ALGORITHMS C EFFICIENT CIENTALGORITHMS \$EFF EFFICIENTALGORITHMS ENTALGORITHMS \$EFFICI FFICIENTALGORITHMS \$ E FICIENTALGORITHMS\$EF GORITHMS WEFFICIENTAL

Parallel Algorithms

17 November 2023
Sebastian Wild

Learning Outcomes

1. Know and apply parallelization strategies for embarrassingly parallel problems.
2. Identify limits of parallel speedups.
3. Understand and use the parallel random-access-machine model in its different variants.
4. Be able to analyze and compare simple shared-memory parallel algorithms by determining parallel time and work.
5. Understand efficient parallel prefix sum algorithms.

Unit 7: Parallel Algorithms

6. Be able to devise high-level description of parallel quicksort and mergesort methods.

Outline

Parallel Algorithms

7.1 Parallel Computation
7.2 Parallel String Matching
7.3 Parallel Primitives
7.4 Parallel Sorting

7.1 Parallel Computation

Types of parallel computation

$£ £ £$ can't buy you more time . . . but more computers!
\rightsquigarrow Challenge: Algorithms for parallel computation.
There are two main forms of parallelism:

1. shared-memory parallel computer \leftarrow focus of today

- p processing elements (PEs, processors) working in parallel
- single big memory, accessible from every PE
- communication via shared memory
- think: a big server, 128 CPU cores, terabyte of main memory

2. distributed computing

- p PEs working in parallel
- each PE has private memory
- communication by sending messages via a network
- think: a cluster of individual machines

PRAM - Parallel RAM

- extension of the RAM model (recall Unit 1)
- the p PEs are identified by ids $0, \ldots, p-1$
- like w (the word size), p is a parameter of the model that can grow with n
- $p=\Theta(n)$ is not unusual maaany processors!
- the PEs all independently run the same RAM-style program (they can use their id there)
- each PE has its own registers, but MEM is shared among all PEs
- computation runs in synchronous steps:
in each time step, every PE executes one instruction
- As for RAM:
- assume a basic "operating system"
\rightsquigarrow write algorithms in pseudocode instead of RAM assembly
- NEW: loops and commands can be run "in parallel" (examples coming up)

PRAM - Conflict management

Problem: What if several PEs simultaneously overwrite a memory cell?

- EREW-PRAM (exclusive read, exclusive write) any parallel access to same memory cell is forbidden (crash if happens)
- CREW-PRAM (concurrent read, exclusive write) parallel write access to same memory cell is forbidden, but reading is fine
- CRCW-PRAM (concurrent read, concurrent write) concurrent access is allowed, need a rule for write conflicts:
- common CRCW-PRAM: all concurrent writes to same cell must write same value
- arbitrary CRCW-PRAM: some unspecified concurrent write wins
- (more exist...)
- no single model is always adequate, but our default is CREW

PRAM - Execution costs

Cost metrics in PRAMs

- space: total amount of accessed memory
- time: number of steps till all PEs finish
assuming sufficiently many PEs! sometimes called depth or span
- work: total \#instructions executed on all PEs

Holy grail of PRAM algorithms:

- minimal time (=span)
- work (asymptotically) no worse than running time of best sequential algorithm $\rightsquigarrow ~ " w o r k-e f f i c i e n t " ~ a l g o r i t h m: ~ w o r k ~ i n ~ s a m e ~ \Theta-c l a s s ~ a s ~ b e s t ~ s e q u e n t i a l ~$

The number of processors

Hold on, my computer does not have $\Theta(n)$ processors! Why should I care for span and work!?

Theorem 7.1 (Brent's Theorem)

If an algorithm has span T and work W (for an arbitrarily large number of processors), it can be run on a PRAM with p PEs in time $O\left(T+\frac{W}{p}\right)$ (and using $O(W)$ work).

Proof: schedule parallel steps in round-robin fashion on the p PEs.
\rightsquigarrow span and work give guideline for any number of processors
7.2 Parallel String Matching

Embarrassingly Parallel

- A problem is called "embarrassingly parallel" if it can immediately be split into many, small subtasks that can be solved completely independently of each other
- Typical example: sum of two large matrices (all entries independent)
\rightsquigarrow best case for parallel computation (simply assign each processor one subtask)
- Sorting is not embarrassingly parallel
- no obvious way to define many small (= efficiently solvable) subproblems
- but: some subtasks of our algorithms are (stay tuned ...)

