Tutorial 1 for
 COMP 526 - Efficient Algorithmics, Fall 2022

Problem 1 (Mathematical induction)

Given a sequence of numbers $T(n)$ defined recursively by

$$
T(n)= \begin{cases}3, & \text { for } n=0 \tag{1}\\ T(n-1)+4, & \text { for } n \geq 1\end{cases}
$$

a) Compute the first 6 elements of $T(n)$, i.e., $T(0), T(1), T(2), T(3), T(4)$, and $T(5)$.
b) Make an educated guess about the general pattern that this sequence follows. Write this guess as a closed form for $T(n)$, i.e., a formula for $T(n)$ without recursive reference to T.
c) Now formally prove the correctness of your guess using mathematical induction.

Problem 2 (Decreasing potential method)

There are two integral ${ }^{1}$ parts of integer division: the quotient and the remainder. For two integers $n, k>0$ the quotient (or result) of the integer division " n div k " is defined as the largest integer m with $m \cdot k \leq n$. The remainder of the division is defined as $r=n-m \cdot k$. Note that $0 \leq r<k$. The value r is also known as the result of the modulo operation, written " $r=n \bmod k$ ".

Example: $10 \operatorname{div} 3=3$ and $10 \bmod 3=1$,
$13 \operatorname{div} 5=2$ and $13 \bmod 5=3$.
Apply the decreasing potential method to prove that the following function $\operatorname{Mod}(n, k)$ always terminates when called with parameters $n \in \mathbb{N}$ and $k \in \mathbb{N}$, where $\mathbb{N}=\{1,2,3, \ldots\}$.

```
procedure Mod(n,k)
// Input: positive integers n,k
// Output: value of }n\operatorname{mod}k\mathrm{ .
t:=n
while t\geqk
    t:= (t-k)
end while
return }
```

[^0]
[^0]: ${ }^{1}$ pun intended

