

COMP526 (Fall 2022) University of Liverpool version 2022-12-06 00:07 H

Learning Outcomes

- 1. Know the *RMQ problem* and its *connection* to longest common extensions in strings.
- **2.** Know and understand trivial RMQ solutions and *sparse tables*.
- **3.** Know and understand the *Cartesian trees* data structure.
- **4.** Know and understand the *exhaustive-tabulation technique* for RMQ with linear-time preprocessing.

Unit 9: Range-Minimum Queries

Outline

9 Range-Minimum Queries

- 9.1 Introduction
- 9.2 RMQ, LCP, LCE, LCA WTF?
- 9.3 Trivial Solutions & Sparse Tables
- 9.4 Cartesian Trees
- 9.5 Exhaustive Tabulation

9.1 Introduction

Range-minimum queries (RMQ)

_____array/numbers don't change

- **Given:** Static array A[0..n) of numbers
- **Goal:** Find minimum in a range;
 - A known in advance and can be preprocessed

Nitpicks:

- Report *index* of minimum, not its value
- Report *leftmost* position in case of ties

Rules of the Game

- comparison-based ~ values don't matter, only relative order
- Two main quantities of interest:
 - **1. Preprocessing time**: Running time P(n) of the preprocessing step
 - **2.** Query time: Running time Q(n) of one query (using precomputed data)

 \swarrow space usage $\leq P(n)$

• Write $\langle P(n), Q(n) \rangle$ time solution for short

9.2 RMQ, LCP, LCE, LCA — WTF?

Recall Unit 6

Application 4: Longest Common Extensions

▶ We implicitly used a special case of a more general, versatile idea:

The *longest common extension (LCE)* data structure:

• Given: String T[0..n-1]

```
► Goal: Answer LCE queries, i. e.,
given positions i, j in T,
how far can we read the same text from there?
formally: LCE(i, j) = max{l : T[i.i + l) = T[j.j + l)}
```

```
→ use suffix tree of T!
In T: LCE(i, j) = LCP(T<sub>i</sub>, T<sub>j</sub>) → same thing, different name!
= string depth of lowest common ancester (LCA) of leaves i and j
in short: LCE(i, j) = LCP(T<sub>i</sub>, T<sub>j</sub>) = stringDepth(LCA(i, j))
```


15

Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

- Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case
- ► Could store all LCAs in big table $\rightsquigarrow \Theta(n^2)$ space and preprocessing \square

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is **constant(!) time**.

- a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice

and suffix tree construction inside

 \rightsquigarrow for now, use O(1) LCA as black box.

 \rightarrow After linear preprocessing (time & space), we can find LCEs in O(1) time.

16

Finally: Longest common extensions

- ▶ In Unit 6: Left question open how to compute LCA in suffix trees
- But: Enhanced Suffix Array makes life easier!

 $LCE(i, j) = LCP[RMQ_{LCP}(min\{R[i], R[j]\} + 1, max\{R[i], R[j]\})]$

RMQ Implications for LCE

- ▶ Recall: Can compute (inverse) suffix array and LCP array in *O*(*n*) time
- \rightsquigarrow A $\langle P(n), Q(n) \rangle$ time RMQ data structure implies a $\langle P(n), Q(n) \rangle$ time solution for longest-common extensions

9.3 Trivial Solutions & Sparse Tables

Trivial Solutions

- Two easy solutions show extreme ends of scale:
- **1.** Scan on demand
 - no preprocessing at all
 - answer RMQ(*i*, *j*) by scanning through A[i..j], keeping track of min $\rightsquigarrow \langle O(1), O(n) \rangle$

2. Precompute all

- Precompute all answers in a big 2D array M[0..n)[0..n)
- queries simple: RMQ(i, j) = M[i][j]
- $\rightsquigarrow \ \langle O(n^3), O(1) \rangle$
- Preprocessing can reuse partial results $\rightsquigarrow \langle O(n^2), O(1) \rangle$

Sparse Table

- ▶ Idea: Like "precompute-all", but keep only some entries
- ► store M[i][j] iff $\ell = j i + 1$ is 2^k . $\rightarrow \leq n \cdot \lg n$ entries
 - \rightsquigarrow Can be stored as M'[i][k]
- How to answer queries?

