

4

String Matching – What's behind Ctrl+F?

20 October 2023

Sebastian Wild

Learning Outcomes

- 1. Know and use typical notions for *strings* (substring, prefix, suffix, etc.).
- **2.** Understand principles and implementation of the *KMP*, *BM*, and *RK* algorithms.
- **3.** Know the *performance characteristics* of the KMP, BM, and RK algorithms.
- **4.** Be able to solve simple *stringology problems* using the *KMP failure function*.

Unit 4: String Matching

Outline

4 String Matching

- 4.1 String Notation
- 4.2 Brute Force
- 4.3 String Matching with Finite Automata
- 4.4 Constructing String Matching Automata
- 4.5 The Knuth-Morris-Pratt algorithm
- 4.6 Beyond Optimal? The Boyer-Moore Algorithm
- 4.7 The Rabin-Karp Algorithm

4.1 String Notation

Ubiquitous strings

string = sequence of characters

- universal data type for . . . everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - ▶ DNA sequences
 - bitstrings
 - ▶ ... a computer's memory → ultimately any data is a string
- → many different tasks and algorithms

Ubiquitous strings

string = sequence of characters

- universal data type for . . . everything!
 - natural language texts
 - programs (source code)
 - websites
 - XML documents
 - ▶ DNA sequences
 - bitstrings
 - ▶ ... a computer's memory → ultimately any data is a string
- → many different tasks and algorithms
- ► This unit: finding (exact) **occurrences of a pattern** text.
 - ► Ctrl+F
 - ▶ grep
 - ▶ computer forensics (e. g. find signature of file on disk)
 - virus scanner
- basis for many advanced applications

Notations

- ▶ *alphabet* Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - ▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . .)
 - ► "what you can type on a keyboard", Unicode characters ≈ 130 €
 - \blacktriangleright {0,1}; nucleotides {A, C, G, T}; ... \text{compression}

\comprehensive standard character set including emoji and all known symbols

Notations

- ▶ *alphabet* Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - ▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . .)
 - "what you can type on a keyboard", Unicode characters
- ► (Σ^n) = $\Sigma \times \cdots \times \Sigma$: strings of **length** $n \in \mathbb{N}_0$ (n-tuples)
- $\blacktriangleright (\Sigma^*) = \bigcup_{n \geq 0} \Sigma^n$: set of **all** (finite) strings over Σ
- $\triangleright \Sigma^+ = \bigcup_{n \geq 1} \Sigma^n$: set of **all** (finite) **nonempty** strings over Σ
- ▶ $ε ∈ Σ^0$: the *empty* string (same for all alphabets)

Notations

- ▶ *alphabet* Σ : finite set of allowed **characters**; $\sigma = |\Sigma|$ "a string over alphabet Σ "
 - ▶ letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . .)
 - "what you can type on a keyboard", Unicode characters
 - $\{0,1\}$; nucleotides $\{A,C,G,T\}$; ...

comprehensive standard character set including emoji and all known symbols

- ▶ $\Sigma^n = \Sigma \times \cdots \times \Sigma$: strings of **length** $n \in \mathbb{N}_0$ (*n*-tuples)
- $ightharpoonup \Sigma^* = \bigcup_{n \geq 0} \Sigma^n$: set of **all** (finite) strings over Σ
- ▶ $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$: set of **all** (finite) **nonempty** strings over Σ
- \triangleright $\varepsilon \in \Sigma^0$: the *empty* string (same for all alphabets)

– zero-based (like arrays)!

- ▶ for $S \in \Sigma^n$, write S[i] (other sources: S_i) for ith character $(0 \le i < n)$
- ▶ for $S, T \in \Sigma^*$, write $\underline{ST} = S \cdot T$ for **concatenation** of S and T
- ▶ for $S \in \Sigma^n$, write S[i..j] or $S_{i,j}$ for the substring $S[i] \cdot S[i+1] \cdots S[j]$ $(0 \le i \le j < n)$
 - ► S[0..j] is a **prefix** of S; S[i..n-1] is a **suffix** of \overline{S}
 - ► S[i..j) = S[i..j 1] (endpoint exclusive) \rightsquigarrow S = S[0..n)

Clicker Question

Clicker Question

String matching – Definition

Search for a string (pattern) in a large body of text

- ► Input:
 - ► $T \in \Sigma^n$: The <u>text</u> (haystack) being searched within
 - ▶ $P \in \Sigma^m$: The <u>pattern</u> (needle) being searched for; typically $n \gg m$

► Output:

- ▶ the first occurrence (match) of P in T: $\min\{i \in [0..n m) : T[i..i + m) = P\}$
- or NO_MATCH if there is no such i ("P does not occur in T")
- ▶ Variant: Find **all** occurrences of *P* in *T*.
 - \rightarrow Can do that iteratively (update *T* to T[i+1..n) after match at *i*)

Example:

- ightharpoonup T = "Where is he?"
- $ightharpoonup P_1 = "he" \iff i = 1$
- $ightharpoonup P_2 = \text{"who"} \leadsto NO_MATCH$
- ▶ string matching is implemented in Java in String.indexOf, in Python as str.find

Clicker Question

Let $T = \mathring{\text{COMP526}} \mathring{\text{Lis}}_{\text{L}}$ fun. What is T[3..7]?

