
1 Machines & Models
5 October 2023

Sebastian Wild

COMP526 (Fall 2023)
University of Liverpool

version 2023-09-30 16:40

Learning Outcomes
1. Understand the difference between

empirical running time and algorithm
analysis.

2. Understand worst / best / average case
models for input data.

3. Know the RAM machine model.

4. Know the definitions of asymptotic
notation (Big-Oh classes and relatives).

5. Understand the reasons to make
asymptotic approximations.

6. Be able to analyze simple algorithms.

Unit 1: Machines & Models

1

Outline

1 Machines & Models
1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh

What is an algorithm?
An algorithm is a sequence

think: recipe

of instructions.

More precisely:
1. mechanically executable

e. g. Python script

⇝ no “common sense” needed

2. finite description ≠ finite computation!

3. solves a problem
𝑥 + 𝑦, not only 17 + 4

, i. e., a class of problem instances

▶ input-processing-output abstraction

3Algorithm
input(s) output(s)

Typical example: bubblesort
⇝ not a specific program

but the underlying idea

2

What is a data structure?

A data structure is
1. a rule for encoding data

(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree

3

1.1 Algorithm analysis

Good algorithms
Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

▶ fast running time
can be complicated in distributed systems

▶ moderate memory space usage

Algorithm analysis is a way to

▶ compare different algorithms,

▶ predict their performance in an application

4

Running time experiments
Why not simply run and time it?

▶ results only apply to
▶ single test machine
▶ tested inputs
▶ tested implementation
▶ . . .
≠ universal truths

▶ instead: consider and analyze algorithms on an abstract
survives Pentium 4

machine
⇝ provable statements for model
⇝ testable model hypotheses

⇝ Need precise model of machine (costs), input data and algorithms.

5

Data Models
Algorithm analysis typically uses one of the following simple data models:

▶ worst-case performance:
consider the worst of all inputs as our cost metric

▶ best-case performance:
consider the best of all inputs as our cost metric

▶ average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size 𝑛.

⇝ performance is only a function of 𝑛.

6

1.2 The RAM Model

Clicker Question

� → sli.do/comp526

What is the cost of adding two 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time

B logarithmic in 𝑑

C proportional to 𝑑

D quadratic in 𝑑

E no idea what you are talking about

Clicker Question

� → sli.do/comp526

What is the cost of adding two 𝑑-digit integers?
(For example, for 𝑑 = 5, what is 45 235 + 91 342?)

A constant time✓
B logarithmic in 𝑑

C proportional to 𝑑✓
D quadratic in 𝑑

E no idea what you are talking about✓

Machine models
The machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

7

Machine models
The machine model decides

▶ what algorithms are possible

▶ how they are described (= programming language)

▶ what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

⇝ usually some compromise is needed

honest

smart investment
banker

7

Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

▶ unlimited memory MEM[0], MEM[1], MEM[2], . . .
▶ fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

▶ memory cells MEM[𝑖] and registers 𝑅𝑖 store 𝑤-bit integers, i. e., numbers in [0..2𝑤 − 1]
𝑤 is the word width/size; typically 𝑤 ∝ lg 𝑛 ⇝ 2𝑤 ≈ 𝑛

▶ Instructions:
▶ load & store: 𝑅𝑖 := MEM[𝑅𝑗] MEM[𝑅𝑗] := 𝑅𝑖
▶ operations on registers: 𝑅𝑘 := 𝑅𝑖 + 𝑅𝑗 (arithmetic is modulo 2𝑤 !)

also 𝑅𝑖 − 𝑅𝑗 , 𝑅𝑖 · 𝑅𝑗 , 𝑅𝑖 div 𝑅𝑗 , 𝑅𝑖 mod 𝑅𝑗
C-style operations (bitwise and/or/xor, left/right shift)

▶ conditional and unconditional jumps

▶ cost: number of executed instructions

⇝ The RAM is the standard model for sequential

we will see further models later

computation.

8

Pseudocode
▶ Programs for the random-access machine are very low level and detailed

≈ assembly/machine language

Typical simplifications when describing and analyzing algorithms:

▶ more abstract pseudocode
code that humans understand (easily)

▶ control flow using if, for, while, etc.
▶ variable names instead of fixed registers and memory cells
▶ memory management (next slide)

▶ count dominant operations (e. g. memory accesses)
instead of all RAM instructions

In both cases: We can go to full detail where needed.

honest

smart investment
banker

9

Memory management & Pointers
▶ A random-access machine is a bit like a bare CPU . . . without any operating system

⇝ cumbersome to use

▶ All high-level programming languages add memory management to that:
▶ Instruction to allocate a contiguous piece of memory of a given size (like malloc).

