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Learning Outcomes

i

Know principles and implementation of mergesort
and quicksort.

Know properties and performance characteristics of
mergesort and quicksort.

Know the comparison model and understand the
corresponding lower bound.

Understand counting sort and how it circumvents the
comparison lower bound.

Know ways how to exploit presorted inputs.

Unit 3: Efficient Sorting
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3 Efficient Sorting

3.1
82
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3.4
83
3.6
3.7
3.8

Mergesort

Quicksort

Comparison-Based Lower Bound
Integer Sorting

Adaptive Sorting

Python’s list sort

Order Statistics

Further D&C Algorithms



Why study sorting?
» fundamental problem of computer science that is still not solved

Algorithm with optimal #comparisons in worst case?

» building brick of many more advanced algorithms

» for preprocessing

» as subroutine

» playground of manageable complexity
to practice algorithmic techniques

Here:
> “classic” fast sorting method

> exploit partially sorted inputs

» parallel sorting —= Um1\£ >/J



Part 1

The Basics



Rules of the game

> Given:
» array A[0..n) = A[0..n — 1] of n objects
» a total order relation < among A[0],..., A[n —1]
(a comparison function)
Python: elements support <= operator (_ le_ ())
Java: Comparable class (x.compareTo(y) <= 0)

> Goal: rearrange (i. e., permute) elements within A,
so that A is sorted,i.e., A[0] < A[l] <--- < A[n —1]

> for now: A stored in main memory (internal sorting)
single processor (sequential sorting)



Clicker Question

What is the complexity of sorting? Type you answer, e. g., as
“Theta(sqrt(n))”

o
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3.1 Mergesort



Clicker Question

Ve

How does mergesort work?

= G

=

Split elements around median, then recurse on small / large
elements.

Recurse on left / right half, then combine sorted halves.

Grow sorted part on left, repeatedly add next element to
sorted range.

Repeatedly choose 2 elements and swap them if they are out
of order.

Don’t know.

~
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Clicker Question

Ve

How does mergesort work?

Sp&ﬁ-elemeﬁs—ereemd—med&aﬂﬁhefﬁeeﬁseqmmaﬂqqeﬁge
elements:

Recurse on left / right half, then combine sorted halves. \/
/

sorted-ranse:
@ef-e-ﬁd-eﬁ

@Deﬁit-leae%

~
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Merging sorted lists

1] ~ ]



Merging sorted lists

addd

runl run2 result
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Merging sorted lists

TOmnT T result
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runl run2 result
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Merging sorted lists
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Merging sorted lists

runl run2 result



Merging sorted lists

runl run2 result



Merging sorted lists

runl

run2
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Merging sorted lists
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Merging sorted lists

runl

run2
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result



Merging sorted lists

e

runK

A4

run2

1)
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Merging sorted lists

runl

run2
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result



Merging sorted lists

runl

run2

0l

result



Merging sorted lists

runl

t

A4

run2
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Merging sorted lists

runl

run2

il

result




Merging sorted lists

{1 andd!

runl bnz result j




Merging sorted lists

1

runl run &

~

Al

result
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Merging sorted lists

1] ~ ]

| alli!

runl run2 K result




Merging sorted lists

1] ~ ]

Al

runl run2 result




Clicker Question

( What is the worst-case running time of mergesort?
e(1) O(nlogn)
©(log 1) (H) ©(nlog?n)
©(loglog n) (1) ewm™o
0O [@ew Q) ew
(E) em) (k) ew?
L ®(n loglog n) e@")
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Clicker Question

( What is the worst-case running time of mergesort?
J=VZNN O(nlogn)
e (H) Stsesle
e (1) ey
(D) o ) o=
(E) & (1) &e
oo e
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Mergesort

1 procedure mergesort(A[l..r)) > recursive proced
cedure

2 nh="r =1l

3 if n < 1 return > merging needs

4 m:= 1+ L%J

5 mergesort(A[l..im)) » temporary storage buf for result

. mergesort(A[n..r)) (of same size as merged runs)

7 merge(A[l..m), A[m..r), buf) > to read and write each element twice

8 copy buf to A[l..r) (once for merging, once for copying back)

SDT(‘ (A’QO m»j
WSQSO r‘é (A[_O V\\\

(}/c(



Mergesort

1 procedure mergesort(A[l..r)) > recursive proced
cedure

2 n:i=r-1
3 ifn <1 retqrn > merging needs
4 m =1+ [%J

mergesort(A[l..m)) » temporary storage buf for result

: mergesort(A[n..r)) (of same size as merged runs)
7 merge(A[l..m), A[m..r), buf) > to read and write each element twice
8 copy buf to A[l..r) (once for merging, once for copying back)

Owva Y QccaseL)

Analysis: count “element visits” (read and/or write) (W) ~

0 n<l
C(I’l) = same for best and worst case!
C(ln/2)+C([n/2)+2n n=2

Simplification
k<0

0
c@" = i . = 2.2k422.0k1 4 93.0k2 4 ... 40k 01 = 2k.2k
2-C2"NH+2-2° k=1

C(n) = 2nlg(n) = ©(nlogn)



C(*) = 22" « 22"
k=2

» e
:z(grc(;z“%ll > P22

- 2@+ 9L 22"

(@]

S



Mergesort — Discussion

[C] optimal time complexity of ©(n log 1) in the worst case
lﬁ stable sorting method i.e., retains relative order of equal-key items

[b memory access is sequential (scans over arrays)

I@ requires © (1) extra space

there are in-place merging methods,
but they are substantially more complicated
and not (widely) used



3.2 Quicksort



Clicker Question

Ve

How does quicksort work?

() (=)

=

split elements around median, then recurse on small / large
elements.

recurse on left / right half, then combine sorted halves.

grow sorted part on left, repeatedly add next element to
sorted range.

repeatedly choose 2 elements and swap them if they are out
of order.

Don’t know.