→ sli.do/comp526

Clicker Question

Let $T = COMP526_{\tt uis_ufun}$. What is T[3..7)?

012345678901234 COMP526_is_fun.

→ sli.do/comp526

4.2 Brute Force

Abstract idea of algorithms

String matching algorithms typically use *guesses* and *checks*:

- A guess is a position i such that P might start at T[i]. Possible guesses (initially) are $0 \le i \le n - m$.
- ▶ A **check** of a guess is a comparison of T[i + j] to P[j].

Abstract idea of algorithms

String matching algorithms typically use *guesses* and *checks*:

- A guess is a position i such that P might start at T[i]. Possible guesses (initially) are $0 \le i \le n - m$.
- ▶ A **check** of a guess is a comparison of T[i + j] to P[j].

- ▶ Note: need all *m* checks to verify a single *correct* guess *i*, but it may take (many) fewer checks to recognize an *incorrect* guess.
- ► Cost measure: #character comparisons
- \rightarrow #checks $\leq n \cdot m$ (number of possible checks)

Brute-force method

```
procedure bruteForceSM(T[0..n), P[0..m))

for i := 0, ..., n-m-1 do

for j := 0, ..., m-1 do

if T[i+j] \neq P[j] then break inner loop

if j == m then return i

return NO_MATCH
```

- ▶ try all guesses *i*
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!

Example:

T = abbbababbabP = abba

Brute-force method

```
procedure bruteForceSM(T[0..n), P[0..m))

for i := 0, ..., n-m-1 do

for j := 0, ..., m-1 do

if T[i+j] \neq P[j] then break inner loop

if j == m then return i

return NO_MATCH
```

- ▶ try all guesses *i*
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!

•	Example:
	T = abbbababbab
	P = abba
~ →	15 char cmps
	$(vs n \cdot m = 44)$
	not too bad!

а	b	b	b	а	b	а	b	b	а	b
а	b	b	а							
	а									
		а								
			а							
				а	b	b				
					а					
						а	b	b	а	

Brute-force method – Discussion

Brute-force method can be good enough

- typically works well for natural language text
- also for random strings

but: can be as bad as it gets!

а	а	а	а	а	а	а	а	а	а	а
а	а	а	b							
	а	а	а	b						
		а	а	а	b					
			а	а	а	b				
				а	а	а	b			
					а	а	а	b		
						а	а	а	b	
							а	а	а	b

- ▶ Worst possible input: $P = a^{m-1}b$, $T = a^n$
- ▶ Worst-case performance: $(n m + 1) \cdot m$
- \rightarrow for $m \le n/2$ that is $\Theta(mn)$

Brute-force method – Discussion

Brute-force method can be good enough

- typically works well for natural language text
- also for random strings

but: can be as bad as it gets!

а	а	а	а	а	а	а	а	а	а	а
а	а	а	b							
	а	а	а	b						
		а	а	а	b					
			а	а	а	b				
				а	а	а	b			
					а	а	а	b		
						а	а	а	b	
							а	а	а	b

- Worst possible input: $P = a^{m-1}b$, $T = a^n$
- ▶ Worst-case performance: $(n m + 1) \cdot m$
- \rightsquigarrow for $m \le n/2$ that is $\Theta(mn)$

- ▶ Bad input: lots of self-similarity in T! \leadsto can we exploit that?
- ▶ brute force does 'obviously' stupid repetitive comparisons → can we avoid that?

Roadmap

- ► **Approach 1** (this week): Use *preprocessing* on the **pattern** *P* to eliminate guesses (avoid 'obvious' redundant work)
 - ► Deterministic finite automata (**DFA**)
 - ► Knuth-Morris-Pratt algorithm
 - **▶ Boyer-Moore** algorithm
 - ► **Rabin-Karp** algorithm

8

- ► **Approach 2** (¬¬ Unit Ø): Do *preprocessing* on the **text** *T*Can find matches in time *independent of text size(!)*
 - inverted indices
 - Suffix trees
 - ► Suffix arrays

4.3 String Matching with Finite Automata

Clicker Question

Do you know what regular expressions, NFAs and DFAs are, and how to convert between them?

