

COMP526 (Fall 2022) University of Liverpool version 2022-11-28 10:29

Learning Outcomes

- 1. Understand the necessity for encodings and know *ASCII* and *UTF-8 character encodings*.
- 2. Understand (qualitatively) the *limits of compressibility*.
- 3. Know and understand the algorithms (encoding and decoding) for *Huffman codes*, *RLE*, *Elias codes*, *LZW*, *MTF*, and *BWT*, including their *properties* like running time complexity.
- **4.** Select and *adapt* (slightly) a *compression* pipeline for specific type of data.

Unit 7: Compression

Outline

- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Entropy
- 7.5 Run-Length Encoding
- 7.6 Lempel-Ziv-Welch
- 7.7 Lempel-Ziv-Welch Decoding
- 7.8 Move-to-Front Transformation
- 7.9 Burrows-Wheeler Transform
- 7.10 Inverse BWT

7.1 Context

Overview

- ▶ Unit 4–6: How to *work* with strings
 - finding substrings
 - finding approximate matches
 - finding repeated parts
 - ▶ ...
 - assumed character array (random access)!
- ▶ Unit 7–8: How to *store/transmit* strings
 - computer memory: must be binary
 - how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Clicker Question



Terminology

► source text: string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet

- ► coded text: encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- ▶ encoding: algorithm mapping source texts to coded texts \Box \Box \sim ¬ \subset
- decoding: algorithm mapping coded texts back to original source text $C \sim c < c$

Terminology

- ► source text: string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet
- ► coded text: encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts
- ▶ decoding: algorithm mapping coded texts back to original source text

Lossy vs. Lossless

- lossy compression can only decode approximately; the exact source text S is lost
- lossless compression always decodes S exactly
- ► For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- We will concentrate on *lossless* compression algorithms. These techniques can be used for any application.

What is a good encoding scheme?

- Depending on the application, goals can be
 - efficiency of encoding/decoding
 - ▶ resilience to errors/noise in transmission → Uwit 8
 - security (encryption)
 - integrity (detect modifications made by third parties)
 - ► size

What is a good encoding scheme?

- Depending on the application, goals can be
 - efficiency of encoding/decoding
 - resilience to errors/noise in transmission
 - security (encryption)

size

integrity (detect modifications made by third parties)

► Focus in this unit: **size** of coded text

Encoding schemes that (try to) minimize the size of coded texts perform *data compression*.

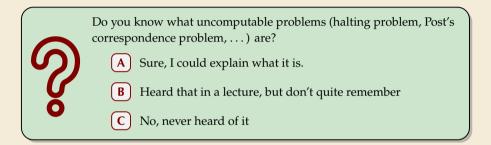
• We will measure the *compression ratio*:

$$\frac{C | \cdot \lg |\Sigma_C|}{S | \cdot \lg |\Sigma_S|} \xrightarrow{\Sigma_C = \{0,1\}} \frac{|C|}{|S| \cdot \lg |\Sigma_S|}$$

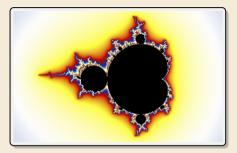
- < 1 means successful compression
- = 1 means no compression
- > 1 means "compression" made it bigger!?

(yes, that happens . . .)

Clicker Question



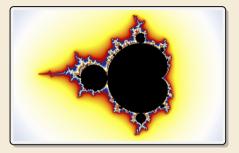
Is this image compressible?



Is this image compressible?

visualization of Mandelbrot set

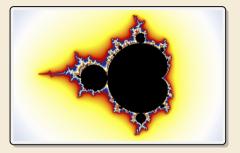
- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- ▶ but:
 - completely defined by mathematical formula
 - $\rightsquigarrow~$ can be generated by a very small program!



Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- ► but:
 - completely defined by mathematical formula
 - $\rightsquigarrow~$ can be generated by a very small program!

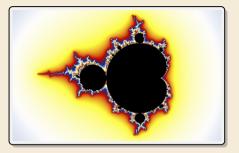


- \rightsquigarrow Kolmogorov complexity
 - C = any program that outputs S self-extracting archives!
 - Kolmogorov complexity = length of smallest such program

Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- ▶ but:
 - completely defined by mathematical formula
 - $\rightsquigarrow~$ can be generated by a very small program!



- \rightsquigarrow Kolmogorov complexity
 - C = any program that outputs S self-extracting archives!
 - Kolmogorov complexity = length of smallest such program
 - **Problem:** finding smallest such program is *uncomputable*.
 - \rightsquigarrow No optimal encoding algorithm is possible!
 - \rightsquigarrow must be inventive to get efficient methods

What makes data compressible?

- Lossless compression methods mainly exploit two types of redundancies in source texts:
 - **1**. uneven character frequencies

some characters occur more often than others $\quad \rightarrow Part \ I$

2. repetitive texts

different parts in the text are (almost) identical \rightarrow Part II

What makes data compressible?

- Lossless compression methods mainly exploit two types of redundancies in source texts:
 - **1**. uneven character frequencies

some characters occur more often than others $\ \ \rightarrow$ Part I

2. repetitive texts

different parts in the text are (almost) identical \rightarrow Part II

There is no such thing as a free lunch! Not *everything* is compressible (→ tutorials) → focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ▶ Simplest form of encoding: Encode each source character individually
- \rightsquigarrow encoding function $E: \Sigma_S \to \Sigma_C^{\star}$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- **• fixed-length code:** |E(c)| is the same for all $c \in \Sigma_C$
- variable-length code: not all codewords of same length

Fixed-length codes

- ▶ fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

0000000	NUL	0010000	DLE	0100000		0110000	0	1000000	0	1010000	Р	1100000	'	1110000	р
0000001	SOH	0010001	DC1	0100001	1	0110001	1	1000001	А	1010001	Q	1100001	а	1110001	q
0000010	STX	0010010	DC2	0100010		0110010	2	1000010	В	1010010	R	1100010	b	1110010	r
0000011	ETX	0010011	DC3	0100011	#	0110011	3	1000011	С	1010011	S	1100011	с	1110011	s
0000100	EOT	0010100	DC4	0100100	\$	0110100	4	1000100	D	1010100	Т	1100100	d	1110100	t
0000101	ENQ	0010101	NAK	0100101	%	0110101	5	1000101	Е	1010101	U	1100101	е	1110101	u
0000110	ACK	0010110	SYN	0100110	&	0110110	6	1000110	F	1010110	V	1100110	f	1110110	v
0000111	BEL	0010111	ETB	0100111	,	0110111	7	1000111	G	1010111	W	1100111	a	1110111	w
0001000	BS	0011000	CAN	0101000	(0111000	8	1001000	н	1011000	х	1101000	h	1111000	x
0001001	нт	0011001	EM	0101001)	0111001	9	1001001	I	1011001	Y	1101001	i	1111001	v
0001010	LF	0011010	SUB	0101010	*	0111010	:	1001010	J	1011010	z	1101010	i	1111010	z
0001011	VT	0011011	ESC	0101011	+	0111011	:	1001011	К	1011011	[1101011		1111011	{
0001100	FF	0011100	FS	0101100		0111100	<	1001100	L	1011100	Ň	1101100	ι	1111100	ì
0001101	CR	0011101	GS	0101101	-	0111101	=	1001101	м	1011101	i	1101101	m	1111101	ż
0001110	50	0011110		0101110		0111110		1001110		1011110		1101110		11111110	-
0001111		0011111		0101111		0111111		1001111		1011111		1101111		11111111	
			00		'	******	•	1001111	•		_	******	0	******	DEE

▶ 7 bit per character

▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

Encoding & Decoding as fast as it gets

Unless all characters equally likely, it wastes a lot of space

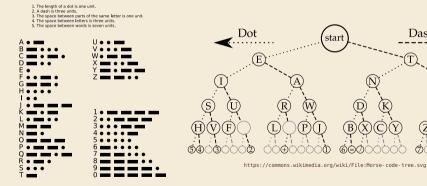
(now to support adding a new character?)

Variable-length codes

▶ to gain more flexibility, have to allow different lengths for codewords

actually an old idea: Morse Code

International Morse Code



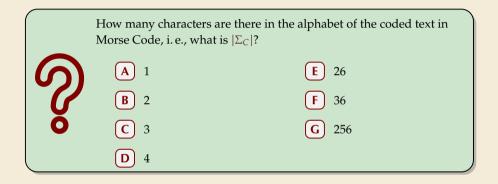
https://commons.wikimedia.org/wiki/File: International Morse Code, svg

തത

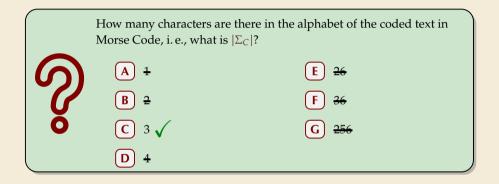
Dash

D F

Clicker Question



Clicker Question



Variable-length codes – UTF-8

Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- Encodes any Unicode character (137 994 as of May 2019, and counting)
- uses 1–4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- ▶ Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- Non-ASCII charactters start with 1–4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence						
(hexadecimal)	(binary)						
0000 0000 - 0000 007F	0xxxxxx						
$0000 \ 0080 \ - \ 0000 \ 07FF$	110xxxxx 10xxxxxx						
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx						
$0001 \ 0000 - 0010$ FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx						

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

Suppose we have the following code:

• Happily encode text S = banana with the coded text $C = \underline{1100100100}$

Pitfall in variable-length codes

- b s a n • Suppose we have the following code: 0 10 110
- ▶ Happily encode text *S* = banana with the coded text *C* = 1100100100 banana

100

- C = 1100100100 decodes both to banana and to bass: 1100100100 hass
- \rightarrow not a valid code ... (cannot tolerate ambiguity)

but how should we have known?

Pitfall in variable-length codes

Suppose we have the following code:

С	а	n	b	s	
E(c)	0	10	110	<u>10</u> 0	

- Happily encode text S = banana with the coded text $C = \underbrace{1100100100}_{b a n a n a}$
- C = 1100100100 decodes **both** to banana and to bass: $\frac{1100100100}{b a s}$
- $\ \, \rightsquigarrow \ \, not \ \, a \ \, valid \ \, code \ \, \dots \qquad ({\sf cannot \ tolerate \ ambiguity})$

but how should we have known?

