

9

Range-Minimum Queries

14 December 2022

Sebastian Wild

Learning Outcomes

- 1. Know the *RMQ problem* and its *connection* to longest common extensions in strings.
- **2.** Know and understand trivial RMQ solutions and *sparse tables*.
- **3.** Know and understand the *Cartesian trees* data structure.
- **4.** Know and understand the *exhaustive-tabulation technique* for RMQ with linear-time preprocessing.

Unit 9: Range-Minimum Queries

Outline

9 Range-Minimum Queries

- 9.1 Introduction
- 9.2 RMQ, LCP, LCE, LCA WTF?
- 9.3 Trivial Solutions & Sparse Tables
- 9.4 Cartesian Trees
- 9.5 Exhaustive Tabulation

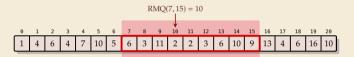
9.1 Introduction

Range-minimum queries (RMQ)

__array/numbers don't change

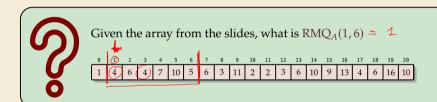
- ▶ **Given:** Static array A[0..n) of numbers
- ► **Goal:** Find minimum in a range;

A known in advance and can be preprocessed



- ► Nitpicks:
 - ▶ Report *index* of minimum, not its value
 - ► Report *leftmost* position in case of ties

Clicker Question



→ sli.do/comp526

Rules of the Game

- ► Two main quantities of interest: p space usage $\leq P(n)$
 - **1. Preprocessing time**: Running time P(n) of the preprocessing step
 - **2. Query time**: Running time Q(n) of one query (using precomputed data)
- ▶ Write $\langle P(n), Q(n) \rangle$ time solution for short

Clicker Question

What do you think, what running times can we achieve? For a $\langle P(n), Q(n) \rangle$ time solution, enter "<P(n),Q(n)>".

→ sli.do/comp526

9.2 RMQ, LCP, LCE, LCA — WTF?

Recall Unit 6

Application 4: Longest Common Extensions

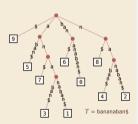
▶ We implicitly used a special case of a more general, versatile idea:

The $longest\ common\ extension\ (LCE)\ data\ structure:$

- ▶ **Given:** String T[0..n-1]
- ▶ Goal: Answer LCE queries, i. e., given positions i, j in T, how far can we read the same text from there? formally: LCE $(i, j) = \max\{\ell : T[i..i + \ell) = T[j..j + \ell)\}$
- \rightsquigarrow use suffix tree of T!

longest common prefix of ith and jth suffix

- ▶ in short: $LCE(i, j) = LCP(T_i, T_j) = stringDepth(LCA(i, j))$



.5

Recall Unit 6

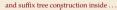
Efficient LCA

How to find lowest common ancestors?

- ► Could walk up the tree to find LCA \rightsquigarrow $\Theta(n)$ worst case
- ► Could store all LCAs in big table \rightarrow $\Theta(n^2)$ space and preprocessing \bigcirc

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is **constant(!) time**.

- ▶ a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice



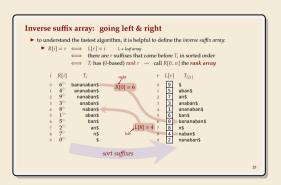
- \rightarrow for now, use O(1) LCA as black box.
- \rightarrow After linear preprocessing (time & space), we can find LCEs in O(1) time.

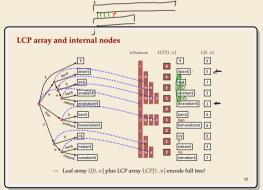
16

Finally: Longest common extensions

- ▶ In Unit 6: Left question open how to compute LCA in suffix trees
- ▶ But: Enhanced Suffix Array makes life easier!