- A Never heard of this; are these new emoji?
- (B) Heard the terms, but don't remember conversion methods.
- C Had that in my undergrad course (memories fading a bit).
- D Sure, I could do that blindfolded!

→ sli.do/comp526

- ▶ string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $\triangleright \Sigma^* \cdot P \cdot \Sigma^*$ is regular formal language

 \rightarrow \exists *deterministic finite automaton* (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$

 \mathbb{Z} can check for occurrence of P in |T| = n steps!

- ▶ string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- ▶ $\Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- \rightarrow \exists deterministic finite automaton (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$
- \rightarrow can check for occurrence of *P* in |T| = n steps!

Job done!

- ▶ string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $ightharpoonup \Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- \rightarrow \exists deterministic finite automaton (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$
- \rightarrow can check for occurrence of *P* in |T| = n steps!

Job done!

WTF!?

- ▶ string matching = deciding whether $T \in \Sigma^* \cdot P \cdot \Sigma^*$
- $ightharpoonup \Sigma^* \cdot P \cdot \Sigma^*$ is *regular* formal language
- \rightarrow \exists deterministic finite automaton (DFA) to recognize $\Sigma^* \cdot P \cdot \Sigma^*$
- \rightarrow can check for occurrence of *P* in |T| = n steps!

Job done!

WTF!?

We are not quite done yet.

- ▶ (Problem 0: programmer might not know automata and formal languages ...)
- ▶ Problem 1: existence alone does not give an algorithm!
- ▶ Problem 2: automaton could be very big!

String matching with DFA

Z = alphabet Q = set of states

- ► Assume first, we already have a deterministic automaton
- ► How does string matching work?

String matching with DFA

- ▶ Assume first, we already have a deterministic automaton
- ► How does string matching work?

time to had fired occurrence

Example:

(n)

text:		а	а	b	а	С	а	а	b	а	b	a	С	а	а
state:	0	1	1	2	3	0	1	1	2	3	4	5	6	7	7

2 77

String matching DFA – Intuition

Why does this work?

► Main insight:

State q means:
"we have seen P[0..q) until here
(but not any longer prefix of P)"

- \blacktriangleright If the next text character c does not match, we know:
 - (i) text seen so far ends with $P[0...q) \cdot c$
 - (ii) $P[0...q) \cdot c$ is not a prefix of P
 - (iii) without reading c, P[0..q) was the *longest* prefix of P that ends here.

String matching DFA – Intuition

Why does this work?

► Main insight:

State q means: "we have seen P[0..q) until here (but not any longer prefix of P)"

- \blacktriangleright If the next text character c does not match, we know:
 - (i) text seen so far ends with $P[0...q) \cdot c$
 - (ii) $P[0...q) \cdot c$ is not a prefix of P
 - (iii) without reading c, P[0..q) was the *longest* prefix of P that ends here.

- → New longest matched prefix will be (weakly) shorter than *q*
- \rightarrow All information about the text needed to determine it is contained in $P[0...q) \cdot c!$

our automata stay in state (m) foren once they found the frit occurred oue can also give edges b a h keep hading occurrences => DFA can find all occurrences in home O(a)

4.4 Constructing String Matching Automata

NFA instead of DFA?

It remains to *construct* the DFA.

NFA instead of DFA?

It remains to construct the DFA.

- ▶ that actually is a *nondeterministic finite automaton* (NFA) for Σ^*P Σ^*
- → We *could* use the NFA directly for string matching:
 - ▶ at any point in time, we are in a *set* of states
 - accept when one of them is final state

Example:

t	text:		а	a	b	а	С	а	а	b	а	b	a	С	а	а
st	tate:	0	0,1	0,1	0,2	0,1,3	0	0,1	0,1	0,2	0,1,3	0,2,4	0,1,3,5	0,6	0,1,7	0,1,7

But maintaining a whole set makes this slow ... $\bigcirc (\wp \cdot \wp)$ $\wp \cdot c$

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up!

I guess I might as well use brute force ...

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up!

I guess I might as well use brute force ...

• Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:

Suppose we add character P[j] to automaton A_{j-1} for P[0..j)

- ▶ add new state and matching transition → easy
- for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from j) when reading c)

Computing DFA directly

You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up! I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA *inductively*:

Suppose we add character P[j] to automaton A_{i-1} for P[0...j)

- ▶ add new state and matching transition → easy
- ▶ for each $c \neq P[j]$, we need $\delta(j, c)$ (transition from (j)) when reading c)
- $\delta(j,c)$ = length of the longest prefix of P[0...j)c that is a suffix of P[1...j)c
 - = state of automaton after reading P[1..i)c
 - $\leq j \rightsquigarrow$ can use known automaton A_{i-1} for that!

can directly compute A_i from A_{i-1} !