~
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Clicker Question

Ve

How does quicksort work?

split elements around median, then recurse on small / large
elements.

ghtbelt
;
sertecranse:
(®)
oforder

@Deﬁit-leae%

~
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Partitioning around a pivot

NANVY




Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot
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Partitioning around a pivot

_UDDU_ i

b <py >por



Partitioning around a pivot
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Partitioning around a pivot

:DBDU_ i

PSP <P P



Partitioning around a pivot

_UDDU_ i
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Partitioning around a pivot
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Partitioning around a pivot

a0l

<p <p <p <p P



Partitioning around a pivot
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Partitioning around a pivot

a0l
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Partitioning around a pivot

v <p <p <p X }pfp >p



Partitioning around a pivot

1l

<p <p <p <p >pX >p >p >p



Partitioning around a pivot

<p <p <p <p >pX<pX>p >p >p



Partitioning around a pivot

1l

<p <p <p <p >pX<pX>p >p >p

)



Partitioning around a pivot

1l
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Partitioning around a pivot
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Partitioning around a pivot

1l

<p <p <p <p <p >p >p >p >p




Partitioning around a pivot

.l

<p <p <p <p <p >p >p >p >p



Partitioning around a pivot

I

PSP S KPP

P

>p >p

> no extra space needed
> visits each element once

» returns rank/position of pivot



Partitioning — Detailed code

[ Beware: details easy to get wrong; use this code! ] (if you ever have to)

1 procedure partition(A, b)

// input: array A[0..n), position of pivot b € [0..n)

swap(A[0], A[b])

i:=0, j:=mn

while true do
doi:=i+1whilei <nand A[i] < A[0]
doj := j—1whilej>1and A[j] > A[0]
if i > j then break (goto11)
else swap(A[i], A[f])

end while

swap(A[0], ALj])

return j

Loop invariant (5-10): A | P | <p ?




Quicksort

1 procedure quicksort(A[/..r)) > recursive procedure

2 if ¥ — ¢ < 1 then return

3 b := choosePivot(A[l..r)) > choice of pivot can be

4 j := partition(A[l..r), b) > fixed position ~ dangerous!
5 quicksort(A[l..f)) > mndem

6 quicksort(A[j + 1..r))

» more sophisticated, e. g., median of 3




Clicker Question

( What is the worst-case running time of quicksort?
e(1) O(nlogn)
©(log 1) (H) ©(nlog?n)
©(loglog n) (1) ewm™o
0O [@ew Q) ew
(E) em) (k) ew?
L ®(n loglog n) e@")
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Clicker Question

( What is the worst-case running time of quicksort?
memm mrmrmmemem
e (H) Stsesle
e (1) ey
o (D) ek () e v
(E) & (1) &e
L e —
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Quicksort & Binary Search Trees

Quicksort
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Quicksort & Binary Search Trees

Quicksort

[7]4]2]9]1]3]8]5]6]

l4]2]1]3]5]6]7]9]8]
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Quicksort & Binary Search Trees
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Quicksort & Binary Search Trees
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Quicksort & Binary Search Trees

Quicksort
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Quicksort & Binary Search Trees

Quicksort Binary Search Tree (BST)

[7]4]2]9]1]3]8]5]6] 74291385

l4]2]1]3]5]6]7]9]8] @)
|213[156| 9 (4)
/

z@s qf Q @
% T O ©

» recursion tree of quicksort = binary search tree from successive insertion

» comparisons in quicksort = comparisons to built BST

» comparisons in quicksort ~ comparisons to search each element in BST

6

10



Quicksort — Worst Case

» Problem: BSTs can degenerate
» Cost to search for kis k — 1
n
_ n(n-1) 1,
~ Total cost kz;(k -1) = — "~ "

~ quicksort worst-case running time is in ©(1?)
terribly slow!
But, we can fix this:
Randomized quicksort:
» choose a random pivot in each step

~~ same as randomly shuffling input before sorting

11



Randomized Quicksort — Analysis

» C(n) = element visits (as for mergesort)

~» quicksort needs ~ 2In(2) - nlgn ~ 1.39n1g n in expectation

» also: very unlikely to be much worse:
e.g., one can prove: Pr[cost > 10nlgn] = O(n=2°)

distribution of costs is “concentrated around mean”

» intuition: have to be constantly unlucky with pivot choice

12



Quicksort — Discussion

[C] fastest general-purpose method

@ O(n log n) average case

[b works in-place (no extra space required)

|ﬁ memory access is sequential (scans over arrays)
@ ©(n?) worst case (although extremely unlikely)

E@ not a stable sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

13



3.3 Comparison-Based Lower Bound



Lower Bounds

» Lower bound: mathematical proof that no algorithm can do better.

» very powerful concept: bulletproof impossibility result
~ conservation of energy in physics

> (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound

~ can speak of “optimal algorithms”

14



Lower Bounds

» Lower bound: mathematical proof that no algorithm can do better.

» very powerful concept: bulletproof impossibility result
~ conservation of energy in physics

> (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound

~ can speak of “optimal algorithms”

» To prove a statement about all algorithms, we must precisely define what that is!

» already know one option: the word-RAM model

» Here: use a simpler, more restricted model.

14



The Comparison Model

» In the comparison model data can only be accessed in two ways:

»> comparing two elements

»> moving elements around (e. g. copying, swapping)

» Cost: number of these operations.

15



The Comparison Model

» In the comparison model data can only be accessed in two ways:
»> comparing two elements

»> moving elements around (e. g. copying, swapping)

» Cost: number of these operations. That's good!
Keeps algorithms general!

» This makes very few assumptions on the kind of objects we are sorting.

» Mergesort and Quicksort work in the comparison model.

15



The Comparison Model

» In the comparison model data can only be accessed in two ways:

>
>

2

comparing two elements

moving elements around (e. g. copying, swapping)
co MPQm'gqus C[Nw:>
Cost: number of these-operations. That's good!
Keeps algorithms general!

» This makes very few assumptions on the kind of objects we are sorting.

» Mergesort and Quicksort work in the comparison model.

~+ Every comparison-based sorting algorithm corresponds to a decision tree.

>

>
>
>
>

only model comparisons ~+ ignore data movement

nodes = comparisons the algorithm does

next comparisons can depend on outcomes ~- different subtrees
child links = outcomes of comparison

leaf = unique initial input permutation compatible with comparison outcomes

15



Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

| 132 | | 2,31 | | 2,13 | | 3,12 |

16



Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

» Execution = follow a path in
comparison tree.

~+ height of comparison tree =
worst-case # comparisons

» comparison trees are binary trees
~ lleaves ~» height > [Ig(¢)]

» comparison trees for sorting
£ = = = method must have > n! leaves

~ height > Ig(n!) ~nlgn

| 132 | | 2,31 | | 2,13 | | 3,12 |

more precisely: Ig(n!) = nlgn —Ig(e)n + O(logn)

16



Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:

» Execution = follow a path in
comparison tree.