 $\left[LCE(i,j) = LCP \left[RMQ_{LCP} \left(\min\{R[i], R[j]\} + 1, \max\{R[i], R[j]\} \right) \right] \right]$

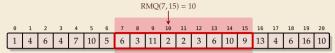




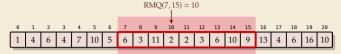
RMQ Implications for LCE

- ► Recall: Can compute (inverse) suffix array and LCP array in O(n) time $P(n) \vdash O(n)$
- \rightarrow A $\langle P(n), Q(n) \rangle$ time RMQ data structure implies a $\langle P(n), Q(n) \rangle$ time solution for longest-common extensions

9.3 Trivial Solutions & Sparse Tables



► Two easy solutions show extreme ends of scale:

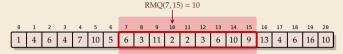


► Two easy solutions show extreme ends of scale:

1. Scan on demand

- ▶ no preprocessing at all
- ▶ answer RMQ(i, j) by scanning through A[i...j], keeping track of min

$$\rightsquigarrow \langle O(1), O(n) \rangle$$



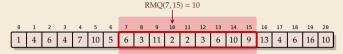
► Two easy solutions show extreme ends of scale:

1. Scan on demand

- no preprocessing at all
- ▶ answer RMQ(i, j) by scanning through A[i..j], keeping track of min
- $\rightsquigarrow \langle O(1), O(n) \rangle$

2. Precompute all

- ▶ Precompute all answers in a big 2D array M[0..n)[0..n)
- queries simple: RMQ(i, j) = M[i][j]
- $\rightsquigarrow \langle O(n^3), O(1) \rangle$



► Two easy solutions show extreme ends of scale:

1. Scan on demand

- ▶ no preprocessing at all
- ightharpoonup answer RMQ(i, j) by scanning through A[i..j], keeping track of min
- $\rightsquigarrow \langle O(1), O(n) \rangle$

2. Precompute all

- ▶ Precompute all answers in a big 2D array M[0..n)[0..n)
- queries simple: RMQ(i, j) = M[i][j]
- $\rightsquigarrow \langle O(n^3), O(1) \rangle$
- ▶ Preprocessing can reuse partial results \rightsquigarrow $\langle O(n^2), O(1) \rangle$

▶ Idea: Like "precompute-all", but keep only some entries

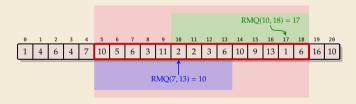
```
▶ store M[i][j] iff \ell = j - i + 1 is 2^k.

\Rightarrow \leq n \cdot \lg n entries

\Rightarrow Can be stored as M'[i][k] = M  \{i \in 2^k - i\}
```

- ▶ Idea: Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k . $\leadsto \le n \cdot \lg n$ entries \leadsto Can be stored as M'[i][k]
- ► How to answer queries?

- ▶ Idea: Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k .
 - $\rightsquigarrow \leq n \cdot \lg n$ entries
 - \rightsquigarrow Can be stored as M'[i][k]
- ► How to answer queries?

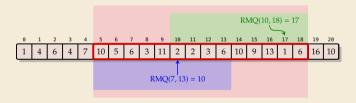


- **1.** Find k with $\ell/2 \le 2^k \le \ell$
- 2. Cover range [i..j] by 2^k positions right from i and 2^k positions left from j
- 3. $RMQ(i, j) = \arg \min\{A[rmq_1], A[rmq_2]\}$ with $rmq_1 = RMQ(i, i + 2^k - 1) = M'[c](k)$ $rmq_2 = RMQ(j - 2^k + 1, j)$ = M'[c] = M'[c](k)

- i i+2⁶-1
- ▶ Idea: Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k . $\leadsto \le n \cdot \lg n$ entries \leadsto Can be stored as M'[i][k]

M'[:][[] = arg unin { A[M'[:][[-1]],
A [M'[:+2*-1][[-1]]}

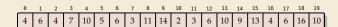
► How to answer queries?

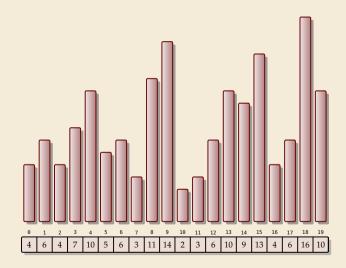


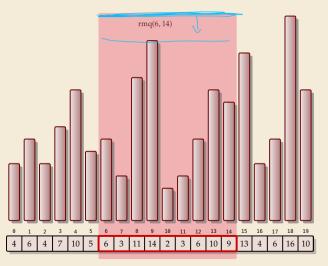
- **1.** Find k with $\ell/2 \le 2^k \le \ell$
- 2. Cover range [i..j] by 2^k positions right from i and 2^k positions left from j
- 3. RMQ(i, j) = $arg min\{A[rmq_1], A[rmq_2]\}$ $with rmq_1 = RMQ(i, i + 2^k 1)$ $rmq_2 = RMQ(j 2^k + 1, j)$

- ▶ Preprocessing can be done in $O(n \log n)$ times
- $\rightsquigarrow \langle O(n \log n), O(1) \rangle$ time solution!