 \bigcirc seems to require simulating automata $m \cdot \sigma$ times

State *a* means: "we have seen P[0..q) until here (but not any longer prefix of P)"

Computing DFA efficiently

- ▶ KMP's second insight: simulations in one step differ only in last symbol
- \rightsquigarrow simply maintain state x, the state after reading P[1..j).
 - copy its transitions
 - update x by following transitions for P[j]

Computing DFA efficiently

- ▶ KMP's second insight: simulations in one step differ only in last symbol
- \rightarrow simply maintain state x, the state after reading P[1..j).
 - copy its transitions
 - update x by following transitions for P[j]

```
1 procedure constructDFA(P[0..m))
        //\delta[q][c] = target state when reading c in state q
        for c \in \Sigma do
             \delta[0][c] := 0
       \delta[0][P[0]] := 1
       x := 0
        for j = 1, ..., m - 1 do
             for c \in \Sigma do // copy transitions
                  \delta[i][c] := \delta[x][c]
             \delta[i][P[i]] := i + 1 // match edge
10
             x := \delta[x][P[j]] // update x
11
```

Example: P[0..6) = ababac

$$\delta(c,q)$$
 0 1 2 3 4 5 a 1 5 b 0 2 0 4 0 9 6

$$\times = 3$$

Computing DFA efficiently

- ▶ KMP's second insight: simulations in one step differ only in last symbol
- \rightarrow simply maintain state x, the state after reading P[1..j).
 - copy its transitions
 - update x by following transitions for P[j]

```
procedure constructDFA(P[0..m))

| Modesign N | Modesign N
```


String matching with DFA – Discussion

- ► Time:
 - ▶ Matching: *n* table lookups for DFA transitions
 - ▶ building DFA: $\Theta(m\sigma)$ time (constant time per transition edge).
 - \rightsquigarrow $\Theta(m\sigma + n)$ time for string matching.

Oct 2023 Unicode 6 = 149 181

- ► Space:
 - \triangleright $\Theta(m\sigma)$ space for transition matrix.

fast matching time actually: hard to beat!

total time asymptotically optimal for small alphabet (for $\sigma = O(n/m)$)

substantial space overhead, in particular for large alphabets

4.5 The Knuth-Morris-Pratt algorithm

Failure Links

- ► Recall: String matching with is DFA fast, but needs table of $m \times \sigma$ transitions.
- ▶ in fast DFA construction, we used that all simulations differ only by *last* symbol
- → KMP's third insight: do this last step of simulation from state x during matching!
 ... but how?

Failure Links

- ► Recall: String matching with is DFA fast, but needs table of $m \times \sigma$ transitions.
- ▶ in fast DFA construction, we used that all simulations differ only by *last* symbol
- → KMP's third insight: do this last step of simulation from state x during matching!
 ... but how?
- ► **Answer**: Use a new type of transition, the *failure links*
 - ▶ Use this transition (only) if no other one fits.
 - ► × does not consume a character. → might follow several failure links

→ Computations are deterministic (but automaton is not a real DFA.)

Failure link automaton – Example

Example: T = abababaaaca, P = ababaca

Failure link automaton – Example

Example: T = abababaaaca, P = ababaca

(after reading this character)

Clicker Question

What is the worst-case time to process one character in a failure-link automaton for P[0..m)?

 $\mathbf{A}) \ \Theta(1)$

 \bigcirc $\Theta(m)$

 $\Theta(\log m)$

 \bigcirc $\Theta(m^2)$

→ sli.do/comp526

Clicker Question

What is the worst-case time to process one character in a failure-link automaton for P[0..m)?

 $\overline{\mathbf{c}}$ $\Theta(m)$

$$\Theta(\log m)$$

 $D = \Theta(m^2)$

→ sli.do/comp526

The Knuth-Morris-Pratt Algorithm

```
1 procedure KMP(T[0..n), P[0..m))
      fail[0..m] := failureLinks(P)
      i := 0 // current position in T
      q := 0 // current state of KMP automaton
      while i < n do
           if T[i] == P[q] then
                i := i + 1; \ q := q + 1
                if q == m then
                    return i - q // occurrence found
9
           else // i.e. T[i] \neq P[q]
10
                if q \ge 1 then
11
                    q := fail[q] // follow one \times
12
                else
13
                    i := i + 1
14
       end while
15
       return NO MATCH
16
```