213
312
321

123
132
231

~+ height of comparison tree =
worst-case # comparisons

All]: A[2]

» comparison trees are binary trees
~ lleaves ~» height > [Ig(¢)]

» comparison trees for sorting

£ = = = method must have > n! leaves

~ height > Ig(n!) ~nlgn

| 132 | | 2,31 | | 2,13 | | 3,12 |

more precisely: Ig(n!) = nlgn —Ig(e)n + O(logn)
» Mergesort achieves ~ 1 lg n comparisons ~» asymptotically comparison-optimal!

> Open (theory) problem: Sorting algorithm with n1gn —1lg(e)n + o(n) comparisons?

~ 1.4427
16



Clicker Question

Does the comparison-tree from the previous slide correspond to a
worst-case optimal sorting method?

A Yes No
(o
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Clicker Question

Does the comparison-tree from the previous slide correspond to a
worst-case optimal sorting method?

o Yes\/ Ne
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3.4 Integer Sorting



How to beat a lower bound

» Does the above lower bound mean, sorting always takes time Q(n log 11)?

17



How to beat a lower bound

» Does the above lower bound mean, sorting always takes time Q(n log 11)?
R

> Not necessarily; only in the comparison model!
~+ Lower bounds show where to change the model!
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How to beat a lower bound

» Does the above lower bound mean, sorting always takes time Q(n log 11)?

> Not necessarily; only in the comparison model!
~+ Lower bounds show where to change the model!

» Here: sortn integers
» can do a lot with integers: add them up, compute averages, . .. (full power of word-RAM)

~» we are not working in the comparison model /

~~ above lower bound does not apply!

17



How to beat a lower bound
» Does the above lower bound mean, sorting always takes time Q(n log 11)?

> Not necessarily; only in the comparison model!
~+ Lower bounds show where to change the model!

» Here: sortn integers

» can do a lot with integers: add them up, compute averages, . .. (full power of word-RAM)

~» we are not working in the comparison model

~~ above lower bound does not apply!

» but: a priori unclear how much arithmetic helps for sorting . ..

17



Counting sort

» Important parameter: size/range of numbers
» numbers in range [0..U) = {0,..., U -1} typically U = 26 s p-bit binary numbers

18



Counting sort

» Important parameter: size/range of numbers

» numbers in range [0..U) = {0,..., U -1} typically U = 26 s p-bit binary numbers

> We can sort 1 integers in @(n + U) time and ®(U) space when

Counting sort word size

1 procedure countingSort(A[0..7))

// A contains integers in range [0..L).
C[0..U) := new integer array, initialized to 0
// Count occurrences
fori :=0,...,n—1

CIA[{]] == C[A[i]] +1 &)

i := 0// Produce sorted list
S
fork = 0,...U—1 circumvents lower bound by

forf = 1,...C[k] using integers as array index /

Alil =k i=i+1 O / BLCLY) pointer&ffset

» count how often each possible
value occurs

» produce sorted result directly

O( 3 from counts

B0+ Cm]} =60V o)

*=0

Can sort 1 integers in range [0..U) with U = O(n) in time and space O(n). ]

18



Integer Sorting — State of the art

» O(n) time sorting also possible for numbers in range U = O(n°) for constant c.
» radix sort with radix 2%

> Algorithm theory
» suppose U = 2%, but w can be an arbitrary function of n
» how fast can we sort # such w-bit integers on a w-bit word-RAM?
. . . ) —_— _X O
» forw = O(logn): linear time (radix/counting sort)
> forw = Q(log2+é n): linear time (signature sort)
> for w in between: can do O(n+/lglgn) (very complicated algorithm)
don’t know if that is best possible!

19



Integer Sorting — State of the art

» O(n) time sorting also possible for numbers in range U = O(n°) for constant c.
» radix sort with radix 2%

> Algorithm theory
» suppose U = 2%, but w can be an arbitrary function of n
» how fast can we sort # such w-bit integers on a w-bit word-RAM?
» forw = O(logn): linear time (radix/counting sort)
> forw = Q(log2+é n): linear time (signature sort)
> for w in between: can do O(n+/lglgn) (very complicated algorithm)
don’t know if that is best possible!

» for the rest of this unit: back to the comparisons model!

19



Clicker Question

-~
Which statements are correct? Select all that apply. h

My computer has 64-bit words, so an int has 64 bits. Hence I can sort
any int[] of lengthn ...

in time proportional to 7.
in O(n) time.
o in O(n logn) time.

@ in constant time.

@ some time, but not possible to say from given information.

- v
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Clicker Question

-~
Which statements are correct? Select all that apply. h

My computer has 64-bit words, so an int has 64 bits. Hence I can sort
any int[] of lengthn ...

in O(n) time. \/
o in O(n logn) time. \/
@ . .

@ some time, but not possible to say from given information. \/
/

D ‘ - sli.do/comp526




Part 11

Exploiting presortedness



3.5 Adaptive Sorting



Adaptive sorting
» Comparison lower bound also holds for the average case ~~ |lg(n!)] cmps necessary

» Mergesort and Quicksort from above use ~ 1 1g n cmps even in best case
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Adaptive sorting
» Comparison lower bound also holds for the average case ~~ |lg(n!)] cmps necessary

» Mergesort and Quicksort from above use ~ 1 1g n cmps even in best case

Can we do better if the input is already “almost sorted”?

Scenarios where this may arise naturally:

> Append new data as it arrives, regularly sort entire list (e. g., log files, database tables)

» Compute summary statistics of time series of measurements that change slowly over
time (e. g., weather data)

» Merging locally sorted data from different servers (e. g., map-reduce frameworks)

~~ Ideally, algorithms should adapt to input: the more sorted the input, the faster the algorithm

... but how to do that!?
20



Warmup: check for sorted inputs

» Any method could first check if input already completely in order!
[& Best case becomes © (1) with n — 1 comparisons!
@ Usually n — 1 extra comparisons and pass over data “wasted”

E@ Only catches a single, extremely special case . . .

21
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Warmup: check for sorted inputs

» Any method could first check if input already completely in order!
[& Best case becomes © (1) with n — 1 comparisons!
@ Usually n — 1 extra comparisons and pass over data “wasted”
E@ Only catches a single, extremely special case . . .