 $\sum_{E(n) = 10 \text{ is a (proper) prefix of } E(s) = 100$

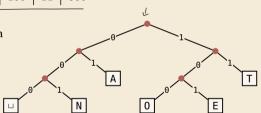
- $\rightsquigarrow~$ Leaves decoder wondering whether to stop after reading 10 or continue!
- → Require a *prefix-free* code: No codeword is a prefix of another.
 prefix-free ⇒ instantaneously decodable ⇒ uniquely decodable

Code tries

From now on only consider prefix-free codes E: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)



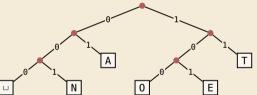
- Encode ANJANT 0ເຜຣເ

Code tries

From now on only consider prefix-free codes *E*: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)



- ► Encode $AN_{\sqcup}ANT \rightarrow 010010000100111$
- ▶ Decode 111000001010111 \rightarrow T0_EAT

Who decodes the decoder?

- > Depending on the application, we have to **store/transmit** the **used code**!
- We distinguish:
 - **fixed coding:** code agreed upon in advance, not transmitted (e.g., Morse, UTF-8)
 - ► static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - ► adaptive coding: code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW → below)

7.3 Huffman Codes

Character frequencies

- ▶ Goal: Find character encoding that produces short coded text
- Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- **Observation:** Some letters occur more often than others.

e	12.70%	d	4.25%		р	1.93%	
t	9.06%	1	4.03%		b	1.49%	•
a	8.17%	с	2.78%		v	0.98%	•
0	7.51%	u	2.76%		k	0.77%	•
i	6.97%	m	2.41%	-	j	0.15%	1
n	6.75%	w	2.36%		x	0.15%	1
s	6.33%	f	2.23%		q	0.10%	1
h	6.09%	g	2.02%	-	Z	0.07%	1
r	5.99%	У	1.97%	-			

Typical English prose:

→ Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities • **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{>0}$

b Goal: prefix-free code E (= code trie) for Σ that minimizes coded text length

i.e., a code trie minimizing $\sum_{r} w(c) \cdot |E(c)|$

Huffman coding

e.g. frequencies / probabilities **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{\geq 0}$

Goal: prefix-free code E (= code trie) for Σ that minimizes coded text length

i.e., a code trie minimizing $\sum w(c) \cdot |E(c)|$

If we use w(c) = #occurrences of c in S, this is the character encoding with smallest possible |C|

 \rightsquigarrow best possible character-wise encoding

Quite ambitious! Is this efficiently possible?

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ▶ We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (*u* to be determined)
- 2. (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ► We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (*u* to be determined)
- (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- 3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).
- efficient implementation using a (min-oriented) priority queue
 - start by inserting all characters with their weight as key
 - step 1 uses two deleteMin calls
 - step 2 inserts a new character with the sum of old weights as key

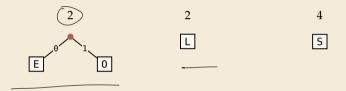
 $\int O(l_{05} G)$

• Example text: $S = LOSSLESS \longrightarrow \Sigma_S = \{E, L, 0, S\}$

• Character frequencies: E:1, L:2, 0:1, S:4

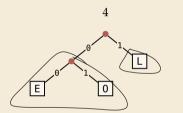
• Example text: $S = LOSSLESS \longrightarrow \Sigma_S = \{E, L, 0, S\}$

• Character frequencies: E:1, L:2, 0:1, S:4



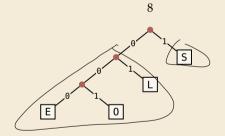
• Example text: $S = LOSSLESS \longrightarrow \Sigma_S = \{E, L, 0, S\}$

• Character frequencies: E:1, L:2, 0:1, S:4

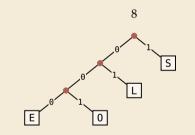


4 5

- **•** Example text: $S = LOSSLESS \longrightarrow \Sigma_S = \{E, L, 0, S\}$
- Character frequencies: E:1, L:2, 0:1, S:4

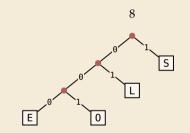


- **•** Example text: $S = LOSSLESS \longrightarrow \Sigma_S = \{E, L, 0, S\}$
- Character frequencies: E:1, L:2, 0:1, S:4



→ *Huffman tree* (code trie for Huffman code)

- **•** Example text: $S = LOSSLESS \longrightarrow \Sigma_S = \{E, L, 0, S\}$
- Character frequencies: E:1, L:2, 0:1, S:4



→ *Huffman tree* (code trie for Huffman code)

LOSSLESS $\rightarrow 010011$ 10100011 compression ratio: $\frac{14}{8 \log 4} = \frac{14}{16} \approx 88\%$

Huffman tree – tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - which subtree goes left, which goes right?
- ► For COMP 526: always use the following rule:
 - To break ties when selecting the two characters, first use the smallest letter according to the alphabetical order, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a θ-bit).
 - 3. When combining trees of equal value, place the one containing the smallest letter to the left.

Encoding with Huffman code

- ► The overall encoding procedure is as follows:
 - ▶ Pass 1: Count character frequencies in *S*
 - Construct Huffman code *E* (as above)
 - Store the Huffman code in *C* (details omitted)
 - ▶ Pass 2: Encode each character in *S* using *E* and append result to *C*
- Decoding works as follows:
 - Decode the Huffman code *E* from *C*. (details omitted)
 - Decode *S* character by character from *C* using the code trie.
- ▶ Note: Decoding is much simpler/faster!

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w : \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E : \Sigma \to \{0, 1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w : \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E : \Sigma \to \{0, 1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma| > 2$

- ► Given any optimal prefix-free code *E*^{*} (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves *x*, *y* at largest depth *D*
- swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- Any optimal code for Σ' = Σ \ {a, b} ∪ {ab} yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
- → recursive call yields optimal code for Σ' by inductive hypothesis, so Huffman's algorithm finds optimal code for Σ.

()

7.4 Entropy

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

n=6 standard fair die
$$P_1 = P_2 = \cdots = P_6 = \vec{\epsilon}$$

 $\mathcal{H}(P_1, \cdots, P_6) = 6 \cdot \frac{1}{6} \cdot P_g(6) = l_g(6)$

Definition 7.2 (Entropy)

0

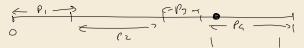
Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

entropy is a measure of information content of a distribution

▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

-



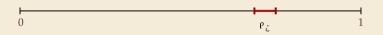
Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

entropy is a measure of information content of a distribution

▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.



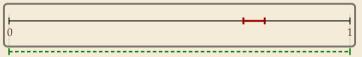
-

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

entropy is a measure of information content of a distribution



Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

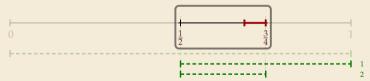
entropy is a measure of information content of a distribution

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

entropy is a measure of information content of a distribution

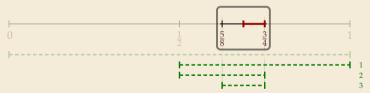


Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

entropy is a measure of information content of a distribution

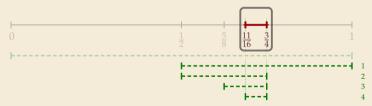


Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

entropy is a measure of information content of a distribution

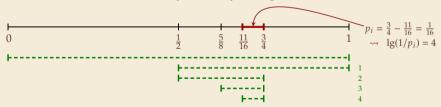


Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution



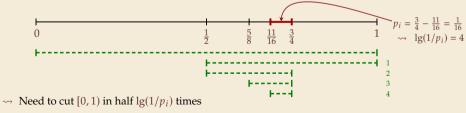
Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

entropy is a measure of information content of a distribution

▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.



more precisely: the expected number of bits (Yes/No questions) required to nail down the random value

Entropy and Huffman codes

would ideally encode value *i* using lg(1/p_i) bits not always possible; cannot use codeword of 1.5 bits ...

Entropy and Huffman codes

would ideally encode value *i* using lg(1/p_i) bits not always possible; cannot use codeword of 1.5 bits ... but:

Theorem 7.3 (Entropy bounds for Huffman codes) For any $\Sigma = \{a_1, \ldots, a_{\sigma}\}$ and $w : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code *E*, we have $\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$ where $\mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \ldots, \frac{w(a_{\sigma})}{W}\right)$ and $W = w(a_1) + \cdots + w(a_{\sigma})$.

Entropy and Huffman codes

would ideally encode value *i* using lg(1/p_i) bits not always possible; cannot use codeword of 1.5 bits . . . but:

Theorem 7.3 (Entropy bounds for Huffman codes)

For any $\Sigma = \{a_1, \ldots, a_\sigma\}$ and $w : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code *E*, we have

$$\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$$
 where $\mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_{\sigma})}{W}\right)$ and $W = w(a_1) + \dots + w(a_{\sigma})$.