Parallel string matching - Easy?

- We have seen a plethora of string matching methods in Unit 4
- But all efficient methods seem inherently sequential Indeed, they became efficient only after building on knowledge from previous steps!

\rightsquigarrow How well can we parallelize string matching?

Here: string matching $=$ find all occurrences of P in T always assume $m \leq n$

Subproblems in string matching:

- string matching $=$ check all guesses $i=0, \ldots, n-m-1$
- checking one guess is a subtask!

Parallel string matching - Brute force

- Check all guesses in parallel

```
procedure parallelBruteForce( \(T[0 . . n\) ), \(P[0 . . m)\) )
    for \(i:=0, \ldots, n-m-1\) do in parallel \(<\) only difference to normal brute force!
        for \(j:=0, \ldots, m-1\) do
            if \(T[i+j] \neq P[j]\) then break inner loop
        if \(j==m\) then report match at \(i\)
    end parallel for
```

- PE k is executing the loop iteration where $i=k$.
\rightsquigarrow requires that all iterations can be done independently!
- Different PEs work in lockstep (synchronized after each instruction)
- similar to OpenMP \#pragma omp parallel for
- checking whether no match was found by any PE more effort $\rightsquigarrow \ldots$ stay tuned
\rightsquigarrow Time: $\Theta(m) \quad$ using sequential checks $\Theta(\log m)$ on CREW-PRAM (\rightsquigarrow tutorials) $\Theta(1) \quad$ on CRCW-PRAM (\rightsquigarrow tutorials)

Work: $\Theta((n-m) m) \rightsquigarrow$ not great
... much more than best sequential

Parallel string matching - Blocking

Divide T into overlapping blocks of $2 m-1$ characters: $T[0 . .2 m-1), T[m . .3 m-1), T[2 m . .4 m-1), T[3 m . .5 m-1) \ldots$

- Search all blocks in parallel, each using efficient sequential method

```
procedure blockingStringMatching(T[0..n), P[0..m))
    for b := 0,\ldots,\lceil }\textrm{n}/\textrm{m}\rceil\mathrm{ do in parallel
        result := KMP(T[bm .. (b+1)m-1),P)
        if result = NO_MATCH then report match at result
    end parallel for
```

\rightsquigarrow Time:

- loop body has text of length $n^{\prime}=2 m-1$ and pattern of length m
\rightsquigarrow KPM runtime $\Theta\left(n^{\prime}+m\right)=\Theta(m)$
\rightsquigarrow Work: $\Theta\left(\frac{n}{m} \cdot m\right)=\Theta(n) \rightsquigarrow$ work efficient!

Parallel string matching - Discussion

\oiiint
very simple methods

0could even run distributed with access to part of Tparallel speedup only for $m \ll n$

- work-efficient methods with better parallel time possible?
\rightsquigarrow must genuinely parallelize the matching process! (and the preprocessing of the pattern)
\rightsquigarrow needs new ideas (much more complicated, but possible!)
- Parallel string matching - State of the art:
- $O(\log m)$ time \& work-efficient parallel string matching (very complicated)
- this is optimal for CREW-PRAM
- on CRCW-PRAM: matching part even in $O(1)$ time (easy)
but preprocessing requires $\Theta(\log \log m)$ time (very complicated)

7.3 Parallel Primitives

Building blocks

- Most nontrivial problems need tricks to be parallelized
- Some versatile building blocks are known that help in many problems
\rightsquigarrow We study some of them now, before we apply them to parallel sorting

The following problems might not look natural at first sight . . . but turn out to be good abstractions.
\rightsquigarrow bear with me

Prefix sums

Prefix-sum problem (also: cumulative sums, running totals)

- Given: array $A[0 . . n)$ of numbers
- Goal: compute all prefix sums $A[0]+\cdots+A[i]$ for $i=0, \ldots, n-1$ may be done "in-place", i. e., by overwriting A

Example:

input:	3	0	0	5	7	0	0	2	0	0	0	4	0	8	0	1
	Σ															
output:	3	3	3	8	15	15	15	17	17	17	17	21	21	29	29	30

Prefix sums - Sequential

- sequential solution does $n-1$ additions
- but: cannot parallelize them!