» For divide & conquer algorithms, could check in each recursive call!
[ﬁ Potentially exploits partial sortedness!
l@ usually adds Q(n log ) extra comparisons

procedure mergesortCheck(A[l..r))
ni:i=r-—1I

\ /
-Q- For Mergesort, can instead check
YN . . .
=  before merge with a single comparison
if n < 1 return
m =1+ [%J

1

2

3

» If last element of first run < first element .

of second run, skip merge 5 mergesortCheck(A[l..nm))

6

7

8

9

How effective is this idea?

mergesortCheck(A[m..7))
if A[m —1] > A[m]
merge(A[l..m), Alm..r), buf)

copy buf to All..r)

21



Mergesort with sorted check — Analysis

» Simplified cost measure: merge cost = size of output of merges
number of comparisons
number of memory transfers / cache misses

X

Q

» Example input: n = 64 numbers in sorted runs of 16 numbers each:

11ED) 5153 531 5 53 € 5 2 1535315 51 5 53 2 5 2 53 530 58123 6 2 53 53 5 | 3 5 5 2 D Y 2 B S

22



Mergesort with sorted check — Analysis

» Simplified cost measure: merge cost = size of output of merges
number of comparisons
number of memory transfers / cache misses

X

Q

» Example input: n = 64 numbers in sorted runs of 16 numbers each:

FHRHREHEEDERREEEHEHEHDEEDEEEHEEHDEDEFEDEEEEEDEEDRENRDEEHEEDEOMMEEEER
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Mergesort with sorted check — Analysis

» Simplified cost measure: merge cost = size of output of merges
number of comparisons
number of memory transfers / cache misses

X

X

» Example input: n = 64 numbers in sorted runs of 16 numbers each:

( @ )
( @ ) @ )
( @ )( @ X @ )( @ )
( )
( )

1% J%
(@) ) (@) ) (@) ) (@) ) (@) ) (@) ) (@) ) (@)

O JC ) JC O ) JC ) JC ) IC ) JC ) JC ) IC ) JCC) JC ) JC ) JCC) JC ) IC )
OOOOOOOOOOOOOOOOOOOOOOOOOOOOCOCCCD
) ED) 61 52 5 5 50 o 5 0 5 5 5 5 3 2 G 5 e = 6 6 [ [ 0 5

Merge costs:

384 Standard Mergesort
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Mergesort with sorted check — Analysis

» Simplified cost measure: merge cost = size of output of merges
number of comparisons
number of memory transfers / cache misses

X

Q

» Example input: n = 64 numbers in sorted runs of 16 numbers each:

‘\- n T e T e Yt Y e Y st Y i ) s Y e Y i Y e Y i Y e Y e Yt Y st 1Y st Y i Y i Y e Yt Y e Y i Y e Y s Y e Y st Y e Y i Y e Y i
1ED 531153 53150 53 2 o 5 2 15335 6515 59 €2 i 5 5353 8123 5 G S5 50 5323 53 5 D 55 2 5

Merge costs:

). 384 standard Mergesort
) 128 with sorted check

Sorted check can help a lot!

22



Alignment issues

» In previous example, each run of length ¢ saved us ¢Ig(f) in merge cost.

= exactly the cost of creating this run in mergesort had it not already existed

~+ best savings we can hope for! f, length of ith run
~ Are overall merge costs  H(¢y,...,¢) = n lg(n) Z 7 lg(l’,) ?
SRR
mergesort g_.__\,_..__./

savings from runs

23



Alignment issues

» In previous example, each run of length ¢ saved us ¢Ig(¢) in merge cost.

= exactly the cost of creating this run in mergesort had it not already existed

~+ best savings we can hope for! é, length of ith run

~ Are overall merge costs  H(f1,...,¢) = n lg(n) Z é’, 1g(€;) ?

mergesort \...\/_...__/

Unfortunately, not quite: savings from runs

( ] )
( )( : )
( - )( i )( - )( § )
( )( ) X ) )( ) )( )

——— ——— —— —— ——
( ]( ]( ] ) ) ) )( )( ) )( ) ) )
]l% 518 B 5«! 5 56 57 % 9 60 61 62 6 Mi% EEEEE ] 40 440 8 4@ 15 46 478 I?Il& 90028 HB%TRBYNNNB ﬂll 203 4.5 6 7 8 9 1011 1213141516 l7v,
Merge costs:

384 Standard Mergesort

ZZ77777777777777777777277777777777277772 - 127.8 3(15,15,17,17)
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Alignment issues

» In previous example, each run of length ¢ saved us ¢ Ig({) in merge cost

= exactly the cost of creating this run in mergesort had it not already existed
~ best savings we can hope for!

p é’l length of ith run
~ Are overall merge costs  H(f1,...,¢) = n lg(n) Z é’, 1g(€;) ?
mergesort \....\/......./
Unfortunately, not quite:

savings from runs

N IO R N S N R
Merge costs:

). 384 standard Mergesort
. 216 with sorted check

LSS SAIAS IS ASSSSAISS SIS SIS S SIS RIS

127.8 3(15,15,17,17)
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Natural Bottom-Up Mergesort

» Can we do better by explicitly detecting runs?

1 procedure bottomUpMergesort(A[0..17))

2

3

4

Q := new Queue // runs to merge
// Phase 1: Enqueue singleton runs
fori=0,...,n—1do
Q.enqueue((i, i + 1))
// Phase 2: Merge runs level—wise
while —Q.isEmpty()
Q’ := new Queue
while Q.size() > 2
(i1, 1) := Q.dequeue()
(i2, j2) := Q.dequeue()
merge(Aliy..j1), Alia..j2), buf)
copy buf to Aliy..j»)
Q' .enqueue((i1, j2))
if =Q.isEmpty()
Q' .enqueune(Q.dequeue())
Q:=0Q

g
)
71
)
7 1J
e




Natural Bottom-Up Mergesort

» Can we do better by explicitly detecting runs?

1 procedure bottomUpMergesort(A[0..17)) 1 procedure naturalMergesort(A[0..n))

2 Q := new Queue // runs to merge 2 Q := new Queue; i:=0 findrunAfi.j)
3 // Phase 1: Enqueue singleton runs 3 whilei < #n / starting at

4 fori=0,...,n—1do 4 j=i+1

5 Q.enqueue((i, i + 1)) 5 while A[j] > A[j—1]doj :=j+1
6 // Phase 2: Merge runs level—wise 6 Q.enqueue((i, f)); i:=j

7 while —Q.isEmpty() 7 while

5 Q’ := new Queue 8 new Queue

9 while Q.size() > 2 9 while

10 (i1, 1) := Q.dequeue() 10

1 (i2, j2) := Q.dequeue() 1

12 merge(Aliy..j1), Alia..j2), buf) 12 merge( , , buf)
13 copy buf to Aliy..j») 13 copy to

14 Q' .enqueue((i1, j2)) 14

15 if = Q.isEmpty() 15 if

16 Q' .enqueune(Q.dequeue()) 16

17 Q=0 17




Natural Bottom-Up Mergesort — Analysis

» Works well runs of roughly equal size, regardless of alignment . ..