9.4 Cartesian Trees



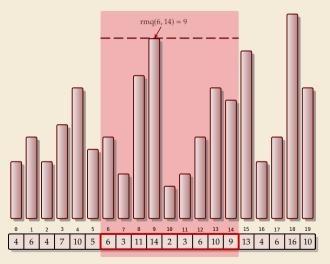




Range max queries on array A:

$$\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$$

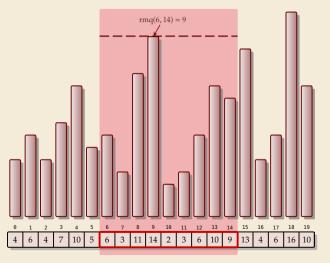
= index of max



Range-max queries on array A:

$$rmq_A(i, j) = arg \max_{i \le k \le j} A[k]$$

= $index$ of max

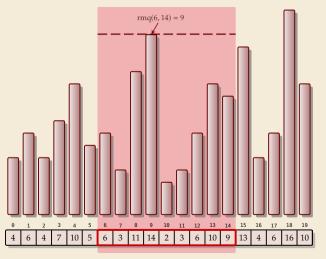


▶ Range-max queries on array A:

$$rmq_A(i, j) = arg \max_{i \le k \le j} A[k]$$

= $index$ of max

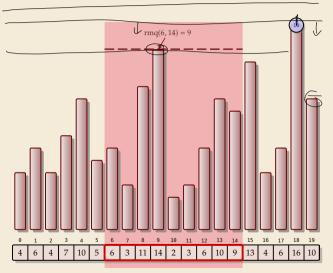
► **Task:** Preprocess *A*, then answer RMQs fast



► Range-max queries on array A: $\operatorname{rmq}_A(i,j) = \operatorname{arg\ max}_{i \le k \le j} A[k]$

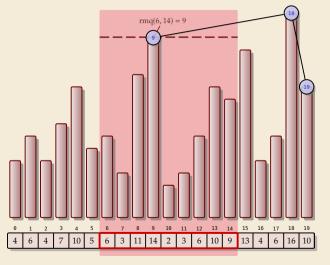
= index of max

► Task: Preprocess *A*, then answer RMQs fast ideally constant time!

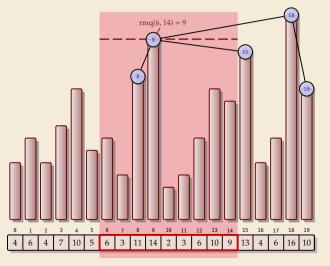


► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max

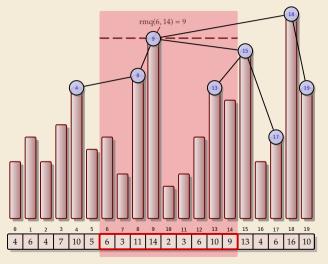
- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down



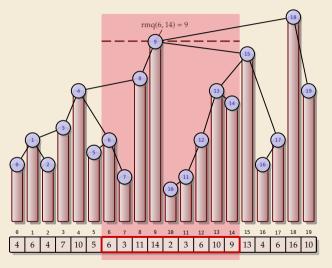
- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► **Task:** Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down



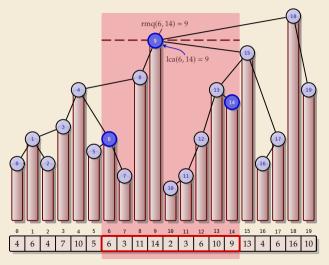
- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► **Task:** Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down