Proof sketch:

 $\blacktriangleright \ \ell(E) \geq \mathcal{H} \quad \checkmark$

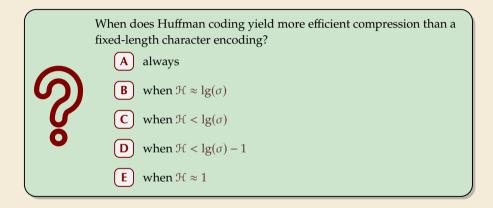
Any prefix-free code *E* induces weights $q_i = 2^{-|E(a_i)|}$. By *Kraft's Inequality*, we have $q_1 + \cdots + q_{\sigma} \le 1$. Hence we can apply *Gibb's Inequality* to get

$$\mathcal{H} = \sum_{i=1}^{o} p_i \lg\left(\frac{1}{p_i}\right) \leq \sum_{i=1}^{o} p_i \lg\left(\frac{1}{q_i}\right) = \ell(E).$$

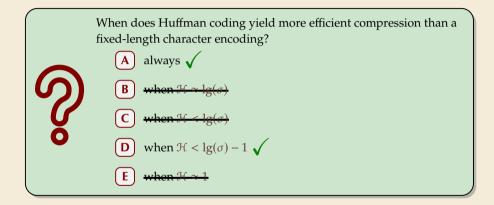
Entropy and Huffman codes [2]

Proof sketch (continued):

Clicker Question



Clicker Question



Huffman coding – Discussion

- running time complexity: $O(\sigma \log \sigma)$ to construct code
 - build PQ + σ · (2 deleteMins and 1 insert)
 - can do $\Theta(\sigma)$ time when characters already sorted by weight \leftarrow
 - time for encoding text (after Huffman code done): O(n + |C|)
- many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

Huffman coding – Discussion

- running time complexity: $O(\sigma \log \sigma)$ to construct code
 - build PQ + σ · (2 deleteMins and 1 insert)
 - can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding text (after Huffman code done): O(n + |C|)
- many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

optimal prefix-free character encoding
very fast decoding

needs 2 passes over source text for encoding
 one-pass variants possible, but more complicated

 \mathbf{n} have to store code alongside with coded text

Part II Compressing repetitive texts

Beyond Character Encoding

Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will not capture such repetitions
 - $\rightsquigarrow~$ Huffman won't compression this very much

Beyond Character Encoding

Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will not capture such repetitions
 - $\rightsquigarrow~$ Huffman won't compression this very much
- \rightsquigarrow Have to encode whole *phrases* of *S* by a single codeword

7.5 Run-Length Encoding

Run-Length encoding

simplest form of repetition: *runs* of characters

 same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

Run-Length encoding

simplest form of repetition: *runs* of characters

00000	000	0000	0000	00000	00000		000000
						0000000	
						000000	
						0000000	
						001111	
00111	101:	10100	00111	00011	.11006	011100	000000
00110	0000	0000	00000	00001	11000	111000	000000
00110	0000	0000	00000	00000	11001	110000	000000
00110	0000	0000	0000	00000	11001	110000	000000
00110	1100	0000	00000	00001	11001	100111	110000
00111	111:	11000	00000	00001	11001	111111	111000
00111	011:	11100	00000	00011	10001	111100	111100
00000	0000	91110	00000	00111	00001	110000	001110
00000	000	91110	0000	00110	00001	110000	001100
00000	0000	00110	0000	01100	00000	110000	001110
						110000	
						110000	
						111000	
						011111	
01111	111:	11000	91111	11111	11100	001111	110000
00010	1100	0000	00101	00116	01000	000100	100000
00000	0000	0000	00000	00000	00000	000000	000000
00000	0000	0000	00000	00000	00000	000000	000000

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

use runs as phrases: S = 00000 111 0000

Run-Length encoding

simplest form of repetition: *runs* of characters

000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
0001011001000001111110000000000011111000	
001111111110001111111100000001111111000	
0011110110100011110000111100000011110000	
001100000000000000000000000000000000000	
001100000000000000001110001110000000000	
001100000000000000000011001110000000000	
001101100000000000000111001100111110000	
00111111110000000000011100111111111000	
001110111110000000001110001111100111100	
0000000011100000001110000111000001110	
00000000111000000011000001110000001100	
00000000111000000011000000110000001110	
00000000011000001110000001110000001100	
000000001110001110000000000110000001110	
00000000110000111000000000111000011100	
001101111110001111011101000011111111000	
01111111110001111111111100001111110000	
0001011000000010100110010000000100100000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

use runs as phrases: *S* = 00000 111 0000

- \rightsquigarrow We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.

► Example becomes: 0, 5, 3, 4

Run-Length encoding

simplest form of repetition: *runs* of characters

000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000101100100000000000000000000000000000	
0011111111100001111111000000000000011111	
0011110110100011100011110000001111111000	
001100000000000000000111000111000000000	
001100000000000000000011001110000000000	
0011000000000000000001100111000000000	
001101100000000000000111001100111110000	
00111111110000000000011100111111111000	
001110111110000000001110001111100111100	
0000000011100000001110000111000001110	
00000000111000000011000001110000001100	
00000000011000000110000000110000001110	
0000000001100000111000000110000001100	
00000000111000111000000000110000001110	
00000000110000111000000000111000011100	
001101111110001111011101000011111111000	
011111111100011111111111100001111110000	
000101100000001010011001000000100100000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

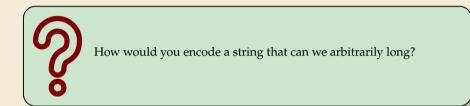
$\rightsquigarrow~$ run-length encoding (RLE):

use runs as phrases: *S* = 00000 111 0000

- \rightsquigarrow We have to store
 - the first bit of S (either 0 or 1)
 - the length each each run
 - ▶ Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0, 5, 3, 4

▶ **Question**: How to encode a run length *k* in binary? (*k* can be arbitrarily large!)

Clicker Question



- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading

- Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- But that's simple! Just use *unary* encoding!

- Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- But that's simple! Just use *unary* encoding!

Much too long

(wasn't the whole point of RLE to get rid of long runs??)

- Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- But that's simple! Just use *unary* encoding!

Much too long

(wasn't the whole point of RLE to get rid of long runs??)

- ► Refinement: *Elias gamma code*
 - Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves

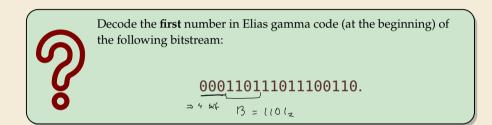
- Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- But that's simple! Just use *unary* encoding!

Much too long

- (wasn't the whole point of RLE to get rid of long runs??)
- ► Refinement: *Elias gamma code*
 - Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves
 - little tricks:
 - ▶ always $\ell \ge 1$, so store $\ell 1$ instead
 - \blacktriangleright binary representation always starts with 1 \rightsquigarrow don't need terminating 1 in unary
 - \rightsquigarrow Elias gamma code = $\ell 1$ zeros, followed by binary representation

Examples: $1 \mapsto 1$, $3 \mapsto 011$, $5 \mapsto 00101$, $30 \mapsto 000011110$

Clicker Question



- - $C = \mathbf{1}$

Decoding:
 C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding:
 C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding:
 C = 00001101001001010

• Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding:
 C = 00001101001001010
 b = 0

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding: C = 00001101001001010 b = 0 l = 3 + 1 S =

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 0 ℓ = 3 + 1 k = 13 S = 0000000000000

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 1 ℓ = 2 + 1 k = S = 0000000000000

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 1 ℓ = 2 + 1 k = 4 S = 0000000000001111

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 0 ℓ = 0 + 1 k = S = 0000000000001111

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 0 ℓ = 0 + 1 k = 1

 $S = \mathbf{00000000000011110}$

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 1 ℓ = 1 + 1 k = S = 00000000000011110

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 1 ℓ = 1 + 1 k = 2

 $S = {\bf 0} {\bf 1} {\bf 1} {\bf 1} {\bf 0} {\bf 1} {\bf 1}$

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- used in some image formats (e.g. TIFF)

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)

fairly simple and fast

 \square can compress *n* bits to $\Theta(\log n)$!

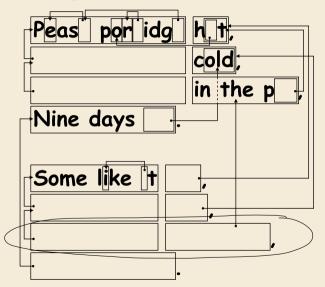
for extreme case of constant number of runs

negligible compression for many common types of data

- No compression until run lengths $k \ge 6$
- expansion for run length k = 2 or 6

7.6 Lempel-Ziv-Welch

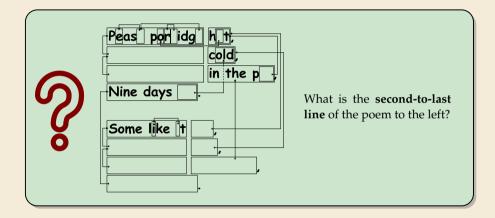
Warmup



https://www.flickr.com/photos/quintanaroo/2742726346

https://classic.csunplugged.org/text-compression/

Clicker Question



Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - in HTML: "<a href", "<img src", "
>"

Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - in HTML: "<a href", "<img src", "
>"
- **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► Idea: store repeated parts by reference!
 - $\rightsquigarrow\,$ each codeword refers to
 - either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).

Lempel-Ziv Compression

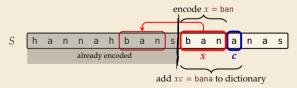
- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- **Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - in HTML: "<a href", "<img src", "
>"
- **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► Idea: store repeated parts by reference!
 - $\rightsquigarrow\,$ each codeword refers to
 - either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).
 - Variants of Lempel-Ziv compression
 - "LZ77" Original version ("sliding window")
 Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ...
 DEFLATE used in (pk)zip,gzip, PNG
 - "LZ78" Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, ... LZW used in compress, GIF

Lempel-Ziv-Welch

- ► here: *Lempel-Ziv-Welch* (*LZW*) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have *k* bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!

Lempel-Ziv-Welch

- ▶ here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have *k* bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!
- maintain a **dictionary** D with 2^k entries \rightarrow codewords = indices in dictionary
 - initially, first $|\Sigma_S|$ entries encode single characters (rest is empty)
 - add a new entry to *D* after each step:
 - Encoding: after encoding a substring x of S, add xc to D where c is the character that follows x in S.



- \rightsquigarrow new codeword in D
- ▶ *D* actually stores codewords for *x* and *c*, not the expanded string

Input: Y0! Y0U! Y0UR Y0Y0!

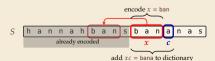
Σ_S = ASCII character set (0–127)

C =

Code	String
32	Ц
33	!
79	0
82	R
85	U
89	Y

D =

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	



34

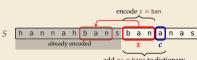
Input: Y0!,Y0U!,Y0UR,Y0Y0!

Σ_S = ASCII character set (0–127)

String

Y *C* = **89**

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
(89)	Y	138
		139



add xc = bana to dictionary

Input: Y0!,Y0U!,Y0UR,Y0Y0!

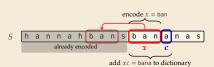
Σ_S = ASCII character set (0–127)

String

Y0

Υ C = 89

		, <u> </u>	_
Code	String	Code	5
		128	
32	Ц	129	
33	!	130	
		131	
79	0	132	
		133	
82	R	134	
		135	
85	U	136	
	••	137	
89	Y	138	
		139	



Input: Y0! Y0U! Y0UR Y0Y0!