( (@) )

-

( (@) )( @) )
- -
( @) )

L X »
( @) X @) )

(3051 5 5 5 5 % 5 5 % 0 6l & 6 65 % ¥ B ¥ 0 4 0 b H b %y 8 B8 190U 0B uDB %y BY N RS M2 45 67890 nB bk

Merge costs:

). 384 standard mergesort
) 216 Standard mergesort with sorted check
27777777 2777 7777777777777 127.8 ((15,15,17,17)

( @) )
( @ ) @ )

c ) c )
(05 2 % 5 5 5% 5 5 % 60 61 6 6 64)(5 % 7 % % 0 4 0545 &y s o)A 0B U5 %y sy NN nH M1 2345 6789010 RB YLK

T 128 Natural bottom-up mergesort
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Natural Bottom-Up Mergesort — Analysis [2]

.. but less so for uneven run lengths

( @ )
( @ )
L X N
( @ ) @ )
ﬁ‘r R %
( @ ) T O T OC 1T O

| — pu—
3% %3 25 3 %%y %9 0400845695955 2555 %5 %5 060 66 x5 xu2s)syss ks e vl 7 s ¢ 51 2

) 246 Natural bottom-up mergesort

( @ )
X » N
( @ )
( (‘) )( (‘) )

( (

)
( () ]l()][() )X

|z72529w313233343535373339mun4344434“74“95051525354ssse575@wwm6263@425zélluzzzsllmlsmlllslswlluu14||9mulle75||345||1

) 196 Standard mergesort with sorted check
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Natural Bottom-Up Mergesort — Analysis [2]

» ...but less so for uneven run lengths

( @ )
( @ )
L X N
( @ ) @ )
ﬁ‘r R %
( @ ) T O T OC 1T O

| — pu—
3% %3 25 3 %%y %9 0400845695955 2555 %5 %5 060 66 x5 xu2s)syss ks e vl 7 s ¢ 51 2

) 246 Natural bottom-up mergesort

( @) )
X » N
( @ )
( @) )( @ )
i%
’_1[_@) D S S ) B
i%
OOy (oD men)

U35 %3 2% %5 %y 5% 0408465698585 %5%5%%7 55060623 s2s)ssass syl ol s )02

) 196 Standard mergesort with sorted check

... can’t we have both at the same time?!
2



Good merge orders

« Let’s take a step back and breathe.
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A (easy)

(“automatic” in top-down mergesort)
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( )

( )
)7 )i 1 B|3 6 16 18 20 22

Merge cost = totalareaof ()
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Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:
1. Detect and use existing runs in the input ~» {1,...,¢ (easy) \/

2. Determine a favorable order of merges of runs  (“automatic” in top-down mergesort)

Merge cost = totalareaof ()

total length of paths to all array entries

[3 6 16 18 20 22

Il
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Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:
1. Detect and use existing runs in the input ~» {1,...,¢ (easy) \/

2. Determine a favorable order of merges of runs  (“automatic” in top-down mergesort)

Merge cost = totalareaof ()

= total length of paths to all array entries
= Zweight(w) - depth(w)

w leaf
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Good merge orders

« Let’s take a step back and breathe.

» Conceptually, there are two tasks:
1. Detect and use existing runs in the input ~» {1,...,¢ (easy) \/

2. Determine a favorable order of merges of runs  (“automatic” in top-down mergesort)

ﬁ ﬁ! M TsaRpea S
2 2 3 2 6 2 6

with known algorithms

Merge cost = totalareaof () ~~ | optimal merge tree j
= total length of paths to all array entries = optimal binary search tree
for leaf weights ¢y, ..., ¢,

= Zweight(w) - depth(w)
/ (optimal expected search cost)

w leaf




Nearly-Optimal Mergesort

Nearly-Optimal Mergesorts:
Fast, Practical Sorting Methods That
Optimally Adapt to Existing Runs

» In 2018, with Ian Munro, I combined research
on nearly-optimal BSTs with mergesort

~> 2new algorithms: Peeksort and Powersort

» both adapt provably optimal to existing runs
even in worst case:
mergecost < H(ly, ..., 0)

» both are lightweight extensions of existing
methods with negligible overhead

» both fast in practice

28



Peeksort

» based on top-down mergesort

> “peek” at middle of array W\
& find closest run boundary

~» split there and recurse

(instead of at midpoint)

[

J0dJ
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Peeksort

» based on top-down mergesort

> “peek” at middle of array W\
& find closest run boundary

~» split there and recurse

(instead of at midpoint)

1/

| ———

J0dJ
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Peeksort

> based on top-down mergesort

> “peek” at middle of array >
& find closest run boundary

~> split there and recurse

(instead of at midpoint)

» can avoid scanning runs repeatedly:
» find full run straddling midpoint

» remember length of known runs at boundaries

| ) ( )
{ L+ r+A; r

~~ with clever recursion, scan each run only once.

29



Peeksort — Code

1 procedure peeksort(A[(..r), Ay, Ay)

2

3

4

if r — ¢ <1 then return
if{+Ap==rV{==r+A, then return
m:=L+|(r—10)/2]
0+ Ay ifl+Ap>m
extendRunLeft(A, m)  else
ifr+A, <m<m

i:=

r+A, <m

extendRunRight(A, m) else
i ifm—-i<j-m
j else
j—i ifm—-i<j—m
Ag = ] J
‘ i—j else
peeksort(A[(..g), Ay, Ag)
peeksort(A[g, ), Ag, Ar)
merge(A[l, g), Alg..r), buf)
copy buf to A[l..r)

Parameters:
| ] ( ]
{ {+Ay r+A, r

initial call:

peeksort(A[0..17), Ay, A,) with
Ay = extendRunRight(A, 0)
A, = n — extendRunLeft(A, n)

helper procedure

1 procedure extendRunRight(A[0..n), 7)

2 j=i+1

3 while j < n A A[j - 1] < A[j]
4 j=j+1

5 return j

(extendRunLeft similar)

30



Peeksort — Analysis

» Consider tricky input from before again:

[T 9 % 5 25 % % %5 %% 04 9646 & 85852555 %5 856600 e eus sz ssossrs oo e+ 5o 2

7777777777707 7777777777777 144.5 3(38,3,3,3,3,3,3,3,3,2)

). 246 Natural bottom-up mergesort

). 196 Standard mergesort with sorted check
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Peeksort — Analysis

» Consider tricky input from before again:

)
-

-
(

(

( @) )
( (@) )( )X ) ) O )
= —— - =

[T 3D %3 % 5 %% %y %% 0400545469895 %5 2 5% 5%y %9600 o)y a)is s ol sz 5]

) 147 Peeksort

7777777277772 7777777777727 144.5 3(38,3,3,3,3,3,3,3,3,2)

). 246 Natural bottom-up mergesort

). 196 Standard mergesort with sorted check

» One can prove: Mergecost always < H({y,...,{) +2n

~~ We can have the best of both worlds!