▶ used to allocate a new array (of a fixed size) or
▶ a new object/record (with a known list of instance variables)
▶ There’s a similar instruction to free allocated memory again.

▶ A pointer is a memory address (i. e., the 𝑖 of MEM[𝑖]).

▶ Support for procedures (a.k.a. functions, methods) calls including recursive calls
▶ (this internally requires maintaining call stack)

We will mostly ignore how all this works in COMP526.

10

1.3 Asymptotics & Big-Oh

Clicker Question

� → sli.do/comp526

What is the correct way to complete the equation?
8𝑛 + 1

2𝑛
2 + 1024 =

A 𝑂(1)

B 𝑂(𝑛)

C 𝑂(𝑛 log(𝑛))

D 𝑂(𝑛2)

E I don’t know 𝑂(·)

Clicker Question

� → sli.do/comp526

What is the correct way to complete the equation?
8𝑛 + 1

2𝑛
2 + 1024 =

A 𝑂(1)

B 𝑂(𝑛)

C 𝑂(𝑛 log(𝑛))

D 𝑂(𝑛2)✓
E I don’t know 𝑂(·)

Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
▶ abstracts from unnecessary detail
▶ simplifies analysis
▶ often necessary for sensible comparison

Asymptotics = approximation around ∞
Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛⌊log2(𝑛 + 1)⌋ + 7𝑛 − 3⌊log2(𝑛 + 1)⌋ + 120

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
·104

11

Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
▶ abstracts from unnecessary detail
▶ simplifies analysis
▶ often necessary for sensible comparison

Asymptotics = approximation around ∞
Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛⌊log2(𝑛 + 1)⌋ + 7𝑛 − 3⌊log2(𝑛 + 1)⌋ + 120 ∼ 2𝒏2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
·104

11

Asymptotic tools – Formal & definitive definition

▶ “Tilde Notation”: 𝑓 (𝑛) ∼ 𝑔(𝑛) iff
if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”

12

Asymptotic tools – Formal & definitive definition

▶ “Tilde Notation”: 𝑓 (𝑛) ∼ 𝑔(𝑛) iff
if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”

▶ “Big-Oh Notation”: 𝑓 (𝑛) ∈
also write ‘=’ instead

𝑂
�
𝑔(𝑛)� iff

����� 𝑓 (𝑛)𝑔(𝑛)

����� is bounded for 𝑛 ≥ 𝑛0

iff lim sup
need supremum since limit might not exist!

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� < ∞
Variants:

▶ 𝑓 (𝑛) ∈ Ω

“Big-Omega”�
𝑔(𝑛)� iff 𝑔(𝑛) ∈ 𝑂

�
𝑓 (𝑛)�

▶ 𝑓 (𝑛) ∈ Θ

“Big-Theta”

�
𝑔(𝑛)� iff 𝑓 (𝑛) ∈ 𝑂

�
𝑔(𝑛)� and 𝑓 (𝑛) ∈ Ω

�
𝑔(𝑛)�

12

Asymptotic tools – Formal & definitive definition

▶ “Tilde Notation”: 𝑓 (𝑛) ∼ 𝑔(𝑛) iff
if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”

▶ “Big-Oh Notation”: 𝑓 (𝑛) ∈
also write ‘=’ instead

𝑂
�
𝑔(𝑛)� iff

����� 𝑓 (𝑛)𝑔(𝑛)

����� is bounded for 𝑛 ≥ 𝑛0

iff lim sup
need supremum since limit might not exist!

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� < ∞
Variants:

▶ 𝑓 (𝑛) ∈ Ω

“Big-Omega”�
𝑔(𝑛)� iff 𝑔(𝑛) ∈ 𝑂

�
𝑓 (𝑛)�

▶ 𝑓 (𝑛) ∈ Θ

“Big-Theta”

�
𝑔(𝑛)� iff 𝑓 (𝑛) ∈ 𝑂

�
𝑔(𝑛)� and 𝑓 (𝑛) ∈ Ω

�
𝑔(𝑛)�

▶ “Little-Oh Notation”: 𝑓 (𝑛) ∈ 𝑜
�
𝑔(𝑛)� iff lim

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� = 0

𝑓 (𝑛) ∈ 𝜔
�
𝑔(𝑛)� if lim = ∞

12

Asymptotic tools – Intuition

▶ 𝑓 (𝑛) = 𝑂(𝑔(𝑛)): 𝑓 (𝑛) is at most 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐 𝑔(𝑛)

𝑓 (𝑛)

𝑛0

𝑓 (𝑛) ≤ 𝑐𝑔(𝑛)