- only need single array fail for failure links
- ▶ (procedure failureLinks later)

The Knuth-Morris-Pratt Algorithm

```
procedure KMP(T[0..n), P[0..m))
      fail[0..m] := failureLinks(P)
      i := 0 // current position in T
       q := 0 // current state of KMP automaton
       while i < n do
           if T[i] == P[a] then
               i := i + 1; q := q + 1
                                                  00
7
               if q == m then
                    return i - q // occurrence found
           else // i.e. T[i] \neq P[q]
10
                if a \ge 1 then
11
                    q := fail[q] // follow one \times
12
                else
13
                    i := i + 1
14
       end while
15
       return NO MATCH
16
```

- only need single array fail for failure links
- ► (procedure failureLinks later)

Analysis: (matching part)

- ▶ always have fail[j] < j for $j \ge 1$
- → in each iteration
 - either advance position in text (i := i + 1)
 - or shift pattern forward (guess i q) $\leqslant \bowtie s \vdash_{eps}$
- ▶ each can happen at most *n* times
- $\rightsquigarrow \le 2n$ symbol comparisons!

Computing failure links

- ▶ failure links point to error state *x* (from DFA construction)
- \rightarrow run same algorithm, but store fail[j] := x instead of copying all transitions

```
procedure failureLinks(P[0..m))
     fail[0] := 0
     x := 0
     for j := 1, ..., m-1 do
     fail[i] := x
     // update failure state using failure links:
       while P[x] \neq P[i]
              if x == 0 then
                  x := -1: break
9
              else
10
                  x := fail[x]
11
          end while
12
          x := x + 1
13
      end for
14
```

Computing failure links

- ► failure links point to error state *x* (from DFA construction)
- \rightarrow run same algorithm, but store fail[j] := x instead of copying all transitions

```
procedure failureLinks(P[0..m))
      fail[0] := 0
      x := 0
      for j := 1, ..., m-1 do
          fail[i] := x
          // update failure state using failure links:
          while P[x] \neq P[i]
7
               if x == 0 then
                    x := -1: break
9
               else
10
                    x := fail[x] < \times
11
           end while
12
           x := x + 1
13
      end for
14
```

Analysis:

- ▶ *m* iterations of for loop
- ▶ while loop always decrements *x*
- x is incremented only once per iteration of for loop
- $\rightsquigarrow \le m$ iterations of while loop *in total*
- \rightarrow $\leq 2m$ symbol comparisons

Knuth-Morris-Pratt – Discussion

- ► Time:
 - $ightharpoonup \leq 2n + 2m = O(n + m)$ character comparisons
 - ightharpoonup clearly must at least *read* both T and P
 - \leadsto KMP has optimal worst-case complexity!
- ► Space:
 - $ightharpoonup \Theta(m)$ space for failure links
- total time asymptotically optimal (for any alphabet size)
- reasonable extra space

Clicker Question

What are the main advantages of the KMP string matching (using the failure-link automaton) over string matching with DFAs? Check all that apply.

- A faster preprocessing on pattern
- B faster matching in text
- **C** fewer character comparisons
- **D** uses less space
- **E** makes running time independent of σ
- F I don't have to do automata theory

→ sli.do/comp526

Clicker Question

What are the main advantages of the KMP string matching (using the failure-link automaton) over string matching with DFAs? Check all that apply.

- A faster preprocessing on pattern \checkmark
- B faster matching in text
- C fewer character comparisons
- D uses less space 🗸
- **E** makes running time independent of σ
- F I don't have to do automata theory

→ sli.do/comp526

The KMP prefix function

- ▶ It turns out that the failure links are useful beyond KMP
- ▶ a slight variation is more widely used: (for historic reasons) the (KMP) prefix function $F:[1..m-1] \rightarrow [0..m-1]$: F[j] is the length of the longest prefix of P[0..j]that is a suffix of P[1..j].
- ► Can show: fail[j] = F[j-1] for $j \ge 1$, and hence

0

7:17

21

4.6 Beyond Optimal? The Boyer-Moore Algorithm

not part of exam material

Motivation

► KMP is an optimal algorithm, isn't it? What else could we hope for?

Motivation

- ► KMP is an optimal algorithm, isn't it? What else could we hope for?
- ► KMP is "only" optimal in the worst-case (and up to constant factors)
- ▶ how many comparisons do we need for the following instance?

T = aaaaaaaaaaaaaaaaa, <math>P = xxxxx

- there are no matches
- we can *certify* the correctness of that output with only 4 comparisons:

→ We did *not* even read most characters!

Boyer-Moore Algorithm

- ► Let's check guesses *from right to left*!
- ▶ If we are lucky, we can eliminate several shifts in one shot!