Σ_S = ASCII character set (0–127)

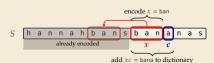
String YO

$$Y = 0$$

 $C = 89 = 79$

Code	String	[Code
			128
32	Ц		129
33	!		130
			131
(79)	0		132
			133
82	R		134
	••		135
85	U		136
	••		137
89	Y		138
			139

D =



34

Input: Y0! Y0U! Y0UR Y0Y0!

Σ_S = ASCII character set (0–127)

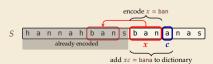
String

Y0

$$Y = 0$$

 $C = 89 = 79$

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
	133	
82	R	134
	••	135
85	U	136
	••	137
89	Y	138
		139
		139



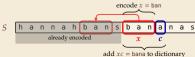
Input: Y0! Y0U! Y0UR Y0Y0!

Y 0 !

C = 89 79 **33**

 Σ_S = ASCII character set (0–127)

ode String 28 Y0 .29 0! .30 .31 32 .33 .34 .35 .36 .37 .38 .39



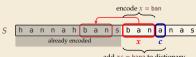
Input: Y0!..Y0U!..Y0UR..Y0Y0!

Σ_S = ASCII character set (0–127)

String Y0 0! 1...

$$\begin{array}{cccc} Y & 0 & ! \\ C = 89 & 79 & 33 \end{array}$$

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139



add xc = bana to dictionary

Input: Y0! Y0U! Y0UR Y0Y0!

! **U**

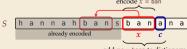
0 Υ

C = 89 79 33 32

 Σ_S = ASCII character set (0–127)

String Y0 0! !..

$$D = \begin{bmatrix} Code & String \\ & \ddots \\ 32 & \sqcup \\ 33 & ! \\ & 129 \\ 33 & ! \\ & 130 \\ & \ddots \\ & 131 \\ & 79 & 0 \\ & 132 \\ & 133 \\ & 13$$



add xc = bana to dictionary

ш

Input: Y0! Y0U! Y0UR Y0Y0!

C = 89 79 33 32

Y 0 !

 Σ_S = ASCII character set (0–127)

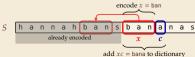
 String

 Y0

 0!

 ...

$$D = \begin{bmatrix} Code & String \\ ... \\ 32 & \sqcup \\ 33 & ! \\ 130 \\ ... \\ 131 \\ 79 & 0 \\ ... \\ 82 & R \\ 133 \\ 82 & R \\ 134 \\ ... \\ 135 \\ 85 & U \\ 136 \\ ... \\ 137 \\ 89 & Y \\ 138 \\ ... \\ 139 \end{bmatrix}$$



Input: Y0! Y0U! Y0UR Y0Y0!

Y	0	1	ц	Y0
<i>C</i> = 89	79	33	32	128

 Σ_S = ASCII character set (0–127)

 String

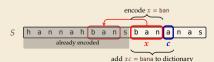
 Y0

 0!

 !__

 Y

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
	••	135
85	U	136
	••	137
89	Y	138
		139

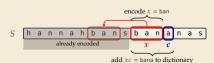


Input: Y0! Y0U! Y0UR Y0Y0!

Y	0	1	ц	Y0
<i>C</i> = 89	79	33	32	128

 Σ_S = ASCII character set (0–127)

Code	String		Code	String
			128	Y0
32	Ц		129	0!
33	!		130	!
			131	٦
79	0		132	YOU
			133	
82	R		134	
			135	
85	U		136	
	•••		137	
89	Y		138	
			139	
	32 33 79 82 85	32 □ 33 ! 79 0 82 R 85 U	32	128 32 33 ! 129 33 ! 130 79 0 133 82 R 135 85 U 136 137 89 Y



Input: Y0! Y0U! Y0UR Y0Y0!

Y	0	!	ц	Y0	U
<i>C</i> = 89	79	33	32	128	85

 Σ_S = ASCII character set (0–127)

 String

 Y0

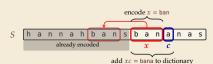
 0!

 !_

 Y0

 Y0

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
	••	133
82	R	134
	••	135
85	U	136
	••	137
89	Y	138
		139



Input: Y0! Y0U! Y0UR Y0Y0!

Y	0	!	ц	Y0	U
<i>C</i> = 89	79	33	32	128	85

 Σ_S = ASCII character set (0–127)

 String

 Y0

 0!

 !_

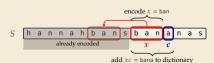
 Y0

 Y0

U!

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
	••	135
85	U	136
	••	137
89	Y	138
		139

D =



34

Input: Y0! Y0U! Y0UR Y0Y0!

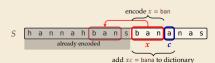
Y 0 ! Y0 U ! C = 89 79 33 32 128 85 130 Σ_S = ASCII character set (0–127)

Y0 0!

YOU

U!

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
	••	135
85	U	136
	••	137
89	Y	138
		139



Input: Y0! Y0U! Y0UR Y0Y0!

Y 0 ! J Y0 U ! C = 89 79 33 32 128 85 130 Σ_S = ASCII character set (0–127)

 String

 Y0

 0!

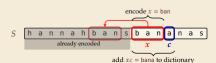
 !__

 Y0

 Y0

U! !__Y

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139

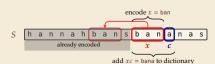


Input: Y0!_Y0U!_Y0UR_Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ 0 Y0 . ! U !.. YOU ы $C = 89 \quad 79 \quad 33 \quad 32 \quad 128$ 85 130 132

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	
		133	U!
82	R	134	۲ <u>ا</u> !
		135	
85	U	136	
		137	
89	Y	138	
		139	

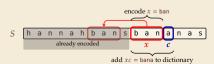


Input: Y0!,Y0U!,Y0UR,Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

Υ Y0 U YOU 0 1 !.. $C = 89 \quad 79 \quad 33 \quad 32 \quad 128$ 85 130 132

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	YOU
		133	U!
82	R	134	Y_!
	•••	135	YOUR
85	U	136	
		137	
89	Y	138	
		139	

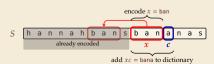


Input: Y0!,Y0U!,Y0UR,Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

L YO Υ U YOU R 0 .! !... $C = 89 \quad 79 \quad 33 \quad 32 \quad 128$ 85 130 132 82

Code	String		Code	String
			128	Y0
32	Ц	1	129	0!
33	!		130	!
			131	٦
79	0		132	YOU
	•••		133	U!
82	R		134	!_Y
	•••		135	YOUR
85	U		136	
	•••		137	
89	Y		138	
			139	

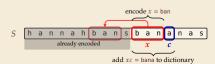


Input: Y0!,Y0U!,Y0UR,Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ Y0 YOU R 0 U !... . ы $C = 89 \quad 79 \quad 33 \quad 32 \quad 128$ 85 130 132 82

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	YOU
	••	133	U!
82	R	134	!_Y
	••	135	YOUR
85	U	136	R
		137	
89	Y	138	
		139	



Input: Y0!_Y0U!_Y0UR_Y0Y0!

 Σ_S = ASCII character set (0–127)

 String

 Y0

 0!

 !__

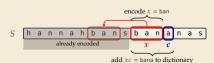
 Y0

 Y0

U! !_Y YOUR R_

Y0!YOU!YOURYC = 897933321288513013282131

			_
Code	String	Code	L
		128	Γ
32	Ц	129	Γ
33	!	130	Γ
		131	Γ
79	0	132	Γ
		133	Γ
82	R	134	Γ
		135	Γ
85	U	136	
		137	Γ
89	Y	138	
		139	



Input: Y0!_Y0U!_Y0UR_Y0Y0!

 Σ_S = ASCII character set (0–127)

 String

 Y0

 0!

 !_

 __Y

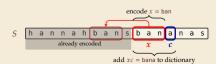
 YOU

U! !_Y YOUR R_

LY0

Y0!YOU!YOURYC = 897933321288513013282131

Code	String	Code	String	
		128		Γ
32	Ц	129	ш	
33	!	130	!	
		131		
79	0	132	0	
		133		
82	R	134	R	
	••	135		
85	U	136	U	
	••	137		
89	Y	138	Y	
		139		

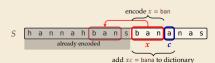


Input: Y0!,Y0U!,Y0UR,Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ Y0 YOU R _Y 0 0 U !... 1 ы C = 89 79 33 32 128 85 132 82 131 79 130

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	YOU
		133	U!
82	R	134	!_Y
		135	YOUR
85	U	136	R
	•••	137	٦٨0
89	Y	138	
		139	

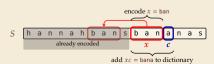


Input: Y0!,Y0U!,Y0UR,Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ Y0 YOU R ٦L 0 0 U !... 1 ы C = 89 79 33 32 128 85 132 82 131 79 130

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	YOU
		133	U!
82	R	134	!_Y
		135	YOUR
85	U	136	R
		137	٦٨0
89	Y	138	0Y
		139	

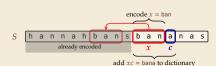


Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

LY Υ Y0 YOU R 0 Y0 0 U !... 1 ш 32 $C = 89 \quad 79 \quad 33$ 128 85 132 131 79 130 82 128

Code	String	Code	String
		128	YO
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	YOU
		133	U!
82	R	134	۲ _ل !
		135	YOUR
85	U	136	R
		137	٦٨0
89	Y	138	0Y
		139	

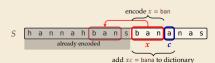


Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

LΥ Υ Y0 YOU R 0 Y0 0 U !... 1 ш C = 89 79 33 32 128 85 130 132 82 131 79 128

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	YOU
		133	U!
82	R	134	!_Y
	••	135	YOUR
85	U	136	R
	••	137	٦٨0
89	Y	138	0Y
		139	Y0!

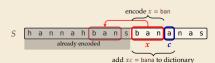


Input: Y0!, Y0U!, Y0UR, Y0Y0!

 Σ_S = ASCII character set (0–127)

LY Υ Y0 YOU R 0 Y0 0 U !... 1 1 ш 32 $C = 89 \quad 79 \quad 33$ 128 85 130 132 82 131 79 128 33

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	۲L
79	0	132	YOU
	••	133	U!
82	R	134	!_Y
	••	135	YOUR
85	U	136	R
		137	Y0۔
89	Y	138	0Y
		139	Y0!



