il

4 4

1B HEAH [[.
T2 L N0 -
1ML E R0 E
A HM DL =0
10 BRL T =L
2HNHMKE D
)L e H T
JILIEOWNMHF
1ML E0O!
(EAH AT UOL
T NETBE UL
2= 0O H < 6
lnmvzmb <t
1AM OZH:
)HLHUMH =
1O AHIE
LOZ2HOHEF
OMLBEHRDC
ldHL 2 HC
><C O [[[y [T

_| |

Machines & Models

3 October 2022

Sebastian Wild

COMP526 (Fall 2022)

sity of Liverpool
version 2022-10-03 22:40 H

Univer:

Learning Outcomes

1.

Understand the difference between
empirical running time and algorithm
analysis.

Understand worst /best / average case
models for input data.

Know the RAM machine model.

Know the definitions of asymptotic

notation (Big-Oh classes and relatives).

Understand the reasons to make
asymptotic approximations.

Be able to analyze simple algorithms.

Unit 1: Machines & Models

Outline

1 Machines & Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh

What is an algorithm? r

An algorithm is a sequence of instructions.

think: recipe

e.g. Python script
More precisely:

1. mechanically executable

~» no “common sense” needed
2. finite dESCI‘iptiOI’I # finite computation! b
3. solves a problem, i.e., a class of problem instances

o ee——

x +y,notonly 17 + 4

> input-processing-output abstraction

i) output(s) Typical example: bubblesort

Algorithm ~+ not a specific program
but the underlying idea

What is a data structure?

A data structure is

1. arule for encoding data
(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree

N)

1

-\
2
N

o S

S g
N T
;

| .

7=
N

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

£’ 7
GOOd usually LRIEEIEE can be complicated in distributed systems

» fast running time

» moderate memory space usage

Algorithm analysis is a way to

» compare different algorithms,

» predict their performance in an application

Running time experiments

Why not simply run and time it?

» results only apply to

» single test machine

tested inputs

>
> tested implementation
>
#

universal truths

> instead: consider and analyze algorithms on an abstract machine

~ provable statements for model survives Pentium 4

~ testable model hypotheses

~+ Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

> worst-case performance:
consider the worst of all inputs as our cost metric

> best-case performance:
consider the best of all inputs as our cost metric

> average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n.

~+ performance is only a function of 7.

1.2 The RAM Model

Machine models
The machine model decides
» what algorithms are possible
» how they are described (= programming language)

» what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

honest

~ usually some compromise is needed

smart investment
banker

Random Access Machines

Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

>
>
>

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

unlimited memory MEM[0], MEM[1], MEM[2], . ..
fixed number of registers Ry, ..., R, (say r = 100)
memory cells MEM[7] and registers R; store w-bit integers, i. e., numbers in [0..2% — 1]

w is the word width/size; typically ~— DUy

Instructions:
> load & store: R; := MEM[R;] MEM[R;] := R;
» operations on registers: Ry := R; + R; (arithmetic is modulo 2°1)

also Ri - R]', R,‘ . Rj, Ri div Rj, Ri mod R]
C-style operations (bitwise and/or/xor, left/right shift)

» conditional and unconditional jumps

cost: number of executed instructions

we will see further models later

The RAM is the standard model for sequential computation.

https://www.springer.com/gp/book/9783030252083

Pseudocode

» Programs for the random-access machine are very low level and detailed

~ assembly/machine language

Typical simplifications when describing and analyzing algorithms:
«

code that humans understand (easily)
» more abstract pseudocode

» control flow using if, for, while, etc.
> variable names instead of fixed registers and memory cells
»> memory management (next slide)

» count dominant operations (e.g. memory accesses)
instead of all RAM instructions

honest

In both cases: We can go to full detail where needed.

smart investment
banker

Memory management & Pointers

» A random-access machine is a bit like a bare CPU . . . without any operating system
~+ cumbersome to use
» All high-level programming languages add memory management to that:

» Instruction to allocate a contiguous piece of memory of a given size (like malloc).

> used to allocate a new array (of a fixed size) or
> a new object/record (with a known list of instance variables)

» There’s a similar instruction to free allocated memory again.