4 data dependencies!

```
procedure prefixSum(A[0..n))
    for }i:=1,\ldots,n-1 d
        A[i]:=A[i-1]+A[i]
```

\rightsquigarrow need a different approach
Let's try a simpler problem first.

Excursion: Sum

- Given: array $A[0 . . n)$ of numbers
- Goal: compute $A[0]+A[1]+\cdots+A[n-1]$ (solved by prefix sums)

Any algorithm must do $n-1$ binary additions
\rightsquigarrow Height of tree $=$ parallel time!

Parallel prefix sums

- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse

Parallel prefix sums - Code

- can be realized in-place (overwriting A)
- assumption: in each parallel step, all reads precede all writes
${ }_{1}$ procedure parallelPrefixSums $(A[0 . . n))$
$2 \quad$ for $r:=1, \ldots\lceil\lg n\rceil$ do
step $:=2^{r-1}$
for $i:=$ step, ...n $n-1$ do in parallel
$x:=A[i]+A[i-$ step $]$
$A[i]:=x$
end parallel for
end for

Parallel prefix sums - Analysis

- Time:
- all additions of one round run in parallel
- $\lceil\lg n\rceil$ rounds
$\rightsquigarrow \Theta(\log n)$ time best possible!
- Work:
- $\geq \frac{n}{2}$ additions in all rounds (except maybe last round)
$\rightsquigarrow \Theta(n \log n)$ work
- more than the $\Theta(n)$ sequential algorithm!
- Typical trade-off: greater parallelism at the expense of more overall work
- For prefix sums:
- can actually get $\Theta(n)$ work in twice that time!
\leadsto algorithm is slightly more complicated
- instead here: linear work in thrice the time using "blocking trick"

Work-efficient parallel prefix sums

standard trick to improve work: compute small blocks sequentially

1. Set $b:=\lceil\lg n\rceil$
2. For blocks of b consecutive indices, i.e., $A[0 . . b), A[b . .2 b), \ldots$ do in parallel:

- compute local prefix sums with fast sequential algorithm

3. Use previous work-inefficient parallel algorithm only on rightmost elements of block, i.e., to compute prefix sums of $A[b-1], A[2 b-1], A[3 b-1], \ldots$
4. For blocks $A[0 . . b), A[b . .2 b), \ldots$ do in parallel:

Add block-prefix sums to local prefix sums

Analysis:

- Time:
- 2. \& 4.: $\Theta(b)=\Theta(\log n)$ time
- 3. $\Theta(\log (n / b))=\Theta(\log n)$ time
- Work:
- 2. \& 4.: $\Theta(b)$ per block $\times\left\lceil\frac{n}{b}\right\rceil$ blocks $\rightsquigarrow \Theta(n)$
- 3. $\Theta\left(\frac{n}{b} \log \left(\frac{n}{b}\right)\right)=\Theta(n)$

Compacting subsequences

How do prefix sums help with sorting? one more step to go ...
Goal: Compact a subsequence of an array

${ }_{1} C:=B / /$ deep copy of B
parallelPrefixSums(C)
for $j:=0, \ldots, n-1$ do in parallel if $B[j]==1$ then $S[C[j]-1]:=A[j]$ end parallel for

7.4 Parallel Sorting

Parallel Mergesort

- Recursive calls can run in parallel (data independent)!
- how about merging sorted halves $A[1 . . m)$ and $A[m . . r)$?
- Our pointer-based sequential method seems hard to parallelize
\rightsquigarrow Must treat all elements independently.
- correct position of x in sorted output $=$ rank of x breaking ties by position in A
- \# elements $\leq x=$ \# elements from $A[l . . m)$ that are $\leq x$

$$
+ \text { \# elements from } A[m . . r) \text { that are } \leq x
$$

- rank in own run is simply the index of x in that run!
- find rank in other run by binary search
\rightsquigarrow can move x directly to correct position