Bover-Moore Algorithm

- ► Let's check guesses from right to left!
- ▶ If we are lucky, we can eliminate several shifts in one shot!

must avoid (excessive) redundant checks, e. g., for $T = a^n$, $P = ba^{m-1}$

- → New rules:
 - **Bad character jumps**: Upon mismatch at T[i] = c:
 - ▶ If P does not contain c, shift P entirely past i!
 - ightharpoonup Otherwise, shift P to align the last occurrence of c in P with T[i].
 - ► Good suffix jumps:

Upon a mismatch, shift so that the already matched *suffix* of *P* aligns with a previous occurrence of that suffix (or part of it) in *P*.

(Details follow; ideas similar to KMP failure links)

two possible shifts (next guesses); use larger jump.

R' lail occurrence of a

Boyer-Moore Algorithm – Code

```
procedure boyerMoore(T[0..n), P[0..m))
      \lambda := computeLastOccurrences(P)
      \gamma := \text{computeGoodSuffixes}(P)
      i := 0 // current guess
      while i < n - m
           j := m - 1 // next position in P to check
           while j \ge 0 \land P[j] == T[i+j] do
7
               i := i - 1
           if j == -1 then
                return i
10
           else
11
                i := i + \max\{j - \lambda[T[i+j]], \gamma[j]\}
12
       return NO MATCH
13
```

- \triangleright λ and γ explained below
- shift forward is larger of two heuristics
- shift is always positive (see below)

→ 6 characters not looked at

→ 6 characters not looked at

Last-Occurrence Function

- ▶ Preprocess pattern P and alphabet Σ
- ▶ *last-occurrence function* $\lambda[c]$ defined as
 - ▶ the largest index i such that P[i] = c or
 - ► -1 if no such index exists

Last-Occurrence Function

- ▶ Preprocess pattern P and alphabet Σ
- ▶ *last-occurrence function* $\lambda[c]$ defined as
 - ▶ the largest index i such that P[i] = c or
 - ▶ −1 if no such index exists
- **Example:** *P* = moore

С	m	0	r	е	all others
$\lambda[c]$	0	2	3	4	-1

$$i = 0, \ j = 4, \ T[i + j] = r, \ \lambda[r] = 3$$

 $\Rightarrow \text{ shift by } j - \lambda[T[i + j]] = 1$

- ▶ λ easily computed in $O(m + \sigma)$ time.
- store as array $\lambda[0..\sigma)$.

1. $P = sells_shells$

S	h	е	i	l	а	ш	S	е	l	l	S	ш	S	h	е	l	l	S

1. $P = sells_shells$

S	h	е	i	l	а	ш	S	е	l	ι	S	ш	s	h	е	l	l	S
							h	е	l	l	S							

1. $P = sells_shells$

s	h						l			е	ι	ι	s
				h	е	l	l	S					
					(e)	(1)	(1)	(s)					

1. $P = sells_shells$

S	h	е	i	ι	а	ш	S	е	l	l	S	ш	S	h	е	l	ι	S
							h	е	l	l	S							
								(e)	(1)	(1)	(s)							

2. P = odetofood

1. $P = sells_shells$

S	h	е	i	l	а	ш	S	е	l	l	S	ш	S	h	е	ι	l	S
							h	е	l	l	S							
								(e)	(1)	(1)	(s)							

2. P = odetofood

1. $P = sells_{\perp}shells$

S	h	е	i	l	а	ш	S	е	l	l	S	ш	S	h	е	l	l	S
							h	е	l	l	S							
								(e)	(1)	(1)	(s)							

2. P = odetofood

matched suffix

- ▶ **Crucial ingredient:** longest suffix of P[j+1..m) that occurs earlier in P.
- ▶ 2 cases (as illustrated above)
 - **1.** complete suffix occurs in $P \rightsquigarrow$ characters left of suffix are *not* known to match
 - **2.** part of suffix occurs at beginning of P

Good suffix jumps

- ▶ Precompute *good suffix jumps* $\gamma[0..m)$:
 - ► For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1..i+m) = P[j+1..m), but $T[i] \neq P[j]$

Good suffix jumps

- ▶ Precompute *good suffix jumps* $\gamma[0..m)$:
 - ► For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1..i+m) = P[j+1..m), but $T[i] \neq P[j]$
 - $\rightsquigarrow \gamma[j]$ is the shift $m \ell$ for the *largest* ℓ such that
 - ► P[j+1..m) is a suffix of $P[0..\ell)$ and $P[j] \neq P[j-(m-\ell)]$

				h	е	l	l	S				
				×	(e)	(1)	(1)	(s)				