• Preprocessing can be done in $O(n \log n)$ times

 $\rightsquigarrow \langle O(n \log n), O(1) \rangle$ time solution!

- **1.** Find *k* with $\ell/2 \le 2^k \le \ell$
- Cover range [i...j] by
 2^k positions right from *i* and
 2^k positions left from *j*

3.
$$\text{RMQ}(i, j) =$$

 $\arg \min\{A[rmq_1], A[rmq_2]\}$
with $rmq_1 = \text{RMQ}(i, i + 2^k - 1)$
 $rmq_2 = \text{RMQ}(j - 2^k + 1, j)$

9.4 Cartesian Trees

RMQ & LCA

RMQ & LCA

• <u>**Range-max queries**</u> on array *A*: $\operatorname{rmq}_{A}(i, j) = \operatorname{arg max}_{i \le k \le j} A[k]$ = index of max

- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- rmq(i, j) = inorder of <u>lowest common ancestor</u> (LCA) of *i*th and *j*th node in inorder

Cartesian Tree – Larger Example

Counting binary trees

 Given the Cartesian tree, all RMQ answers are determined and vice versa!

▶ How many different Cartesian trees are there for arrays of length *n*?

known result: *Catalan numbers* $\frac{1}{n+1} \binom{2n}{n}$

• easy to see:
$$\leq 2^{2n}$$

~> many arrays will give rise to the same Cartesian tree Can we exploit that?

9.5 Exhaustive Tabulation

Four Russians?

The exhaustive-tabulation technique to follow is often called "Four Russians trick" ...

- The algorithmic technique was published 1970 by
 V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev
- all worked in Moscow at that time . . . but not even clear if all are Russians! (Arlazarov and Kronrod are Russian)
- American authors coined the slightly derogatory "Method of Four Russians" ... name in widespread use

Bootstrapping

- We know a $\langle O(n \log n), O(1) \rangle$ time solution
- If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)!$
- Break *A* into blocks of $b = \lceil \frac{1}{4} \lg n \rceil$ numbers

• Create array of block minima B[0..m) for $m = \lceil n/b \rceil = O(n/\log n)$

 \rightsquigarrow Use sparse tables for *B*.

 \rightsquigarrow Can solve RMQs in B[0..m) in (O(n), O(1)) time

Query decomposition

Intrablock queries [1]

- → It remains to solve the intrablock queries!
- ► Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!
- many blocks, but just $b = \lfloor \frac{1}{4} \lg n \rfloor$ numbers long
 - \rightarrow Cartesian tree of *b* elements can be encoded using $2b = \frac{1}{2} \lg n$ bits

$$\rightarrow$$
 # different Cartesian trees is $\leq 2^{2b} = 2^{\frac{1}{2} \lg n} = (2^{\lg n})^{1/2} = \sqrt{n}$

- $\rightsquigarrow many \ equivalent \ blocks!$
- → *Exhaustive Tabulation Technique:*
 - **1.** represent each subproblem by storing its *type* (here: encoding of Cartesian tree)
 - 2. enumerate all possible subproblem types and their solutions
 - **3.** use type as index in a large *lookup table*

Intrablock queries [2]

- 1. For each block, compute 2*b* bit representation of Cartesian tree
 - can be done in linear time
- 2. Compute large lookup table

Block type	i	j	RMQ(i, j)
:			
:			

- $\leq \sqrt{n}$ block types
- $\leq b^2$ combinations for *i* and *j*
- $\rightsquigarrow \Theta(\sqrt{n} \cdot \log^2 n)$ rows
 - each row can be computed in O(log n) time
- \rightsquigarrow overall preprocessing: O(n) time!

Discussion

• $\langle O(n), O(1) \rangle$ time solution for RMQ

 $\rightsquigarrow \langle O(n), O(1) \rangle$ time solution for LCE in strings!

optimal preprocessing and query time!a bit complicated

Research questions:

- Reduce the space usage
- Avoid access to *A* at query time