Tutorial 2 for COMP 526 - Efficient Algorithmics, Fall 2022

Problem 1 (Orders of magnitude)

Order the following functions with respect to their asymptotic order of magnitude (i.e., their Θ-class).
$\lg n, n, \sqrt{n}, n^{1.5}, n^{2}, n \lg n, n \lg \lg n, n \lg ^{2} n, n \lg \left(n^{2}\right), \frac{2}{n}, 2^{n}, 2^{n / 2}, 37, n^{3}, n^{2} \lg n$.

Problem 2 (Loop-invariant method and analysis)

Consider again the Mod function from last time:

```
procedure \(\operatorname{Mod}(n, k)\)
// Input: positive integers \(n, k\).
\(/ /\) Output: value of \(n \bmod k\).
\(t:=n\)
while \(t \geq k\)
    \(t:=(t-k)\)
end while
return \(t\)
```

a) Apply the invariant method to prove the correctness of the function $\operatorname{Mod}(n, k)$, which is supposed to compute $n \bmod k$, where n and k are two positive integer input parameters of the function.
b) Try to establish the time complexity of this procedure.

Hint: You might find it helpful to revisit the potential function from last week.