- -OR-
 - ▶ $P[0..\ell)$ is a suffix of P[j+1..m)

			0	f	0	0	d					
4						(0)	(d)					

Good suffix jumps

- ▶ Precompute *good suffix jumps* γ [0..*m*):
 - ► For $0 \le j < m$, $\gamma[j]$ stores shift if search failed at P[j]
 - At this point, had T[i+j+1..i+m) = P[j+1..m), but $T[i] \neq P[j]$
 - $\rightsquigarrow \gamma[j]$ is the shift $m \ell$ for the *largest* ℓ such that
 - ▶ P[j+1..m) is a suffix of $P[0..\ell)$ and $P[j] \neq P[j-(m-\ell)]$

				h	е	l	l	S				
				×	(e)	(1)	(1)	(s)				

- -OR-
 - ▶ $P[0..\ell)$ is a suffix of P[j+1..m)

		0	f	0	0	d					
					(o)	(d)					

- ▶ Computable (similar to KMP failure function) in $\Theta(m)$ time.
- Note: You do not need to know how to find the values $\gamma[j]$ for the exam, but you should be able to find the next guess on examples.

Boyer-Moore algorithm - Discussion

- \bigcap As given, worst-case running time $\Theta(nm)$ if we want to report all occurrences
 - ➤ To avoid that, have to keep track of implied matches. (tricky because they can be in the "middle" of P)

- Note: KMP reports all matches in O(n + m) without modifications!
- On typical English text, Boyer Moore probes only approx. 25% of the characters in T!
 - → Faster than KMP on English text.
- $\overset{\bullet}{\square}$ requires moderate extra space $\Theta(m+\sigma)$

Clicker Question

How does Boyer-Moore (BM) compare to Knuth-Morris-Pratt (KMP)? Check all correct statements. They refer to the number of symbol comparisons, ignoring preprocessing.

- A BM \leq KMP for all inputs
- **B** BM \leq KMP for some inputs
- CKMP \leq BM for all inputs
- \triangleright KMP \leq BM for some inputs
- \blacksquare BM \leq KMP if there are no matches

→ sli.do/comp526

Clicker Question

How does Boyer-Moore (BM) compare to Knuth-Morris-Pratt (KMP)? Check all correct statements. They refer to the number of symbol comparisons, ignoring preprocessing.

- (A) BM \leq KMP for all inputs
- **B** BM \leq KMP for some inputs \checkmark
- C KMP ≤ BM for all inputs
- \bigcirc KMP \leq BM for some inputs \checkmark
- \blacksquare BM \leq KMP if there are no matches \checkmark

→ sli.do/comp526

4.7 The Rabin-Karp Algorithm

& cxam

Space – The final frontier

- ► Knuth-Morris-Pratt has great worst case and real-time guarantees
- ▶ Boyer-Moore has great typical behavior
- ► What else to hope for?

Space – The final frontier

- ► Knuth-Morris-Pratt has great worst case and real-time guarantees
- ► Boyer-Moore has great typical behavior
- ► What else to hope for?
- ► All require $\Omega(m)$ extra space; can be substantial for large patterns!
- ► Can we avoid that?

Rabin-Karp Fingerprint Algorithm – Idea

Idea: use *hashing* (but without explicit hash tables)

- ▶ Precompute & store only *hash* of pattern
- ► Compute hash for each guess
- ► If hashes agree, check characterwise

Rabin-Karp Fingerprint Algorithm - Idea

Idea: use *hashing* (but without explicit hash tables)

- ▶ Precompute & store only *hash* of pattern
- ► Compute hash for each guess
- ► If hashes agree, check characterwise

Example: (treat (sub)strings as decimal numbers)

$$P = 59265$$

$$T = 3141592653589793238$$

Hash function:
$$h(x) = x \mod 97$$

 $h(P) = 95$.

Rabin-Karp Fingerprint Algorithm - Idea

Idea: use *hashing* (but without explicit hash tables)

- ▶ Precompute & store only *hash* of pattern
- Compute hash for each guess
- ► If hashes agree, check characterwise

Example: (treat (sub)strings as decimal numbers)

$$P = 59265$$

$$T = 3141592653589793238$$

Hash function:
$$h(x) = x \mod 97$$

$$\rightarrow$$
 $h(P) = 95.$

$$\frac{3 \quad 1 \quad 4 \quad 1 \quad 5}{h(31415) = 84}$$

$$\frac{1}{h(31415) = 84}$$

$$\frac{1}{h(41592) = 76}$$

$$\frac{1}{h(59262) = 95}$$

Rabin-Karp Fingerprint Algorithm – First Attempt

```
procedure rabinKarpSimplistic(T[0..n), P[0..m))

M := \text{suitable prime number}

h_P := \text{computeHash}(P[0..m), M)

for i := 0, ..., n-m do

h_T := \text{computeHash}(T[i..i+m), M)

if h_T := \overline{h_P} then

if T[i..i+m) := P // m comparisons

then return i

return NO_MATCH
```

- ▶ never misses a match since $h(S_1) \neq h(S_2)$ implies $S_1 \neq S_2$
- ▶ h(T[k..k+m) depends on m characters \rightarrow naive computation takes $\Theta(m)$ time
- \sim Running time is $\Theta(mn)$ for search miss . . . can we improve this?