Parallel Mergesort - Code

```
procedure parMergesort( \(A[l . . r\) ), buf)
    \(m:=l+\lfloor(r-l) / 2\rfloor\)
    in parallel \(\{\operatorname{parMergesort}(A[l . . m), b u f)\), parMergesort \((A[m . . r), b u f)\}\)
    parallelMerge( \(A[\) l..m), \(A[m . . r)\), buf)
    for \(i=l, \ldots, r-1\) do in parallel // copy back in parallel
        \(A[i]:=b u f[i]\)
    end parallel for
procedure parallelMerge \((A[l . . m), A[m . . r)\), buf)
    for \(i=l, \ldots, m-1\) do in parallel
    \(r:=(i-l)+\operatorname{binarySearch}(A[m . . r), A[i]) / / \operatorname{binarySearch}(A, x)\) returns \#elements \(<x\) in \(A\)
    \(b u f[r]=A[i]\)
    end parallel for
    for \(j=m, \ldots, r-1\) do in parallel
    \(r:=\operatorname{binarySearch}(A[l . . m), A[j])+(j-m)\)
    \(b u f[r]=A[j]\)
    end parallel for
```


Parallel mergesort - Analysis

- Time:
- merge: $\Theta(\log n)$ from binary search, rest $O(1)$
- mergesort: depth of recursion tree is $\Theta(\log n)$
\rightsquigarrow total time $O\left(\log ^{2}(n)\right)$
- Work:
- merge: n binary searches $\rightsquigarrow \Theta(n \log n)$
\rightsquigarrow mergesort: $O\left(n \log ^{2}(n)\right)$ work
- work can be reduced to $\Theta(n)$ for merge (complicated!)
- do full binary searches only for regularly sampled elements
- ranks of remaining elements are sandwiched between sampled ranks
- use a sequential method for small blocks, treat blocks in parallel
- (details omitted)

Parallel Quicksort

Let's try to parallelize Quicksort

- As for Mergesort, recursive calls can run in parallel $\sqrt{ }$
- our sequential partitioning algorithm seems hard to parallelize
- but can split partitioning into phases:

1. comparisons: compare all elements to pivot (in parallel), store result in bitvectors
2. compute prefix sums of bit vectors (in parallel as above)
3. compact subsequences of small and large elements (in parallel as above)

Parallel Quicksort - Code

```
procedure parQuicksort( \(A[l . . r)\) )
    \(b:=\operatorname{choosePivot}(A[l . . r))\)
    \(j\) := parallelPartition \((A[l . . r), b)\)
    in parallel \(\{\) parQuicksort \((A[l . . j))\), parQuicksort \((A[j+1 . . r))\}\)
procedure parallelPartition \((A[0 . . n), b)\)
    \(\operatorname{swap}(A[n-1], A[b]) ; p:=A[n-1]\)
    for \(i=0, \ldots, n-2\) do in parallel
        \(S[i]:=[A[i] \leq p] \quad / / S[i]\) is 1 or 0
        \(L[i]:=1-S[i]\)
    end parallel for
    in parallel \{ parallelPrefixSum(S[0..n-2]); parallelPrefixSum \((L[0 . . n-2])\}\)
    \(j:=S[n-2]+1\)
    for \(i=0, \ldots, n-2\) do in parallel
        \(x:=A[i]\)
        if \(x \leq p\) then \(A[S[i]-1]:=x\)
        else \(A[j+L[i]]:=x\)
    end parallel for
    \(A[j]:=p\)
    return \(j\)
```


Parallel Quicksort - Analysis

- Time:
- partition: all $O(1)$ time except prefix sums $\rightsquigarrow \Theta(\log n)$ time
- Quicksort: expected depth of recursion tree is $\Theta(\log n)$
\rightsquigarrow total time $O\left(\log ^{2}(n)\right)$ in expectation
- Work:
- partition: $O(n)$ time except prefix sums $\rightsquigarrow \Theta(n)$ work (with work-efficient prefix-sums algorithm)
\rightsquigarrow Quicksort $O(n \log (n))$ work in expectation
- (expected) work-efficient parallel sorting!

Parallel sorting - State of the art

- more sophisticated methods can sort in $O(\log n)$ parallel time on CREW-PRAM
- practical challenge: small units of work add overhead
- need a lot of PEs to see improvement from $O(\log n)$ parallel time
\rightsquigarrow implementations tend to use simpler methods above
- check the Java library sources for interesting examples! java.util.Arrays.parallelSort(int[])