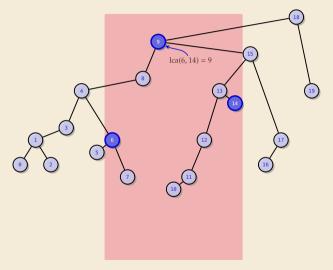
- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down



- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max}_{i \le k \le j} A[k]$ = index of max
- ► **Task:** Preprocess *A*, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down

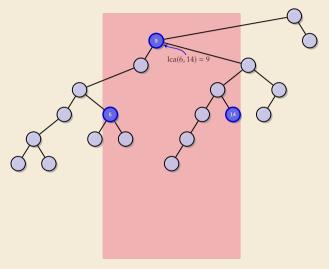


- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► Task: Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- rmq(i, j) = lowest common ancestor (LCA)

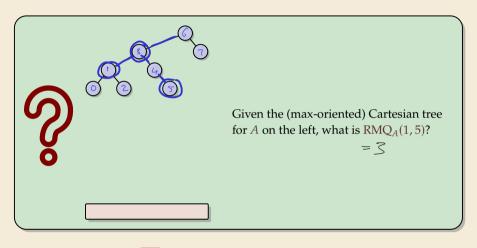


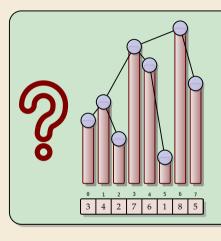
- ► Range-max queries on array A: $\operatorname{rmq}_A(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► **Task:** Preprocess *A*, then answer RMQs fast ideally constant time!
- ► Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- ► rmq(i, j) = <u>lowest common ancestor</u> (LCA)

RMQ & LCA

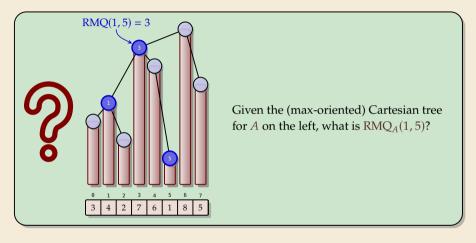


- ► Range-max queries on array A: $\operatorname{rmq}_{A}(i,j) = \operatorname{arg\ max} A[k]$ $i \le k \le j$ = index of max
- ► **Task:** Preprocess *A*, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- rmq(i, j) = inorder of <u>lowest common ancestor</u> (LCA) of ith and jth node in inorder

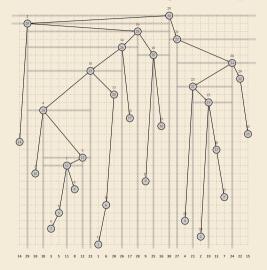




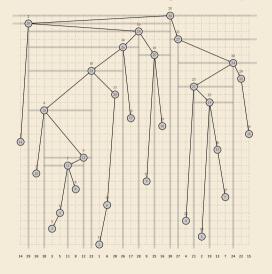
Given the (max-oriented) Cartesian tree for A on the left, what is $RMQ_A(1,5)$?



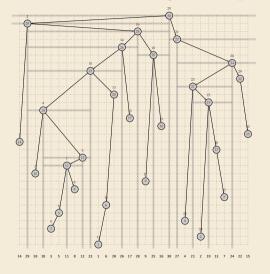
Cartesian Tree – Larger Example



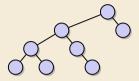
Cartesian Tree – Larger Example



Cartesian Tree – Larger Example



Counting binary trees



► Given the Cartesian tree, all RMQ answers are determined

and vice versa!

Counting binary trees

0000100000111111

► Given the Cartesian tree, all RMQ answers are determined

- ▶ How many different Cartesian trees are there for arrays of length *n*?
 - known result: Catalan numbers $\frac{1}{n+1} \binom{2n}{n}$
 - easy to see: $\leq 2^{2n}$
- → many arrays will give rise to the same Cartesian tree

 Can we exploit that?

construct a binary code

Sor bluary trees

with In bits for n-note

011

preorder travesal

store I

has right dard

preorder francial of nodes, shore (The hair hair with

What binary string corresponds to the tree shown on the left?

(using the encoding just discussed)

11100600

9.5 Exhaustive Tabulation

Four Russians?

The exhaustive-tabulation technique to follow is often called "Four Russians trick" \dots

- ► The algorithmic technique was published 1970 by V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev
- ▶ all worked in Moscow at that time . . . but not even clear if all are Russians!