31



3.6 Python’s list sort



Sorting in Python
» CPython

» Python is only a specification of a programming language
» The Python Foundation maintains CPython as the official reference implementation of the
Python programming language -
» If you don't specifically install something else, python will be CPython
» part of Python are list.sort resp. sorted built-in functions

»> implemented in C

» use Timsort,
custom Mergesort variant by Tim Peters

32



Sorting in Python

» CPython

» Python is only a specification of a programming language

» The Python Foundation maintains CPython as the official reference implementation of the
Python programming language

» If you don't specifically install something else, python will be CPython

» part of Python are list.sort resp. sorted built-in functions

»> implemented in C

» use Timsort,
custom Mergesort variant by Tim Peters

BREAKING

EWS

Sept 2021: Python uses Powersort!
in CPython 3.11 and PyPy 7.3.6

Date:
msg400864 - A thor: Tim Peters (tim.peters) * ® 2021-09-01
(view) 19:43

I created a PR that implements the powersort merge strategy:
https://github. con/python/cpython/pull/28168

Across all the time this issue report has been open, that strategy continues
to be the top contender. Enough already ;-) It's indeed a more difficult
change to make to the code, but that's in relative terms. In absolute terms,
it's not at all a hard change.

Laurent, if you find that some variant of ShiversSort actually runs faster
than that, let us know here! I'm a big fan of Vincent's innovations too, but
powersort seems to do somewhat better "on average" than even his length-
adaptive Shiversort (and implementing that too would require changing code
outside of merge_collapse()).

32



Timsort (original version)

1

2

3

procedure Timsort(A[0..n))
i := 0; runs := new Stack()
whilei < n
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
while rule A/B/C/D applicable ~ L—J
merge corresponding runs |:] “A
while runs.size() > 2
merge topmost 2 runs

runs

«—top

S[=|=[~

» above shows the core algorithm;

-A-B
many more algorithm engineering tricks
> Advantages:
» profits from existing runs
» locality of reference for merges A B,-C

» But: not optimally adaptive! (next slide)
Reason: Rules A-D (Why exactly these?!)

Rule A: Z > X ~ merge(X,Y)

iI

X+Y

Rule B: Z > Y ~ merge(Y, Z)

Wz [ ]

RuleC: Y +Z > X ~» merge(Y, Z)

Ji

I
i

N

viz | )

RuleD: X +Y > W ~ merge(Y, Z)



Timsort bad case

» On certain inputs, Timsort’s merge rules don’t work well:

@
l ( @ )
@ )( @)
3 » -
l ( @) ) ( @)
P —
@) X

(

( (@) ) (@) )

(

T
) ( (@) ) | ( (@) ) )
— X
r:%l()l D (()1@
B0 6 6 EEENG | Bl | ENETE | EOE) | EOER | ) | A | S| )| Y | )| 3 | B |

( (@) O )
0 3 )3 o)(» 73 x5 )0 s)E s w)s W e 0l )RR 30

371 Timsort

77727777777 70 7777 7 F i 7 7 e 7 e T o T T 7 7 e o T T e T s e 777e 778 316.0 5

321 Peeksort

> As n increases, Timsort’s cost approach 1.5 - 1, i. e., 50% more merge costs than
necessary

34



Timsort bad case

» On certain inputs, Timsort’s merge rules don’t work well:

X a i
l ( @) )
P —
[ == l_(r)@
)

)
( (@) O ) O )
0 3 )3 o)(» 73 x5 )0 s)E s w)s W e 0l )RR 30

371 Timsort

( Q) )

) ( (@) ) (@) ) )
— X

rl:%(()l D H)]rET%

& o(e)(e)(3 3 )5 5 )3 %) 1)) (¢ s)(2 g)@ 0 9T 33 BB

77727777777 70 7777 7 F i 7 7 e 7 e T o T T 7 7 e o T T e T s e 777e 778 316.0 5

321 Peeksort

> As n increases, Timsort’s cost approach 1.5 - 1, i. e., 50% more merge costs than
necessary

» intuitive problem: regularly very unbalanced merges
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Powersort

~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?

1 procedure Powersort(A[0..1))

2 i:=0; runs := ngw Staclf() R 7 &)
3 j = ExtendRunRight(A4, )

4 runs.push(i, j); i := j

5 while i < n

6 j = ExtendRunRight(4, 7)

7 p := power(runs.top(), (i, j), n)

8 while p < topmost power

9 merge topmost 2 runs

10 runs.push(i, j); i :== j

1 while runs.size() > 2

- merge fopmost 2 runs usxrnpoysoalserssnnnnsuss i
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Powersort

~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?
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~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?

1

procedure Powersort(A[0..1))
i := 0; runs := new Stack()
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
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runl run2
2 | 1
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7 p := power(runs.top(), (i, j), n)

8 while p < topmost power
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~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?
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j := ExtendRunRight(A, ) -2
runs.push(i, j); i := j L abc—1 |
wifile § < run stack

j = ExtendRunRight(4, 7)
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~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?
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procedure Powersort(A[0..1))

i := 0; runs := new Stack() e—4 | e ]1[ 5 ﬁeﬁ a
j := ExtendRunRight(A, ) d-2
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—y run stack
whilei <n

j = ExtendRunRight(4, 7)
p := power(runs.top(), (i, j), n)
while p < topmost power
merge topmost 2 runs (O )
runs.push(i, j); i :== j
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~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?
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procedure Powersort(A[0..1))
i := 0; runs := new Stack()
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
while i <n
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while p < topmost power
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~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?
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procedure Powersort(A[0..1))
i := 0; runs := new Stack()
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
while i <n
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runs.push(i, j); i :== j
while runs.size() > 2
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~ Timsort’s merge rules aren’t great, but overall algorithm has appeal ..
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procedure Powersort(A[0..1))
i := 0; runs := new Stack()
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
while i <n
j = ExtendRunRight(4, 7)
p := power(runs.top(), (i, j), n)
while p < topmost power
merge topmost 2 runs
runs.push(i, j); i :== j
while runs.size() > 2
merge topmost 2 runs
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procedure Powersort(A[0..1))
i := 0; runs := new Stack()
j = ExtendRunRight(A4, )
runs.push(i, j); i := j
while i <n
j = ExtendRunRight(4, 7)
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while p < topmost power
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while runs.size() > 2
merge topmost 2 runs

run stack

. can we keep that?

| abc ][ d

JLef ]

merge
merge-down phase 8

=

(@)
A

posyyunosoalisersonunnsd

151 73]t 2)

35



Powersort

~» Timsort’s merge rules aren’t great, but overall algorithm has appeal . .. can we keep that?