» A pointer is a memory address (i.e., the i of MEM[]).

» Support for procedures (a.k.a. functions, methods) calls including recursive calls

» (this internally requires maintaining call stack)

We will mostly ignore how all this works in COMP526.

10

1.3 Asymptotics & Big-Oh

Why asymptotics?

Algorithm analysis focuses on (e limiting behavior for infinitely) large inputs.

» abstracts from unnecessary detail t
» simplifies analysis

» often necessary for sensible comparison

[Asymptotics = approximation around oo

Example: Consider a function f (1) given by
2n% = 3n|log,(n + 1)| + 7n — 3|log,(n + 1)| +120 ~ 2n?

0 10 20 30 40 50 60 70 80 90 100

11

Asymptotic tools — Formal & definitive definition

if, and only if

\
» “Tilde Notation”: f(n)~ g(n) iff lim — =1
n

. f and g are asymptotically equivalent”

also write ‘=" instead

> “Big-Oh Notation”: f(n) e/O(g(n)) iff fE) is bounded for 1 > ng
need supremun since limit might not exist!
iff lim\sup M < o
noeo |81

Variants: g Omega”

> fn)e Q(g(")) iff g(n) € O(f(n))
> f(n)e @(g(n)) iff f(n) € O(g(n)) and f(n) € Q(g(n))
BlgTheta
> “Little-Oh Notation”: f(n) € o(g(n)) iff lim g E”;

n—-oo

f(n) € w(g(n)) if lim = 0

12

Asymptotic tools — Intuition

» f(n)=0(g(n)): f(n)isatmostg(n)
up to constant factors and
for sufficiently large n

> f(n) =0O(g(n)): f(n)isequalto g(n)
up to constant factors and
for sufficiently large #

A [Plots can be misleading!] [Example l’_i']

cg(n)

f(n)

no

g £ fn £ a8

c2 g(n)
(n)

f(n)
c1 g(n)

1o

13

https://cs.stackexchange.com/a/16714

Asymptotics — Example 1
Basic examples:

» 2013 +10nIn(n) +5 ~ 2013 = O(n3)

> 3l1g(n?) +lg(lg(n)) = O(logn)
> 1010 = O(1)

Use wolframalpha to compute/check limits.

14

https://www.wolframalpha.com/

Asymptotics — Frequently used facts

» Rules:

» c-f(n) = O(f(n)) for constant ¢ # 0

>

O(f +¢) = O(max{f,g}) largest summand determines ©-class

» Frequently used orders of growth:

>

vV VvVvyVvyy

logarithmic @(log Vl) Note: a,b > 0 constants ~» O(log, (1)) = O(log, (1))

linear ©(n)

linearithmic @(nlogn)
quadratic On?)

polynomial O(n°) for constant ¢

exponential O(c") for constant ¢

Note: a > b > 0 constants ~» b" = o(a")

15

Asymptotics — Example 2
Square-and-multiply algorithm
for computing x™ with m € N

Inputs:
» m as binary number (array of bits)
> 1 = #bits in m

> x a floating-point number

» Cost: C =#multiplications

1
2
3]
4
5
6
7
8
9

def pow(x, m):

compute binary representation of exponent
exponent_bits = bin(m)[2:]
result =1
for bit in exponent_bits:

result *= result

if bit =="1"

result *= x

return result

» C = n (line4) + #one-bits binary representation of 1 (line 5)

~n<C<2n

16

https://de.wikipedia.org/wiki/Bin%C3%A4re_Exponentiation

	Machines & Models
	 Learning Outcomes
	 What is an algorithm?
	 What is a data structure?
	Algorithm analysis
	 Good algorithms
	 Running time experiments
	 Data Models

	The RAM Model
	 Machine models
	 Random Access Machines
	 Pseudocode
	 Memory management & Pointers

	Asymptotics & Big-Oh
	 Why asymptotics?
	 Asymptotic tools – Formal & definitive definition
	 Asymptotic tools – Intuition
	 Asymptotics – Example 1
	 Asymptotics – Frequently used facts
	 Asymptotics – Example 2