LZW encoding – Code

```
<sup>1</sup> procedure LZWencode(S[0..n))
       x := \varepsilon // previous phrase, initially empty
2
      C := \varepsilon // output, initially empty
3
       D := dictionary, initialized with codes for c \in \Sigma_S // stored as trie
4
     k := |\Sigma_S| // next free codeword
5
    for i := 0, ..., n - 1 do
6
            c := S[i]
7
            if D.containsKey(xc) then
8
                 x := xc
9
            else
10
                 C := C \cdot D.get(x) // append codeword for x
11
                 D.put(xc, k) // add xc to D, assigning next free codeword
12
                 k := k + 1: x := c
13
       end for
14
       C := C \cdot D.get(x)
15
       return C
16
```

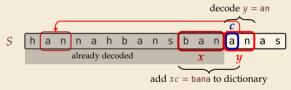
7.7 Lempel-Ziv-Welch Decoding

LZW decoding

Decoder has to replay the process of growing the dictionary!

→ **Decoding:**

after decoding a substring *y* of *S*, add $\underline{x}c$ to *D*, where *x* is previously encoded/decoded substring of *S*, and c = y[0] (first character of *y*)



 \rightsquigarrow Note: only start adding to *D* after *second* substring of *S* is decoded

- Same idea: build dictionary while reading string.
- **Example:** 67 65 78 32 66 129 133

	Code #	String		
	32	Ц		
	65	А		
D =	66	В		
	67	С		
	78	Ν		
	83	S		

	decodes		String	String (computer)
input	to	Code #	(human)	(computer)

- Same idea: build dictionary while reading string.
- **Example:** 67 65 78 32 66 129 133

	Code #	String			
	32	Ц			
D =	65	А			
	66	В			
	67	С			
	78	Ν			
	83	S			

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			

- ▶ Same idea: build dictionary while reading string.
- Example: 67 65 78 32 66 129 133 x = C y = A $\times y[0] = CA$

	Code #	String			
	32	Ц			
D =	65	А			
	66	В			
	67	С			
	78	N			
	83	S			

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	Α	128	СА	67, A

- ▶ Same idea: build dictionary while reading string.
- Example: 67 65 78 32 66 129 133 x = A y = N $\sim_{3} AN$

	Code #	String		
	32	Ц		
	65	А		
D =	66	В		
	67	С		
	78	Ν		
	83	S		

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65, N

- Same idea: build dictionary while reading string.
- **Example:** 67 65 78 32 66 129 133

	Code #	String		
	32	Ц		
D =	65	А		
	66	В		
	67	С		
	78	N		
	83	S		

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65 <i>,</i> N
32	.	130	N	78, 🗆

- Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

	Code #	String		
	32	L		
	65	А		
D =	66	В		
	67	С		
	78	Ν		
	83	S		

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65 <i>,</i> N
32	u	130	N	78, 🗆
66	В	131	ыB	32, В

LZW decoding – Example

- ▶ Same idea: build dictionary while reading string.
- Example: 67 65 78 32 66 129 133 $x = B \quad y = A N \quad BA$

	Code #	String	
	32	L	
	65	А	
D =	66	В	
	67	С	
	78	Ν	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65, N
32	u	130	N	78, 🗆
66	В	131	ыB	32, В
129	AN	132	BA	66, A

LZW decoding – Example

- Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

	Code #	String
	32	Ц
	65	А
D =	66	В
	67	С
	78	N
	83	S

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65 <i>,</i> N
32	u	130	N	78, 🗆
66	В	131	ыB	32, в
129	AN	132	BA	66, A
133	???	133		

LZW decoding – Example

- ▶ Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

	Code #	String	
	32	L	
	65	А	
D =	66	В	
	67	С	
	78	Ν	
	83	S	

	decodes		St		
input	to	Code #	(hu		
67	С				
65	A	128	CA	67, A	
78	N	129	AN	65, N	
32	u	130	N	78, 🗆	
66	В	131	ыB	32, в	
129	AN	132	BA	66, A	
133	???	133			

LZW decoding – Bootstrapping

• example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

LZW decoding – Bootstrapping

• example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

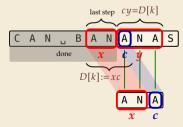
--- problem occurs if *we want to use a code* that we are *just about to build*.

LZW decoding – Bootstrapping

• example: Want to decode 133, but not yet in dictionary!

🔨 decoder is "one step behind" in creating dictionary

- → problem occurs if *we want to use a code* that we are *just about to build*.
- But then we actually know what is going on:
 - Situation: decode using *k* in the step that will define *k*.
 - decoder knows last phrase x, needs phrase y = D[k] = xc.



1. en/decode
$$x$$
.

- **2.** store D[k] := xc
- 3. next phrase y equals D[k] $\rightarrow D[k] = xc = x \cdot x[0]$ (all known)

LZW decoding – Code

1 **procedure** LZWdecode(C[0..m]) D := dictionary $[0..2^d) \rightarrow \Sigma_s^+$, initialized with codes for $c \in \Sigma_s //$ stored as array 2 $k := |\Sigma_S| // next unused codeword$ 3 q := C[0] // first codeword4 y := D[q] // lookup meaning of q in D5 S := y // output, initially first phrase6 for i := 1, ..., m - 1 do 7 x := y // remember last decoded phrase8 q := C[j] // next codeword9 if q == k then 10 $y := x \cdot x[0] // bootstrap case$ 11 else 12 u := D[a]13 $S := S \cdot y // append$ decoded phrase 14 $D[k] := x \cdot y[0] // store new phrase$ 15 k := k + 116 end for return S 18

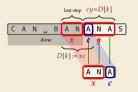
LZW decoding – Example continued

Example: 67 65 78 32 66 129 133 83

X=AN ANA new codeword

	Code #	String	
	32	Ц	
	65	А	
D =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	String (human)	String (computer)
67	С	 		
65	A	128	CA	67, A
78	N	129	AN	65, N
32	ц	130	N	78, 🗆
66	В	131	ыB	32, В
129	AN	132	BA	66, A
133	ANA	133	ANA	129, A



1. en/decode x.

2. store D[k] := xc

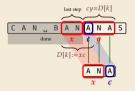
3. next phrase y equals D[k] $\rightarrow D[k] = xc = x \cdot x[0]$ (all known)

LZW decoding – Example continued

► Example: 67 65 78 32 66 129 133 83

	Code #	String
	32	Ц
	65	А
D =	66	В
	67	С
	78	N
	83	S

input	decodes to	Code #	String (human)	String (computer)
	10	couc #	(Internation	(computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65, N
32	u	130	N	78, 🗆
66	В	131	٦B	32, в
129	AN	132	BA	66, A
133	ANA	133	ANA	129, A
83	S	134	ANAS	133, S

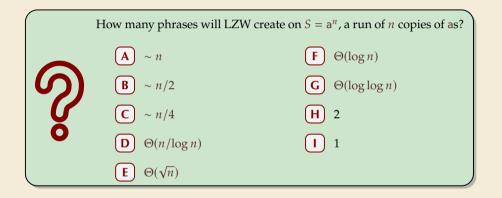


1. en/decode x.

2. store D[k] := xc

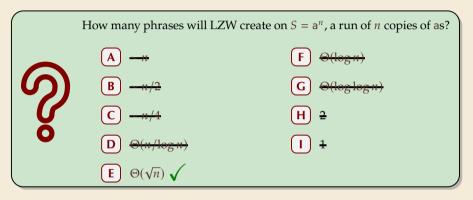
3. next phrase y equals D[k] $\rightarrow D[k] = xc = x \cdot x[0]$ (all known)

Clicker Question



Clicker Question

$$\frac{k^2}{2} \sim \sum_{i=1}^{k} i = i$$



LZW – Discussion

• As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.

 \rightsquigarrow use another encoding for $code numbers \mapsto binary, e.g., Huffman$

need a rule when dictionary is full; different options:

- ▶ increment $d \rightarrow$ longer codewords
- "flush" dictionary and start from scratch ~>> limits extra space usage
- often: reserve a codeword to trigger flush at any time

• encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)

LZW – Discussion

• As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.

 \rightsquigarrow use another encoding for $code numbers \mapsto binary, e.g., Huffman$

need a rule when dictionary is full; different options:

- ▶ increment $d \rightarrow$ longer codewords
- "flush" dictionary and start from scratch ~~ limits extra space usage
- often: reserve a codeword to trigger flush at any time

• encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)

fast encoding & decoding

works in streaming model (no random access, no backtrack on input needed)

significant compression for many types of data

C captures only local repetitions (with bounded dictionary)

Compression summary

Huffman codes	Run-length encoding	Lempel-Ziv-Welch
fixed-to-variable	variable-to-variable	variable-to-fixed
2-pass	1-pass	1-pass
must send dictionary	can be worse than ASCII	can be worse than ASCII
60% compression on English text	bad on text	45% compression on English text
optimal binary character encopding	good on long runs (e.g., pictures)	good on English text
rarely used directly	rarely used directly	frequently used
part of pkzip, JPEG, MP3	fax machines, old picture-formats	GIF, part of PDF, Unix compress

Part III Text Transforms

Text transformations

- compression is effective is we have one the following:
 - ► long runs → RLE
 - ► frequently used characters → Huffman
 - ► many (local) repeated substrings → LZW

Text transformations

- compression is effective is we have one the following:
 - ► long runs 😽 RLE
 - frequently used characters \rightsquigarrow Huffman
 - \blacktriangleright many (local) repeated substrings \rightsquigarrow LZW
- ▶ but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant dictionary already flushed
 - ▶ Huffman: changing probabilities (local clusters) 🦻 averaged out globally
 - RLE: run of alternating pairs of characters \$ not a run

Text transformations

- compression is effective is we have one the following:
 - ► long runs 😽 RLE
 - ► frequently used characters → Huffman
 - ► many (local) repeated substrings → LZW
- ▶ but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant 🕴 dictionary already flushed
 - ▶ Huffman: changing probabilities (local clusters) 🦩 averaged out globally
 - RLE: run of alternating pairs of characters *f* not a run

Enter: text transformations

- invertible functions of text
- do not by themselves reduce the space usage
- but help compressors "see" existing redundancy
- $\rightsquigarrow\,$ use as pre-/postprocessing in compression pipeline