1 procedure Powersort(A[0..1))

def

)

(@)

2 i := 0; runs := new Stack() | s

3 j = ExtendRunRight(A4, )

4 runs.push(i, j); i := j merge-down phase
5 while i < n run stack

6 j = ExtendRunRight(4, 7)

7 p := power(runs.top(), (i, j), n)

8 while p < topmost power

9 merge topmost 2 runs (

10 runs.push(i, j); i :== j

11 while runs.size() > 2 :)
12 merge topmost 2 runs
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3 j = ExtendRunRight(A4, )
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5 whilei <n run stack
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~ Timsort’s merge rules aren’t great, but overall algorithm has appeal . . . can we keep that?

1 procedure Powersort(A[0..1))

2 i := 0; runs := new Stack() e

3 j = ExtendRunRight(A4, )

4 runs.push(i, j); i := j

5 whilei <n

6 j = ExtendRunRight(4, 7)

7 p := power(runs.top(), (i, j), n) ( )
8 while p < topmost power p X N

9 merge topmost 2 runs ( ) )
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11 while runs.size() > 2 :) C)
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Powersort - Computing powers

» Computing the power of (the node between) two runs A[#1..j1] and A[i5..j>]

» (] = normalized midpoint interval

> power = min ¢ s.t. ¢
contains ¢ - 27¢

| T :

1 procedure power((i, j1), (i2, j2), 1)  — — : 00
2 ny = j1—ip+1 —— .
3 npy = jz —iy+ 1 + + |

i1+%nl—1 IIIZ ”l ! IZ[BC]
! “= n 5/s 7/s

in + 111 -1 Al + + + + |
s b= 22T terual (a, b] lIﬁz 0o

n — 3

6 =0 ) l./té ) 3./16 ) 5{16 ) 7{16 ) 9416 ) “/16 ) 13./16 ) l”./]el
» while [a-2(] == b2 ' dm
8 {:=0+1 —
9 return (
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Powersort — Computing powers

» ] = normalized midpoint interval

> power = min ¢ s.t. ¢
contains ¢ - 27¢

1 procedure power((i1, j1), (i2, j2), 1)

2

3

© ® N o

ny = j1—ip+1
ny = jp—ip+1

i1+ 4n1 -1
S
() = w // interval (a,b]
{:=0 "
while [a-2¢] == [b-2¢]
{:=0+1
return (

» Computing the power of (the node between) two runs A[i1..j1] and Al[i5..j>]
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» ] = normalized midpoint interval

> power = min ¢ s.t. ¢
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2
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S
() = w // interval (a,b]
{:=0 "
while [a-2¢] == [b-2¢]
{:=0+1
return (

» Computing the power of (the node between) two runs A[i1..j1] and Al[i5..j>]
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Powersort — Discussion

|ﬁ) Retains all advantages of Timsort
» good locality in memory accesses
» no recursion

» all the tricks in Timsort
[ﬁ‘] optimally adapts to existing runs

[ﬁ minimal overhead for finding merge order
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Part 111

Divide & Conquer beyond sorting



Divide and conquer

Divide and conquer idiom (Latin: divide et impera)
to make a group of people disagree and fight with one another
so that they will not join together against one (Merriam-Webster Dictionary)

~» in politics as in algorithms, many independent, small problems are better than a big one!

Divide-and-conquer algorithms:

1. Break problem into smaller, independent subproblems. (Divide!)

2. Recursively solve all subproblems. (Conquer!)

3. Assemble solution for original problem from solutions for subproblems.
Examples:

» Mergesort

» Quicksort

» Binary search

» (arguably) Tower of Hanoi
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3.7 Order Statistics



Selection by Rank

» Standard data summary of numerical data: (Data scientists, listen up!)
» mean, standard deviation
»> min/max (range) easy to compute in © (1) time
» histograms

’p7?
»> median, quartiles, other quantiles B & 2 computable in © (1) time?
(a.k.a. order statistics)
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Selection by Rank

» Standard data summary of numerical data: (Data scientists, listen up!)
» mean, standard deviation
»> min/max (range) easy to compute in © (1) time
» histograms

’p7?
»> median, quartiles, other quantiles B & 2 computable in © (1) time?
(a.k.a. order statistics)

General form of problem: Selection by Rank

. but 0-based &
» Given: array A[0..n) of numbers and number k € [0..n). counting dups

> Goal: find element that would be in position k if A was sorted (kth smallest element).

n/2| ~ median; k=1[n/4] ~- lower quartile

> k=]
k=0 ~ minimum; k=n-10 ~» (thlargest
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Quickselect

» Key observation: Finding the element of rank k seems hard.
But computing the rank of a given element is easy!

count smaller elements

~~ Pick any element A[b] and find its rank j.
» j=k? ~» Lucky Duck! Return chosen element and stop
» j<k? ~» ...notdone yet. But: The j + 1 elements smaller than < A[b] can be excluded!
» j>k? ~» similarly exclude the n — j elements > A[b]
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Quickselect

» Key observation: Finding the element of rank k seems hard.
But computing the rank of a given element is easy!

count smaller elements

~~ Pick any element A[b] and find its rank j.
» j=k? ~» Lucky Duck! Return chosen element and stop
» j<k? ~» ...notdone yet. But: The j + 1 elements smaller than < A[b] can be excluded!

» j>k? ~» similarly exclude the n — j elements > A[b]

» partition function from Quicksort: | procedure quickselect(A[l..r), k)
» returns the rank of pivot 2 if r — ¢ < 1 then return A[/]
b := choosePivot(A[l..r))

> separates elements into smaller/larger ) o
4 j := partition(A[l..r), b)

~~ can use same building blocks 5 ifj==k
6 return A[j]
; elseifj <k k= Gen)
8 quickselect(A[j + 1..n), k —j —1)
(recursion can be replaced by loop) 2 else//j >k
10 quickselect(A[0..f), k)
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Quickselect Discussion
E@ ©(n?) worst case (like Quicksort)
|ﬁ can prove: expected cost ©(1)

|fb no extra space needed

|ﬁ) adaptations possible to find several order statistics

@ Yeah ... maybe. But can we select by rank in O(n) worst case?