𝑛

▶ 𝑓 (𝑛) = Θ(𝑔(𝑛)): 𝑓 (𝑛) is equal to 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐2 𝑔(𝑛)

𝑐1 𝑔(𝑛)
𝑓 (𝑛)

𝑛0

𝑐1𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐2𝑔(𝑛)

𝑛

Plots can be misleading! Example

13

Clicker Question

� → sli.do/comp526

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂(𝑓 (𝑛))

B 𝑔(𝑛) = Ω(𝑓 (𝑛))

C 𝑔(𝑛) = Θ(𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)

Clicker Question

� → sli.do/comp526

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂(𝑓 (𝑛))

B 𝑔(𝑛) = Ω(𝑓 (𝑛))✓
C 𝑔(𝑛) = Θ(𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)

Clicker Question

� → sli.do/comp526

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂(𝑓 (𝑛))

B 𝑔(𝑛) = Ω(𝑓 (𝑛)) (if 𝑓 (𝑛) ≠ 0)✓
C 𝑔(𝑛) = Θ(𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)✓

Asymptotics – Example 1
Basic examples:

▶ 20𝑛3 + 10𝑛 ln(𝑛) + 5 ∼ 20𝑛3 = Θ(𝑛3)
▶ 3 lg(𝑛2) + lg(lg(𝑛)) = Θ(log 𝑛)
▶ 10100 = 𝑂(1)

Use wolframalpha to compute/check limits.
14

Clicker Question

� → sli.do/comp526

Is (sin(𝑛) + 2)𝑛2 = Θ(𝑛2)?

A Yes B No

Clicker Question

� → sli.do/comp526

Is (sin(𝑛) + 2)𝑛2 = Θ(𝑛2)?

A Yes✓ B No

Asymptotics – Frequently used facts
▶ Rules:

▶ 𝑐 · 𝑓 (𝑛) = Θ(𝑓 (𝑛)) for constant 𝑐 ≠ 0
▶ Θ(𝑓 + 𝑔) = Θ(max{ 𝑓 , 𝑔}) largest summand determines Θ-class

▶ Frequently used orders of growth:
▶ logarithmic Θ(log 𝑛) Note: 𝑎 , 𝑏 > 0 constants ⇝ Θ(log𝑎 (𝑛)) = Θ(log𝑏 (𝑛))
▶ linear Θ(𝑛)
▶ linearithmic Θ(𝑛 log 𝑛)
▶ quadratic Θ(𝑛2)
▶ polynomial 𝑂(𝑛𝑐) for constant 𝑐
▶ exponential 𝑂(𝑐𝑛) for constant 𝑐 Note: 𝑎 > 𝑏 > 0 constants ⇝ 𝑏𝑛 = 𝑜(𝑎𝑛)

15

Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
▶ 𝑚 as binary number (array of bits)
▶ 𝑛 = #bits in 𝑚

▶ 𝑥 a floating-point number

1 def pow(𝑥, 𝑚):
2 # compute binary representation of exponent
3 exponent_bits = bin(𝑚)[2:]
4 result = 1
5 for bit in exponent_bits:
6 result *= result
7 if bit == '1':
8 result *= 𝑥
9 return result

▶ Cost: 𝐶 = # multiplications
▶ 𝐶 = 𝑛 (line 4) + #one-bits binary representation of 𝑚 (line 5)

⇝ 𝑛 ≤ 𝐶 ≤ 2𝑛

16

Clicker Question

� → sli.do/comp526

We showed 𝑛 ≤ 𝐶(𝑛) ≤ 2𝑛; what is the most precise
asymptotic approximation for 𝐶(𝑛) that we can make?

Write e. g. O(n^2) for 𝑂(𝑛2) or Theta(sqrt(n)) for Θ(√𝑛).

Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
▶ 𝑚 as binary number (array of bits)
▶ 𝑛 = #bits in 𝑚

▶ 𝑥 a floating-point number

1 def pow(𝑥, 𝑚):
2 # compute binary representation of exponent
3 exponent_bits = bin(𝑚)[2:]
4 result = 1
5 for bit in exponent_bits:
6 result *= result
7 if bit == '1':
8 result *= 𝑥
9 return result

▶ Cost: 𝐶 = # multiplications
▶ 𝐶 = 𝑛 (line 4) + #one-bits binary representation of 𝑚 (line 5)

⇝ 𝑛 ≤ 𝐶 ≤ 2𝑛
⇝ 𝐶 = Θ(𝑛) = Θ(log𝑚)

Note: Often, you can pretend Θ is “like ∼ with an unknown constant”
but in this case, no such constant exists!

0 200 400 600 800 1000

0

5

10

15

20

shift-and-multiply-exponentiation

17

