
1 Machines & Models
3 October 2022

Sebastian Wild

COMP526 (Fall 2022)
University of Liverpool

version 2022-10-03 12:20



Learning Outcomes
1. Understand the difference between

empirical running time and algorithm
analysis.

2. Understand worst / best / average case
models for input data.

3. Know the RAM machine model.

4. Know the definitions of asymptotic
notation (Big-Oh classes and relatives).

5. Understand the reasons to make
asymptotic approximations.

6. Be able to analyze simple algorithms.

Unit 1: Machines & Models

1



Outline

1 Machines & Models
1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh



What is an algorithm?
An algorithm is a sequence

think: recipe

of instructions.

More precisely:
1. mechanically executable

e. g. Python script

� no “common sense” needed
2. finite description ≠ finite computation!

3. solves a problem
𝑥 + 𝑦, not only 17 + 4

, i. e., a class of problem instances

� input-processing-output abstraction

�Algorithm
input(s) output(s) Typical example: bubblesort

� not a specific program
but the underlying idea

2



What is a data structure?

A data structure is
1. a rule for encoding data

(in computer memory), plus
2. algorithms to work with it

(queries, updates, etc.)

typical example: binary search tree

3



1.1 Algorithm analysis



Good algorithms
Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

� fast running time
can be complicated in distributed systems

� moderate memory space usage

Algorithm analysis is a way to

� compare different algorithms,

� predict their performance in an application

4



Running time experiments
Why not simply run and time it?

� results only apply to
� single test machine
� tested inputs
� tested implementation
� . . .
≠ universal truths

� instead: consider and analyze algorithms on an abstract
survives Pentium 4

machine
� provable statements for model
� testable model hypotheses

� Need precise model of machine (costs), input data and algorithms.

5



Data Models
Algorithm analysis typically uses one of the following simple data models:

� worst-case performance:
consider the worst of all inputs as our cost metric

� best-case performance:
consider the best of all inputs as our cost metric

� average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size 𝑛.

� performance is only a function of 𝑛.

6



1.2 The RAM Model



Clicker Question

� → sli.do/comp526

What is the cost of adding two 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time

B logarithmic in 𝑑

C proportional to 𝑑

D quadratic in 𝑑

E no idea what you are talking about



Clicker Question

� → sli.do/comp526

What is the cost of adding two 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time�
B logarithmic in 𝑑

C proportional to 𝑑�
D quadratic in 𝑑

E no idea what you are talking about�



Machine models
The machine model decides

� what algorithms are possible

� how they are described (= programming language)

� what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

7



Machine models
The machine model decides

� what algorithms are possible

� how they are described (= programming language)

� what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

� usually some compromise is needed

honest

smart investment
banker

7



Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

� unlimited memory MEM[0], MEM[1], MEM[2], . . .
� fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

� memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 � 2𝑤 ≈ 𝑛

� Instructions:
� load & store: 𝑅𝑖 := MEM[𝑅𝑗] MEM[𝑅𝑗] := 𝑅𝑖
� operations on registers: 𝑅𝑘 := 𝑅𝑖 + 𝑅𝑗 (arithmetic is modulo 2𝑤 !)

also 𝑅𝑖 − 𝑅𝑗 , 𝑅𝑖 · 𝑅𝑗 , 𝑅𝑖 div 𝑅𝑗 , 𝑅𝑖 mod 𝑅𝑗
C-style operations (bitwise and/or/xor, left/right shift)

� conditional and unconditional jumps

� cost: number of executed instructions

� The RAM is the standard model for sequential

we will see further models later

computation.

8



Pseudocode
� Programs for the random-access machine are very low level and detailed

≈ assembly/machine language

Typical simplifications when describing and analyzing algorithms:

� more abstract pseudocode
code that humans understand (easily)

� control flow using if, for, while, etc.
� variable names instead of fixed registers and memory cells
� memory management (next slide)

� count dominant operations (e. g. memory accesses)
instead of all RAM instructions

In both cases: We can go to full detail where needed.

honest

smart investment
banker

9



Memory management & Pointers
� A random-access machine is a bit like a bare CPU . . . without any operating system

� cumbersome to use

� All high-level programming languages add memory management to that:
� Instruction to allocate a contiguous piece of memory of a given size (like malloc).

� used to allocate a new array (of a fixed size) or
� a new object/record (with a known list of instance variables)
� There’s a similar instruction to free allocated memory again.

� A pointer is a memory address (i. e., the 𝑖 of MEM[𝑖]).

� Support for procedures (a.k.a. functions, methods) calls including recursive calls
� (this internally requires maintaining call stack)

We will mostly ignore how all this works in COMP526.

10