7.8 Move-to-Front Transformation

Move to Front

- *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - → list "learns" probabilities of access to objects makes access to frequently requested ones cheaper

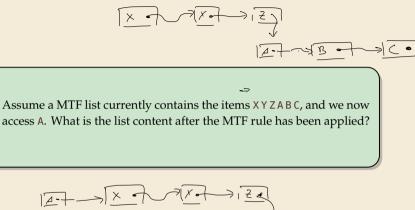
Move to Front

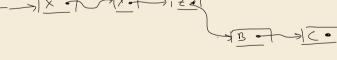
- Move to Front (MTF) is a heuristic for self-adjusting linked lists
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - → list "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- Here: use such a list for storing source alphabet Σ_S
 - ▶ to encode *c*, access it in list
 - encode c using its (old) position in list
 - then apply MTF to the list
 - \rightsquigarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$

Move to Front

- Move to Front (MTF) is a heuristic for self-adjusting linked lists
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - → list "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- Here: use such a list for storing source alphabet Σ_S
 - ▶ to encode *c*, access it in list
 - encode c using its (old) position in list
 - then apply MTF to the list
 - \rightsquigarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$
- \rightsquigarrow clusters of few characters \rightsquigarrow many small numbers

Clicker Question





→ sli.do/comp526

MTF – Code

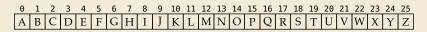
Transform (encode):

```
<sup>1</sup> procedure MTF–encode(S[0..n))
       L := list containing \Sigma_S (sorted order)
2
      C := \varepsilon
3
    for i := 0, ..., n - 1 do
4
    c := S[i]
5
         p := position of c in L
6
     C := C \cdot p
7
      -Move c to front of L
8
       end for
0
       return C
10
```

Inverse transform (decode):

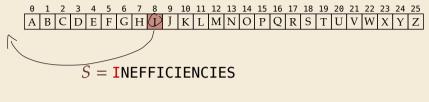
1	<pre>procedure MTF-decode(C[0m))</pre>
2	$L :=$ list containing Σ_S (sorted order)
3	$S := \varepsilon$
4	for $j := 0,, m - 1$ do
5	p := C[j]
6	c := character at position p in L
7	$S := S \cdot c$
8	- Move c to front of L
9	end for
10	return S

▶ Important: encoding and decoding produce same accesses to list

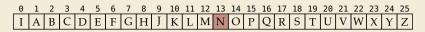


S = INEFFICIENCIES

C =

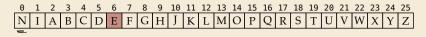


C = **8**



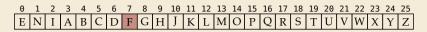
S = INEFFICIENCIES

C = 8 13



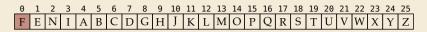
S = INEFFICIENCIES

 $C = 8 \, 13 \, 6$



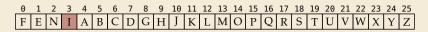
S = INEFFICIENCIES

 $C = 8 \, 13 \, 6 \, 7$



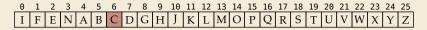
S = INEFFICIENCIES

 $C = 8 \, 13 \, 6 \, 7 \, \mathbf{0}$



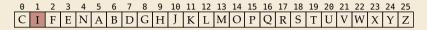
S = INEFFICIENCIES

 $C = 8 \, 13 \, 6 \, 7 \, 0 \, 3$



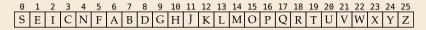
S = INEFFICIENCIES

 $C = 8 \, 13 \, 6 \, 7 \, 0 \, 3 \, 6$



S = INEFFICIENCIES

 $C = 8 \, 13 \, 6 \, 7 \, 0 \, 3 \, 6 \, 1$



$$S = INEFFICIENCIES$$

$$C = 8 \, 13 \, 6 \, 7 \, 0 \, 3 \, 6 \, 1 \, 3 \, 4 \, 3 \, 3 \, 3 \, 18$$

- ▶ What does a run in *S* encode to in *C*?
- ▶ What does a run in *C* mean about the source *S*?

MTF – Discussion

- MTF itself does not compress text (if we store codewords with fixed length)
- $\rightsquigarrow\,$ prime use as part of longer pipeline
- two simple ideas for encoding codewords:
 - Elias gamma code ~> smaller numbers gets shorter codewords works well for text with small "local effective" alphabet
 - Huffman code (better compression, but need 2 passes)
- ▶ but: most effective after BWT (\rightarrow next)

```
AAAAAACCCCCCCC
?000 ?0000
```

7.9 Burrows-Wheeler Transform

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: coded text is (typically) more compressible with MTF(!)

Burrows-Wheeler Transform

▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.

- coded text has same letters as source, just in a different order
- ▶ But: coded text is (typically) more compressible with MTF(!)
- Encoding algorithm needs **all** of *S* (no streaming possible).
 - $\rightsquigarrow \ \text{BWT is a block compression method.}$

Burrows-Wheeler Transform

▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.

- coded text has same letters as source, just in a different order
- ▶ But: coded text is (typically) more compressible with MTF(!)
- Encoding algorithm needs **all** of *S* (no streaming possible).
 - \rightsquigarrow BWT is a block compression method.

BWT followed by MTF, RLE, and Huffman is the algorithm used by the bzip2 program. achieves best compression on English text of any algorithm we have seen:

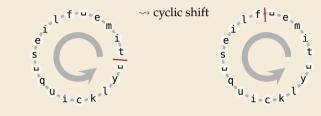
4047392 bible.txt 1191071 bible.txt.gz 888604 bible.txt.7z 845635 bible.txt.bz2

BWT transform

BWT transform

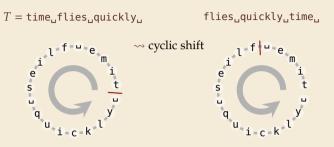
- *cyclic shift* of a string:
- add end-of-word character \$ to S (as in Unit 6)
- → can recover original string

 $T = time_uflies_uquickly_u$ flies_uquickly_time_u



BWT transform

- *cyclic shift* of a string:
- add end-of-word character \$ to S (as in Unit 6)
- → can recover original string



- ▶ The Burrows-Wheeler Transform proceeds in three steps:
 - **1.** Place *all cyclic shifts* of *S* in a list *L*
 - 2. Sort the strings in L lexicographically u_{sias} \$ < a for a $\in \mathbb{Z}$
 - 3. *B* is the *list of trailing characters* (last column, top-down) of each string in *L*

BWT transform – Example

 $S = alf_eats_alfalfa$

1. Write all cyclic shifts

alf_eats_alfalfa\$ lf_eats_alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats_alfalfa\$alf ats.alfalfa\$alf.e ts_alfalfa\$alf_ea s_alfalfa\$alf_eat _alfalfa\$alf_eats_ lfalfa\$alf_eats_a falfa\$alf_eats_al alfa\$alf_eats_alf lfa\$alf_eats_alfa fa\$alf_eats_alfal a\$alf..eats..alfalf \$alf.eats.alfalfa

 $\xrightarrow{}_{\text{sort}}$

BWT transform – Example

$S = alf_ueats_alfalfa$

- **1**. Write all cyclic shifts
- 2. Sort cyclic shifts

alf_eats_alfalfa\$ lf.eats.alfalfa\$a f_eats_alfalfa\$alf eats, alfalfa\$alf. ats.alfalfa\$alf.e ts..alfalfa\$alf..ea s.alfalfa\$alf.eat .alfalfa\$alf.eats alfalfa\$alf.eats.. lfalfa\$alf..eats..a falfa\$alf..eats..al alfa\$alf,eats_alf lfa\$alf,eats,alfa fa\$alf..eats..alfal a\$alf..eats..alfalf \$alf..eats..alfalfa

 $\xrightarrow{}$ sort

\$alf.eats.alfalfa .alfalfa\$alf.eats _eats_alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfasalf_eats_alf alfalfa\$alf..eats.. ats.alfalfa\$alf.e eats_alfalfa\$alf f_eats_alfalfa\$al fa\$alf_eats_alfal falfa\$alf.eats_al lf_eats_alfalfa\$a lfa\$alf.eats.alfa lfalfa\$alf.eats.a s.alfalfa\$alf_eat ts..alfalfa\$alf..ea

BWT transform – Example

$S = alf_ueats_alfalfa$

- **1**. Write all cyclic shifts
- 2. Sort cyclic shifts
- 3. Extract last column

 $B = asff$f_e_lllaaata$

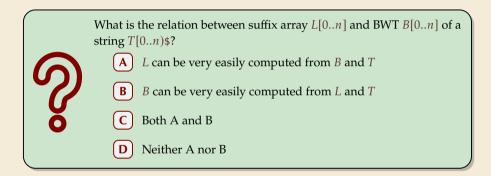
alf_eats_alfalfa\$ lf.eats.alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats_alfalfa\$alf ats.alfalfa\$alf.e ts,alfalfa\$alf.ea s.alfalfa\$alf.eat ...alfalfa\$alf..eats alfalfa\$alf..eats.. lfalfa\$alf..eats..a falfa\$alf..eats..al alfa\$alf,eats_alf lfa\$alf,eats,alfa fa\$alf_eats_alfal a\$alf..eats..alfalf \$alf..eats..alfalfa

 $\xrightarrow{}$ sort

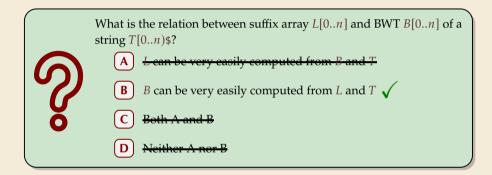
\$alf.eats.alfalfa .alfalfa\$alf.eats _eats_alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfasalf_eats_alf alfalfa\$alf..eats.. ats_alfalfa\$alf.e eats alfalfa\$alf. f_eats_alfalfa\$al fa\$alf_eats_alfal falfa\$alf.eats_al lf_eats_alfalfa\$a lfasalf.eats.alfa lfalfa\$alf.eats.a s.alfalfa\$alf_eat ts..alfalfa\$alf..ea

BWT

Clicker Question



Clicker Question



BWT – Implementation & Properties

Compute BWT efficiently:

- cyclic shifts $S \cong$ suffixes of S
- BWT is essentially suffix sorting!
 - ▶ B[i] = S[L[i] 1] (L = suffix array!) (if L[i] = 0, B[i] = \$)
 - \rightsquigarrow Can compute *B* in *O*(*n*) time

```
\downarrow L[r]
                      r
alf_eats_alfalfa$
                      0
                         $alf_eats_alfalfa
                                              16
lf.eats.alfalfa$a
                         .alfalfa$alf_eats
                                               8
                      2
f, eats, alfalfa$al
                         __eats_alfalfa$alf
                                               3
_eats_alfalfa$alf
                      3
                         a$alf.eats.alfalf
                                              15
eats_alfalfa$alf
                      4
                         alf_eats_alfalfa$
                                               0
ats.alfalfa$alf.e
                      5
                         alfa$alf.eats.alf
                                              12
ts.alfalfa$alf.ea
                      6
                         alfalfa$alf.eats.
                                               9
                                               5
s.alfalfa$alf.eat
                         ats.alfalfa$alf.e
                      7
..alfalfa$alf..eats
                      8
                         eats.alfalfa$alf.
                                               4
alfalfa$alf..eats..
                         f.eats.alfalfa$a
                      9
                                               2
lfalfa$alf_eats_a
                      10 fa$alf_eats_alfal
                                              14
falfa$alf..eats..al
                         falfa$alf_eats_al
                      11
                                              11
alfa$alf..eats..alf
                      12
                        lf.eats.alfalfa$a
                                              1
lfa$alf..eats..alfa
                      13 lfa$alf_eats_alfa
                                              13
fa$alf,eats,alfal
                      14 lfalfa$alf.eats.a
                                              10
a$alf_eats_alfalf
                         s.alfalfa$alf.eat
                      15
                                               7
$alf_eats_alfalfa
                         ts_alfalfa$alf_ea
                      16
                                               6
```

BWT – Implementation & Properties

Compute BWT efficiently:

- \blacktriangleright cvclic shifts $S \cong$ suffixes of S
- BWT is essentially suffix sorting!
 - \blacktriangleright B[i] = S[L[i] 1] (L = suffix arrav!) (if L[i] = 0, B[i] = \$)
 - \rightsquigarrow Can compute B in O(n) time

Why does BWT help?

- sorting groups characters by what follows
 - Example: If always preceded by a
- $\rightarrow B$ has local clusters of characters
 - that makes MTF effective

```
\downarrow L[r]
                      r
alf_eats_alfalfa$
                      0 $alf_eats_alfalfa
                                             16
lf.eats.alfalfa$a
                      1
2
                         ..alfalfa$alf..eats
f, eats, alfalfa$al
                         __eats_alfalfa$alf
...eats..alfalfa$alf
                      3
                         a$alf.eats.alfalf
                         alf.eats_alfalfa$
eats_alfalfa$alf
                      4
5
ats.alfalfa$alf.e
                         alfa$alf.eats.alf
ts.alfalfa$alf.ea
                      6
                         alfalfa$alf.eats.
                         ats.alfalfa$alf.e
s.alfalfa$alf.eat
                      7
                      .
8
9
.alfalfa$alf.eats
                         eats,alfalfa$alf.
alfalfa$alf..eats..
                         f..eats..alfalfa$al
lfalfa$alf_eats_a
                      10 fa$alf_eats_alfal
falfa$alf..eats..al
                      11
                         falfa$alf_eats_al
                                             11
alfa$alf..eats..alf
                      12 lf.eats.alfalfa$a
lfa$alf..eats..alfa
                      13 lfa$alf_eats_alfa
fa$alf,eats,alfal
                      14 lfalfa$alf.eats.a
a$alf_eats_alfalf
                        s.alfalfa$alf.eat
                      15
$alf_eats_alfalfa
                         ts_alfalfa$alf_ea
                      16
```

- \blacktriangleright repeated substring in *S* \rightarrow *runs* of characters in *B*
 - picked up by RLE

8

3

0

9 5

4

2

14

1

13

10

7

6

15

12

Bigger 1	Example
-----------------	---------

le	have_had_hadnt_hasnt_havent_has_what\$ ave_had_hadnt_hasnt_havent_has_what\$h ve_had_hadnt_hasnt_havent_has_what\$ha e_had_hadnt_hasnt_havent_has_what\$have had_hadnt_hasnt_havent_has_what\$have_ ad_hadnt_hasnt_havent_has_what\$have_ d_hadnt_hasnt_havent_has_what\$have_had _hadnt_hasnt_havent_has_what\$have_had hadnt_hasnt_havent_has_what\$have_had_ adnt_hasnt_havent_has_what\$have_had_ adnt_hasnt_havent_has_what\$have_had_ adnt_hasnt_havent_has_what\$have_had_ adnt_hasnt_havent_has_what\$have_had_	<pre>\$have_had_hadnt_hasnt_havent_has_what</pre>
	dnt, fiasnt, fiavent, fias, what Shave, fiad, fia nt, fiasnt, fiavent, fias, what Shave, fiad, fiad t, fiasnt, fiavent, fias, what Shave, fiad, fiadn , fiasnt, fiavent, fias, what Shave, fiad, fiadnt asnt, fiavent, fias, what Shave, fiad, fiadnt, asnt, fiavent, fias, what Shave, fiad, fiadnt, fi	atshave,had,hadnt,hasnt,havent,has,wh ave,had,hadnt,hasnt,havent,has,whatsh avent,had,hadnt,hasnt,havent,has,whatshave,had,hadnt,hasnt,h d,hadnt3,whatshavent,has,whatshave,ha dnt,hasnt,havent,has,whatshave,had,ha e,had,hadnt,hasnt,havent,has,whatshav
	snt, havent, has, what Shave, had, hadnt, ha nt, havent, has, what Shave, had, hadnt, has t, havent, has, what Shave, had, hadnt, hasn , havent, has, what Shave, had, hadnt, hasnt havent, has, what Shave, had, hadnt, hasnt, avent, has, what Shave, had, hadnt, hasnt,	ent_has_what\$have_had_hadrt_hast_have had_hadrt_hast_havent_has_what\$have_ hadrt_hastr_havent_has_what\$have_ has_what\$have_had_hadrt_hast_havent_ hast_havent_has_what\$have_had_hadrt_ hat\$have_had_hadrt_hast_havent_has_w
	event_las_what\$have_had_hadnt_hasnt_ha ent_has_what\$have_had_hadnt_hasnt_hav nt_has_what\$have_had_hadnt_hasnt_have t_has_what\$have_had_hadnt_hasnt_haven t_has_what\$have_had_hadnt_hasnt_havent	havaiava_iuabundu rajmaankunavent, hasymaava havent, has, whatshave, had, hadnt, hasnt, nt, has, whatshave, had, hadnt, hasnt, nt, has, whatshave, had, hadnt, has nt, hav e nt, hasnt, havent, has, whatshave, had, hadnt, ha s
	has,what\$have,had,hadnt,hasnt,havent, as,what\$have,had,hadnt,hasnt,havent,h s,what\$have,had,hadnt,hasnt,havent,ha ,what\$have,had,hadnt,hasnt,havent,has ,what\$have,had,hadnt,hasnt,havent,has,	s,whatshave,had,hadnt,hasnt,havent,ha snt,havent,has,whatshave,had,hadnt,ha tshave,had,hadnt,hasnt,havent,has,wha t,has,whatshave,had,hadnt,hasnt,have n t,hasnt,havent,has,whatshave,had,had n
	hat§have_had,hadnt_hāsnt_hāvent_hās_w at§have_had,hadnt_hasnt_havent_has_wh t§have_had_hadnt_hasnt_havent_has_wha \$have_had_hadnt_hasnt_havent_has_what	t_havent_has_what\$have_had_hadnt_has n ve_had_hadnt_hasnt_havent_has_what\$ha vent_has_what\$have_had_hadnt_hasnt_h what\$have_had_hadnt_hasnt_havent_has_
- h	ad badwith baawi	howent hoo whot

 T =
 h a v e _ h a d _ h a d n t _ h a s n t _ h a v e n t _ h a s _ what \$

 B =
 t e d t t t s h h h h h h h a a v v _ u _ u w \$
 u e d s a a a n n n a a _ what \$

 MTF(B) =
 8 5 5 2 0 0 8 7 0 0 0 0 0 0 7 0 9 0 8 0 0 10 9 2 9 9 8 7 0 0 10 0 1 0 5

Clicker Question

Consider $T = have_had_hadnt_hasnt_havent_has_what$. The BWT is $B = tedttts_hhhhhhaavv_huuuws_edsaaannaa_h.$ How can we explain the long run of hs in B?

- A h is the most frequent character
 - h always appears at the beginning of a word
 - almost all words start with h
- **D** h is always followed by a
 - all as are preceded by h
 - h is the 4th character in the alphabet

Clicker Question

Consider $T = have_had_hadnt_hasnt_havent_has_what$. The BWT is $B = tedtttshhhhhhaavv_huuuws_dedsaaannaa_d.$ How can we explain the long run of hs in B?

h is the most frequent character

h always appears at the beginning of a word

almost all words start with h

h is always followed by a

E all as are preceded by h \checkmark

h is the 4th character in the alphabet

→ sli.do/comp526

7.10 Inverse BWT

• Great, can compute BWT efficiently and it helps compression. *But how can we decode it?*

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that it is at all invertible!