(Arlazarov and Kronrod are Russian)

Four Russians?

The exhaustive-tabulation technique to follow is often called "Four Russians trick" \dots

- ► The algorithmic technique was published 1970 by V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev
- ► all worked in Moscow at that time ... but not even clear if all are Russians!

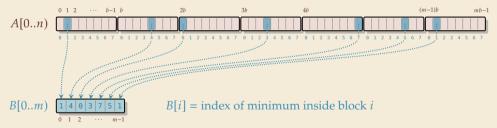
 (Arlazarov and Kronrod are Russian)
- ► American authors coined the slightly derogatory "Method of Four Russians" ... name in widespread use

Bootstrapping

- ▶ We know a $\langle O(n \log n), O(1) \rangle$ time solution
- ▶ If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)!$

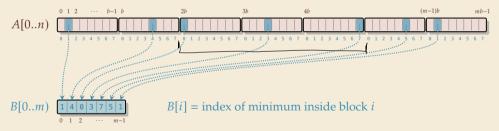
Bootstrapping

- ▶ We know a $\langle O(n \log n), O(1) \rangle$ time solution
- ▶ If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)$!
- ▶ Break *A* into blocks of $b = \lceil \frac{1}{4} \lg n \rceil$ numbers
- ► Create array of block minima B[0..m) for $m = \lceil n/b \rceil = O(n/\log n)$



Bootstrapping

- ▶ We know a $\langle O(n \log n), O(1) \rangle$ time solution
- ▶ If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)$!
- ▶ Break *A* into blocks of $b = \lceil \frac{1}{4} \lg n \rceil$ numbers
- ► Create array of block minima B[0..m) for $m = \lceil n/b \rceil = O(n/\log n)$



- \rightsquigarrow Use sparse tables for *B*.
- \rightsquigarrow Can solve RMQs in B[0..m) in $\langle O(n), O(1) \rangle$ time

- ▶ Query $RMQ_A(i, j)$ covers
 - ▶ suffix of block $\ell = \lfloor i/m \rfloor$
 - ▶ prefix of block $r = \lfloor j/m \rfloor$
 - ▶ blocks $\ell + 1, \dots, r 1$ entirely

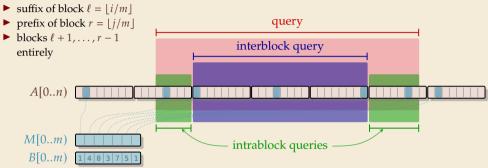
M[0..m)

m) 1|4|9|3|7|5|1

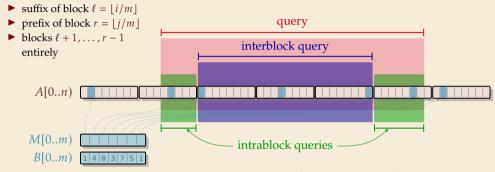
query

16

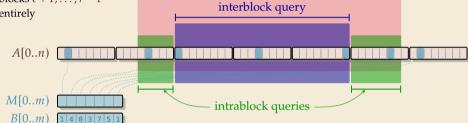
▶ Query $RMQ_A(i, j)$ covers



▶ Query $RMQ_A(i, j)$ covers



- ightharpoonup Query RMQ_A(i, j) covers
 - ▶ suffix of block $\ell = \lfloor i/m \rfloor$
 - ightharpoonup prefix of block $r = \lfloor j/m \rfloor$
 - ▶ blocks $\ell + 1, \dots, r 1$ entirely



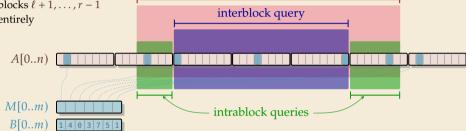
query

► RMQ_A
$$(i, j) = \underset{k \in K}{\operatorname{arg min}} A[k]$$
 with $K =$

→ only 3 possible values to check if intrablock and interblock queries known

$$\begin{cases} \operatorname{RMQ}_{\operatorname{block}\ell}(i-\ell b, (\ell+1)b-1), \\ b \cdot \operatorname{RMQ}_{M}(\ell+1, r-1) + \\ B \left[\operatorname{RMQ}_{M}(\ell+1, r-1)\right], \\ \operatorname{RMQ}_{\operatorname{block}r}(rb, j-rb) \end{cases}$$