41



Better Pivots

It turns out, we can!
> All we need is better pivots!

» If pivot was the exact median,
we would at least halve #elements in each step

» Then the total cost of all partitioning steps is < 21 = O(n).
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> All we need is better pivots!

» If pivot was the exact median,
we would at least halve #elements in each step

» Then the total cost of all partitioning steps is < 21 = O(n).

But: finding medians is (basically) our original problem!
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Better Pivots
It turns out, we can!
> All we need is better pivots!
» If pivot was the exact median,

we would at least halve #elements in each step

» Then the total cost of all partitioning steps is < 21 = ©(n).

But: finding medians is (basically) our original problem!
N ! 4

-

£

It totally suffices to find an element of rank an for a € (¢,1 — ¢)
to get overall costs O (n)!
Z
T
/ // P /

-

pt/aV

T« T (Y =i

)

<

o~

NS
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The Median-of-Medians Algorithm

1 procedure choosePivotMoM(A[!..r))
2 m = [n/5]

3 fori :=0,... m—1

4 sort(A[5i..5i + 4])

5 // collect median of 5

6 Swap Ali] and A[57 + 2]

7 return quickselectMoM(A[0..1m), L% D

s procedure quickselectMoM(A[..7), k)
10 if r — { < 1 then return A[/]

11 b := choosePivotMoM(A[!..r)) i

12 j := partition(A[l..r), b) Y~
13 ifj ==

14 return A[/]

15 elseif j < k

16 quickselectMoM(A[j +1..n), k —j — 1)

17 else//j >k

18 quickselectMoM(A[0..f), k)
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The Median-of-Medians Algorithm

Analysis:
1 procedure choosePivotMoM(A[!..r))
) m = |n/5) » Note: 2 mutually recursive procedures
3 fori :=0,... m—1 ~ effectively 2 recursive calls!
+ sort(A[51..51 * 4]) 1. recursive call inside choosePivotMoM
5 // collect n'iedum of5‘ onm < % elements
6 Swap Ali] and A[57 + 2]

7 return quickselectMoM(A[0..1m), L% D

s procedure quickselectMoM(A[..7), k)
10 if r — { < 1 then return A[/]

11 b := choosePivotMoM(A([!..r))

12 j := partition(A[l..r), b)

13 if ] S

14 return A[/]

15 elseif j < k

G quickselectMoM(A[j +1..n), k —j — 1)
17 else//j >k

B quickselectMoM(A[O..j), k)
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The Median-of-Medians Algorithm

Analysis:
1 procedure choosePivotMoM(A[!..r))
) m = |n/5) » Note: 2 mutually recursive procedures
3 fori :=0,... m—1 ~ effectively 2 recursive calls!

4 j/()rt§lA[f i 5011 * 4];5 1. recursive call inside choosePivotMoM
5 collect median o 7

6 Swap Ali] and A[57 + 2] onm < g elements
7 return quickselectMoM(A[0..1m), L%J)
8

9

2. recursive call inside quickselectMoM

<m

procedure quickselectMoM(A[!..7), k) Q O O O
10 if r — ¢ <1 then return A[/] ® O O 0
1 b := choosePivotMoM(A[!..r)) O O O o
12 j := partition(A[l..r), b) O O O
13 ifj== O O O
14 return A[/] =M
. elseif j < k ~~ partition excludes ~ 3 - & ~ %n elem.
16 quickselectMoM(A[j +1..n), k —j — 1)
17 else//j >k
18 quickselectMoM(A[0..f), k)
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The Median-of-Medians Algorithm

Analysis:
1 procedure choosePivotMoM(A[!..r))
) m = |n/5) » Note: 2 mutually recursive procedures
3 fori :=0,... m—1 ~ effectively 2 recursive calls!

! j/ort§lA[5i..i; + 4]; 1. recursive call inside choosePivotMoM
5 collect median of 5
S Al ) onm < % elements
wap Ali] and A[5i + 2]

6

; return quickselectMoM(A[0..1m), | % 1 2. recursive call inside quickselectMoM
8

9

<m

procedure quickselectMoM(A[!..7), k) 8 8 8 8 8 O O O O
10 if r — ¢ <1 then return A[/] ¥ % K % _X O O O 0
1 b := choosePivotMoM(A[!..r)) O O O @ O O O O o
12 j := partition(A[l..r), b) O O O O O O O O
13 ifj == O O OO O O O O

. >m

t elser;t;lr:kf\ U ~~ partition excludes ~ 3 - & ~ %n elem.
16 quickselectMoM(A[j + 1..n), k — j — 1) ~ C(n) < G)(n)+C(%n)+C(%n)
7 else //] >k ansatz: overall/’S @(i’l) 4 C(%—)I’l ar %i’l)
i quiCkseleCtMOM(A[O”j)’ k) cogt linear = @(l’l) + C(lg—ol/l) o C(I/l) = @(7’1)
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3.8 Further D&C Algorithms



Majority

» Given: Array A[0..n) of objects

» Goal: Check of there is an object x that occurs at > 5 positions in A
if so, return x

> Naive solution: check each A[i] whether it is a majority ~» ©(n?) time



Majority

» Given: Array A[0..n) of objects

» Goal: Check of there is an object x that occurs at > 5 positions in A
if so, return x

> Naive solution: check each A[i] whether it is a majority ~» ©(n?) time

Can be solved faster using a simple Divide & Conquer approach:

» If A has a majority, that element must also be a majority of at least one half of A.
~» Can find majority (if it exists) of left half and right half recursively
~+ Check these < 2 candidates.

» Costs similar to mergesort O(n log 1)

CeH) S 2C(5)+ &)
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Majority — Linear Time

We can actually do much better!

1 def MJRTY(A[0..n))

2 c:=0

3 fori =1,...,n—1

4 ifc==

5 x:= Al e =1

6 else

7 if Al[i]==xthenc :=c+1lelsec :==c—1
8 return x

» MJRTY(A[O..n)) returns candidate majority element

> either that candidate is the majority element or none exists(!)

[@ Clearly ©O(n) time
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Closest pair

» Given: Array P[0..n) of points in the plane
each has x and y coordinates: P[i].x and P[i].y

» Goal: Find pair P[i], P[j] that is closest in (Euclidean) distance

> Naive solution: compute distance of each pair ~ ©(n?) time

» Can be done in O(n log 1) time using a clever divide & conquer algorithm.

(Details not part of the module material.)
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