"Magic" solution:

- Create array *D*[0..*n*] of pairs:
 D[*r*] = (*B*[*r*], *r*).
- 2. Sort *D* stably with respect to first entry.
- **3.** Use *D* as linked list with (char, next entry)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

▶ "Magic" solution: o (a, 0) **1.** Create array D[0..n] of pairs: . (. 1) D[r] = (B[r], r).2. Sort *D* stably with respect to *first entry*. **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabbS =

D

1	(r, 1)
2	(d, 2)
3	(\$, 3)
4	(r, 4)
5	(c, 5)
6	(a, 6)
7	(a, 7)
8	(a, 8)
9	(a, 9)
10	(b, 10)
11	(b, 11)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

	D	sorted D
		char next
Magic" solution:	o (a, 0)	o (\$, 3)
1. Create array $D[0n]$ of pairs:	ı (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort <i>D</i> stably with	з (\$, 3)	з (a, 7)
respect to <i>first entry</i> .	4 (r, 4)	4 (a, 8)
3. Use <i>D</i> as linked list with	5 (c, 5)	5 (a, 9)
(char, next entry)	6 (a, 6)	6 (b,10)
Example: B = ard\$rcaaaabb S =	7 (a, 7)	7 (b,11)
	8 (a, 8)	8 (c, 5)
	9 (a, 9)	9 (d, 2)
	10 (b,10)	10 (r, 1)
	11 (b,11)	11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

"Magic" solution:

- Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to first entry.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

 $S = \mathbf{a}$

not even obvious that D it is at all invertible! sorted D char next (\$, 3) o (a, 0) 0 1 (r, 1) 1 (a,) 2 (d, 2) (a, 6)з (\$, 3) з (a, 7) 4 (r, 4) 4 (a, 8) 5 (c, 5) 5 (a, 9) 6 (a, 6) 6 (b, 10) 7 (a, 7) 7 (b.11) 8 (a, 8) 8 (c, 5) 9 (a, 9) 9 (d, 2) 10 (b, 10) 10 (r, 1) 11 (b,11) 11 (r, 4)

53

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

0

1

2

3

4

5

6 7

8

9

10 11

"Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to first entry.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabbS = ab

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

	D	sorted D
"Marie" colution		char next
Magic" solution:	o (a, 0)	o (\$, 3)
1. Create array $D[0n]$ of pairs:	1 (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort <i>D</i> stably with	з (\$, 3)	з (a, 7)
respect to <i>first entry</i> .	4 (r, 4)	4 (a, 8)
 Use D as linked list with (char, next entry) 	5 (c, 5)	5 (a, 9)
(char, next entry)	6 (a, 6)	6 (b,10)
Example:	7 (a, 7)	7 (b,11)
B = ard\$rcaaaabb	8 (a, 8)	8 (c, 5)
S = abr	9 (a, 9)	9 (d, 2)
	10 (b,10)	10 (r, 1)
	11 (b, 11) C	→ 11 (r, 4)

Great, can compute BWT efficiently and it helps compression. But how can we decode it?

7

8

9

D

"Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to *first entry*.
- 3. Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaabb

S = abra

char next o (a, 0) 0 (\$, 3) 1 (r, 1) 1 (a, 0) 2 (d, 2) 2 (a, 6) з (\$, 3) з (a, 7) 4 (r, 4) (a, 8) (a, 9) 5 (c, 5) 5 (b, 10)6 (a, 6) 6 (b, 11) (a, 7) (a, 8) 8 (a, 9) (d, 2) 9 10 (b, 10) (r, 1) 10 11 (b,11) (r, 4) 11

sorted D

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

11 (b,11)

D "Magic" solution: o (a, 0) **1.** Create array D[0..n] of pairs: 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2. Sort *D* stably with з (\$, 3) respect to *first entry*. 4 (r, 4) **3.** Use *D* as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) 7 (a, 7) Example: 8 (a, 8) B = ard\$rcaaaabb9 (a, 9) S = abrac10 (b, 10)

sorted D char next 0 (\$, 3) 1 (a, 0) 2 (a, 6) з (a, 7) 4 (a, 8)-5 (a, 9) 6 (b, 10)(b, 11)(c, 5) (d, 2) 9 10 (r, 1) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

11 (b,11)

D "Magic" solution: o (a, 0) **1.** Create array D[0..n] of pairs: 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2. Sort *D* stably with з (\$, 3) respect to *first entry*. 4 (r, 4) **3.** Use *D* as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) 7 (a, 7) Example: 8 (a, 8) B = ard\$rcaaaabb9 (a, 9) S = abraca10 (b, 10)

sorted D char next 0 (\$, 3) 1 (a, 0) 2 (a, 6) з (a, 7) 4 (a, 8) (a, 9) 5 (b, 10)7 (b, 11)8 (c, 5) 9 (d, 2) 10 (r, 1) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

0 (a

1 (r

2 (d

з (\$

4 (r

5 (C

6 (a 7 (a

8 (a

9 (a

10 (b 11 (b

"Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to first entry.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

S = abracad

1	D	S	orte	ed D
			char	next
,	0)	Θ	(\$,	3)
,	1)	1	(a,	0)
,	2)	2	(a,	6)
,	3)	3	(a,	7)
,	4)	4	(a,	8)
,	5)	5	(a,	9)
,	6)	6	(b,1	0)
,	7)	7	(b, 1	1)
,	8)	8	(c,	5)
,	9)	→ 9	(d,	2)
,1	10)	10	(r,	1)
,1	11)	11	(r,	4)

Great, can compute BWT efficiently and it helps compression. But how can we decode it?

7

8

9

"Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to *first entry*.
- 3. Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

S = abracada

D sorted D char next o (a, 0) 0 (\$, 3) 1 (r, 1) 1 (a, 0) 2 (d, 2) (a, 6) (a, 7)з (\$, 3) 3 4 (r, 4) (a, 8)9) 5 (c, 5) (a. 6 (a, 6) 6 (b) (b, 11) (a, 7) 7 (c, 5) (a, 8) 8 (a, 9) (d, 2) 9 10 (b, 10) 10 (r, 1) 11 (b,11) 11 (r, 4)

Great, can compute BWT efficiently and it helps compression. But how can we decode it?

"Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to first entry.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

S = abracadab

D sorted D char next o (a, 0) 0 (\$, 3) 1 (r, 1) 1 (a, 0) 2 (d, 2) 2 (a, 6)з (\$, 3) 3 (a, 7) 4 (r, 4) (8) (a, 9) 5 (c, 5) (b, 10)6 (a, 6) 6 7 (a, 7) 7 (b.11) 8 (a, 8) 8 (c, 5) 9 (a, 9) 9 (d, 2) 10 (b, 10) 10 (r, 1) 11 (b,11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

	D	sorted D
"Magic" solution:	<i>(</i>)	char next
Mugie solution.	₀ (a, O)	o (\$, 3)
1. Create array $D[0n]$ of pairs:	ı (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort <i>D</i> stably with	з (\$, 3)	з (а, 7)
respect to <i>first entry</i> .	4 $(r, 4)$	4 (a, 8)
3. Use <i>D</i> as linked list with (char, next entry)	5 (c, 5)	5 (a, 9)
(char, next entry)	6 (a, 6)	6 (b, 10)
Example:	7 (a, 7)	7 (b,11)
B = a r d r caaaabb	8 (a, 8)	8 (c, 5)
S = abracadabr	9 (a, 9)	9 (d, 2)
	10 (b,10)	→ 10 (r, 1)
	11 (b,11)	11 (r, 4)

not even obvious that it is at all invertible!

Great, can compute BWT efficiently and it helps compression. But how can we decode it?

7

8

9

"Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to *first entry*.
- 3. Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

S = abracadabra

D sorted D char next o (a, 0) 0 (\$, 3) 1 (r, 1) (a, 0)2 (d, 2) (a, 6) 2 з (\$, 3) (a, 7)3 4 (r, 4) (a, 8)9) 5 (c, 5) 5 (a. 6 (a, 6) 6 (b,10)(a, 7) (b,11 7 (c, 5) (a, 8) 8 (a, 9) (d, 2) 9 10 (b, 10) 10 (r, 1) 11 (b,11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

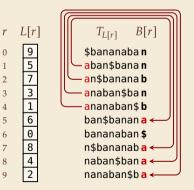
	D	sorted D
		char next
Magic" solution:	o (a, 0)	→ (\$, 3)
1. Create array $D[0n]$ of pairs:	ı (r, 1)	1 (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort <i>D</i> stably with	з (\$, 3)	з (a, 7)
respect to <i>first entry</i> .	4 (r, 4)	4 (a, 8)
3. Use <i>D</i> as linked list with	5 (c, 5)	5 (a, 9)
(char, next entry)	6 (a, 6)	6 (b,10)
Example:	7 (a, 7)	7 (b,11)
B = ard\$rcaaaabb	8 (a, 8)	8 (c, 5)
S = abracadabra	9 (a, 9)	9 (d, 2)
	10 (b,10)	10 (r, 1)
	11 (b,11)	11 (r, 4)

- ► Inverse BWT very easy to compute:
 - only sort individual characters in *B* (not suffixes)
 - $\rightsquigarrow O(n)$ with counting sort
- ▶ but why does this work!?

- Inverse BWT very easy to compute:
 - only sort individual characters in *B* (not suffixes)
 - $\rightsquigarrow O(n)$ with counting sort
- but why does this work!?
- decode char by char
 - ▶ can find unique \$ →→ starting row
- to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - $\rightsquigarrow\;$ then we can walk through and decode

- Inverse BWT very easy to compute:
 - only sort individual characters in B (not suffixes)
 - $\rightsquigarrow O(n)$ with counting sort
- but why does this work!?
- decode char by char
 - ▶ can find unique \$ →→ starting row
- to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - $\rightsquigarrow\;$ then we can walk through and decode
- ▶ for (i): first column = characters of *B* in sorted order

- Inverse BWT very easy to compute:
 - only sort individual characters in B (not suffixes)
 - $\rightsquigarrow O(n)$ with counting sort
- ▶ but why does this work!?
- decode char by char
 - ► can find unique \$ ---> starting row
- to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - $\rightsquigarrow~$ then we can walk through and decode
- for (i): first column = characters of B in sorted order
- for (ii): relative order of same character stays same: ith a in first column = ith a in BWT
 - \rightsquigarrow stably sorting (*B*[*r*], *r*) by first entry enough



BWT – Discussion

- Running time: $\Theta(n)$
 - encoding uses suffix sorting
 - decoding only needs counting sort
 - \rightsquigarrow decoding much simpler & faster (but same Θ -class)

BWT – Discussion

- Running time: $\Theta(n)$
 - encoding uses suffix sorting
 - decoding only needs counting sort
 - $\rightsquigarrow \ decoding \ much \ simpler \ \& \ faster \quad (but \ same \ \Theta\mbox{-class})$

typically slower than other methods
 need access to entire text (or apply to blocks independently)
 BWT-MTF-RLE-Huffman (bzip2) pipeline tends to have best compression

Summary of Compression Methods

 Huffman Variable-width, single-character (optimal in this case)
 RLE Variable-width, multiple-character encoding
 LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
 MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encoding
 BWT Block compression method, should be followed by MTF