎ(14159) = 94

ℎ(41592) = 76

ℎ(15926) = 18

𝒉(59262) = 95
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Rabin-Karp Fingerprint Algorithm – First Attempt

1 procedure rabinKarpSimplistic(𝑇[0..𝑛), 𝑃[0..𝑚))
2 𝑀 := suitable prime number
3 ℎ𝑃 := computeHash(𝑃[0..𝑚), 𝑀)
4 for 𝑖 := 0, . . . , 𝑛 − 𝑚 do
5 ℎ𝑇 := computeHash(𝑇[𝑖..𝑖 + 𝑚), 𝑀)
6 if ℎ𝑇 == ℎ𝑃 then
7 if 𝑇[𝑖..𝑖 + 𝑚) == 𝑃 // 𝑚 comparisons
8 then return 𝑖

9 return NO_MATCH

▶ never misses a match since ℎ(𝑆1) ≠ ℎ(𝑆2) implies 𝑆1 ≠ 𝑆2✓
▶ ℎ(𝑇[𝑘..𝑘+𝑚) depends on 𝑚 characters ⇝ naive computation takes Θ(𝑚) time

⇝ Running time is Θ(𝑚𝑛) for search miss . . . can we improve this?
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Rabin-Karp Fingerprint Algorithm – Fast Rehash
▶ Crucial insight: We can update hashes in constant time

for above hash function!

.
▶ Use previous hash to compute next hash
▶ 𝑂(1) time per hash, except first one

Example:
▶ Pre-compute: 10000 mod 97 = 9

▶ Previous hash: 41592 mod 97 = 76

▶ Next hash: 15926 mod 97 = ??

Observation:

15926 mod 97 = (41592 − (4·10000)) · 10 + 6 mod 97
= (76 − (4·9 )) · 10 + 6 mod 97
= 406 mod 97 = 18
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Rabin-Karp Fingerprint Algorithm – Code
▶ use a convenient radix 𝑅 ≥ 𝜎 (𝑅 = 10 in our examples; 𝑅 = 2𝑘 is faster)

▶ Choose modulus 𝑀 at random to be huge prime (randomization against worst-case inputs)

▶ all numbers remain ≤ 2𝑅2 ⇝ 𝑂(1) time arithmetic on word-RAM

1 procedure rabinKarp(𝑇[0..𝑛), 𝑃[0..𝑚), 𝑅)
2 𝑀 := suitable prime number
3 ℎ𝑃 := computeHash(𝑃[0..𝑚), 𝑀)
4 ℎ𝑇 := computeHash(𝑇[0..𝑚), 𝑀)
5 𝑠 := 𝑅𝑚−1 mod 𝑀

6 for 𝑖 := 0, . . . , 𝑛 − 𝑚 do
7 if ℎ𝑇 == ℎ𝑃 then
8 if 𝑇[𝑖..𝑖 + 𝑚) = 𝑃

9 return 𝑖

10 if 𝑖 < 𝑛 − 𝑚 then
11 ℎ𝑇 :=

(
(ℎ𝑇 − 𝑇[𝑖] · 𝑠) · 𝑅 + 𝑇[𝑖 + 𝑚]

)
mod 𝑀

12 return NO_MATCH
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Rabin-Karp – Discussion
Expected running time is 𝑂(𝑚 + 𝑛)

Θ(𝑚𝑛) worst-case;
but this is very unlikely

Extends to 2D patterns and other generalizations

Only constant extra space!
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String Matching Conclusion

Brute- DFA KMP BM RK Suffix
Force trees*

Preproc. — 𝑂(𝑚𝜎) 𝑂(𝑚) 𝑂(𝑚 + 𝜎) 𝑂(𝑚) 𝑂(𝑛)time

Search
𝑂(𝑛𝑚) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛 + 𝑚)

𝑂(𝑚)time (often better) (expected)

Extra — 𝑂(𝑚𝜎) 𝑂(𝑚) 𝑂(𝑚 + 𝜎) 𝑂(1) 𝑂(𝑛)space

* (see Unit 8)
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