- ightharpoonup Query RMQ_A(i, j) covers
 - ▶ suffix of block $\ell = \lfloor i/m \rfloor$
 - ightharpoonup prefix of block $r = \lfloor j/m \rfloor$
 - ▶ blocks $\ell + 1, \dots, r 1$ entirely



query

► RMQ_A
$$(i, j) = \underset{k \in K}{\operatorname{arg min}} A[k]$$
 with $K =$

→ only 3 possible values to check if intrablock and interblock queries known

$$\begin{cases} \operatorname{RMQ_{block}}_{\ell}(i-\ell b, (\ell+1)b-1), \\ b \cdot \operatorname{RMQ_{M}}(\ell+1, r-1) + \\ B \left[\operatorname{RMQ_{M}}(\ell+1, r-1) \right], \\ \operatorname{RMQ_{block}}_{r}(rb, j-rb) \end{cases}$$

Intrablock queries [1]

- → It remains to solve the intrablock queries!
- ► Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!

Intrablock queries [1]

- → It remains to solve the intrablock queries!
- ► Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!
- ▶ many blocks, but just $b = \lceil \frac{1}{4} \lg n \rceil$ numbers long
 - \rightarrow Cartesian tree of b elements can be encoded using $2b = \frac{1}{2} \lg n$ bits
 - \rightarrow # different Cartesian trees is $\leq 2^{2b} = 2^{\frac{1}{2} \lg n} = \left(2^{\lg n}\right)^{1/2} = \sqrt{n}$
 - \leadsto many equivalent blocks!

Intrablock queries [1]

- → It remains to solve the intrablock queries!
- ► Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!
- ▶ many blocks, but just $b = \lceil \frac{1}{4} \lg n \rceil$ numbers long
 - \rightarrow Cartesian tree of *b* elements can be encoded using $2b = \frac{1}{2} \lg n$ bits
 - \rightarrow # different Cartesian trees is $\leq 2^{2b} = 2^{\frac{1}{2} \lg n} = \left(2^{\lg n}\right)^{1/2} = \sqrt{n}$
 - → many equivalent blocks!

→ Exhaustive Tabulation Technique:

- **1.** represent each subproblem by storing its *type* (here: encoding of Cartesian tree)
- 2. enumerate all possible subproblem types and their solutions
- 3. use type as index in a large *lookup table*

Intrablock queries [2]

- 1. For each block, compute 2*b* bit representation of Cartesian tree
 - can be done in linear time

Intrablock queries [2]

- 1. For each block, compute 2b bit representation of Cartesian tree
 - can be done in linear time
- 2. Compute large lookup table

	Block type	i	j	RMQ(i, j)
	:			
11000100	· 690	0	2	1
	u O	0	3	1
	4	0	1	1
	:			

Intrablock queries [2]

- **1.** For each block, compute 2*b* bit representation of Cartesian tree
 - can be done in linear time
- 2. Compute large lookup table

,	RMQ(i, j)

- $ightharpoonup \leq \sqrt{n}$ block types
- $ightharpoonup \leq b^2$ combinations for *i* and *j*
- $\rightarrow \Theta(\sqrt{n} \cdot \log^2 n)$ rows
- each row can be computed in $O(\log n)$ time
- \rightsquigarrow overall preprocessing: O(n) time!

Discussion

- $ightharpoonup \langle O(n), O(1) \rangle$ time solution for RMQ
- \rightsquigarrow $\langle O(n), O(1) \rangle$ time solution for LCE in strings!

Discussion

- $\blacktriangleright \langle O(n), O(1) \rangle$ time solution for RMQ
- $\rightsquigarrow \langle O(n), O(1) \rangle$ time solution for LCE in strings!

optimal preprocessing and query time!

a bit complicated

Discussion

- $ightharpoonup \langle O(n), O(1) \rangle$ time solution for RMQ
- \rightsquigarrow $\langle O(n), O(1) \rangle$ time solution for LCE in strings!

optimal preprocessing and query time!

a bit complicated

Research questions:

- ► Reduce the space usage
- ► Avoid access to *A* at query time