Rabin-Karp Fingerprint Algorithm – Fast Rehash

- ► Crucial insight: We can update hashes in constant time.
 - ▶ Use previous hash to compute next hash

for above hash function!

ightharpoonup O(1) time per hash, except first one

Rabin-Karp Fingerprint Algorithm – Fast Rehash

► Crucial insight: We can update hashes in constant time.

▶ Use previous hash to compute next hash

ightharpoonup O(1) time per hash, except first one

for above hash function!

Example:

► Pre-compute: 10000 mod 97 = 9

Previous hash: $\underline{41592} \mod 97 = 76$

Next hash: $15926 \mod 97 = ??$

Rabin-Karp Fingerprint Algorithm – Fast Rehash

- ► Crucial insight: We can update hashes in constant time.
 - ► Use previous hash to compute next hash

for above hash function!

ightharpoonup O(1) time per hash, except first one

Example:

► Pre-compute: 10000 mod 97 = 9

► Previous hash: 41592 mod 97 = 76

► Next hash: 15926 mod 97 = ??

Observation:

```
15926 mod 97 = (41592 - (4 \cdot 10000)) \cdot 10 + 6 mod 97
= (76 - (4 \cdot 9)) \cdot 10 + 6 mod 97
= 406 \mod 97 = 18
```

Rabin-Karp Fingerprint Algorithm – Code

- use a convenient radix $R \ge \sigma$ (R = 10 in our examples; $R = 2^k$ is faster)
- ► Choose modulus *M* at *random* to be huge prime (randomization against worst-case inputs)
- ▶ all numbers remain $\leq 2R^2 \iff O(1)$ time arithmetic on word-RAM

```
procedure rabinKarp(T[0..n), P[0..m), R)
     M := suitable prime number
     h_P := \text{computeHash}(P[0..m), M)
    h_T := \text{computeHash}(T[0..m), M)
    s := R^{m-1} \mod M
    for i := 0, ..., n - m do
         if h_T == h_P then
              if T[i..i+m) * P // O(m)
                  return i
          if i < n - m then
              h_T := ((h_T - T[i] \cdot s) \cdot R + T[i + m]) \mod M
11
      return NO MATCH
```

Rabin-Karp – Discussion

 \triangle Expected running time is O(m + n)

 \bigcap $\Theta(mn)$ worst-case; but this is very unlikely

Extends to 2D patterns and other generalizations

Only constant extra space!

Clicker Question

Suppose we apply only the hashing part of Rabin-Karp (drop the check if T[i..i+m) = P, and only return i). Check all correct statements about the resulting algorithm.

- A The algorithm can miss occurrences of *P* in *T* (false negatives).
- B The algorithm can report positions that are not occurrences (false positives).
- **C** The running time is $\Theta(nm)$ in the worst case.
- **D** The running time is $\Theta(n+m)$ in the worst case.
- **E** The running time is $\Theta(n)$ in the worst case.

→ sli.do/comp526

Clicker Question

Suppose we apply only the hashing part of Rabin-Karp (drop the check if T[i..i+m) = P, and only return i). Check all correct statements about the resulting algorithm.

- A The algorithm can miss occurrences of P in T (false negatives).
- B The algorithm can report positions that are not occurrences (false positives). \checkmark
- The running time is $\Theta(nm)$ in the worst case.
- **D** The running time is $\Theta(n+m)$ in the worst case. \checkmark
- (E) The running time is $\Theta(n)$ in the worst case.

→ sli.do/comp526

String Matching Conclusion

	Brute- Force	DFA	KMP	ВМ	RK	Suffix trees*
Preproc. time	_	$O(m\sigma)$	O(m)	$O(m + \sigma)$	O(m)	O(n)
Search time	O(nm)	O(n)	O(n)	O(n) (often better)	O(n+m) (expected)	O(m)
Extra space	_	$O(m\sigma)$	O(m)	$O(m + \sigma)$	O(1)	O(n)

^{* (}see Unit 8)