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Learning Outcomes

7,

Understand the context of error-prone
communication.

Understand concepts of error-detecting
codes and error-correcting codes.

Know and understand the terminology of
block codes.

Know and understand Hamiming codes, in
particular (7,4) Hamming code.

Reason about the suitability of a code for
an application.

Unit 6: Error-Correcting Codes




Outline

6 Error-Correcting Codes

6.1 Introduction
6.2 Lower Bounds

6.3 Hamming Codes
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Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

» How do humans cope with that?
» slow down and/or speak up

> ask to repeat if necessary

» But how is it possible (for us)

to decode a message in the presence of noise & errors?

-

\

~

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it! ]

~ We can
1. detect errors “This sentence has aao pi dgsdho gioasghds.”
2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)

UGH, PEOPLE ARE MAD AT ME AGAIN
BECAUSE THEY DONT READ CAREFULLY.

1
TMBEING PERFECTLY CLEAR.
IT'S NOT My FRULT IF EVERYONE
MISINTERPRETS WHAT L SAY.

WOW, SOUNDS LIKE YOURE
GREAT AT COMMUNICATING,
AN ACTVITY THAT FAMOUSLY
INVOLVES JUST ONE. PERSON.

\ =

<




Noisy Channels

> computers: copper cables &
electromagnetic interference

> transmit a binary string
> but occasionally bits can “flip”

~ want a robust code
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Noisy Channels

> computers: copper cables &
electromagnetic interference

> transmit a binary string
> but occasionally bits can “flip”

~ want a robust code

» We can aim at
1. error detection ~» can request a re-transmit
2. error correction ~> avoid re-transmit for common types of errors

» This will require redundancy: sending more bits than plain message

~~ goal: robust code with lowest redundancy \, .. opposite of compression!



Clicker Question

What do you think, how many extra bits do we need to detect a
single bit error in a message of 100 bits?

o
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Clicker Question

What do you think, how many extra bits do we need to correct a
single bit error in a message of 100 bits?

o
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6.2 Lower Bounds



Block codes

> model:
> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (6 — 1 resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~ what errors can be detected and/or corrected?
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Block codes

» model:

> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (6 — 1 resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~ what errors can be detected and/or corrected?
» all codes discussed here are block codes
> divide S into nessages m € {0, 1}¥ of k bits each  (k = message length)
> encode each message (separately) as C(m) € {0, 1}" (n = block length, n > k)

~ can analyze everything block-wise

> between 0 and 7 bits might be flipped ~ invalid code

» how many flipped bits can we definitely detect?
» how many flipped bits can we correct without retransmit?

i.e. decoding m still possible
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Code distance
m#m' = C(m)# C(m’)

» each block code is an injective function C : {0, 1} — {0, 1}"

. e
> define € = set of all codewords = C({0,1}%) = { se203" + T foll : b=clm |

~ € C{0,1}" [ & T/ Zﬂout of 2" n-bit strings are valid codewords
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Code distance
m#m' = C(m)# C(m’)

» each block code is an injective function C : {0, 1} — {0, 1}"

X k ) o ! )
» define € = set of all codewords = C({0, 1}*) éu ( ago oboa
~ Cc{o,1}" [I(:’ | = 2X out of 2" n-bit strings are valid codewords] =7
» decoding = finding closest valid codeword dy - Hpow brows  wlore
l..‘arz£§ Ja‘gc,,
» distance of code:
d = minimal Hamming distance of any two codewords = miré X, Y)
x,y€C
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Code distance

m#m' = C(m)# C(m’)

» each block code is an injective function C : {0, 1} — {0, 1}"

> define C = set of all codewords = C({6, 1}¥)
camuoL J»"JL\’DLJ.,?.{[

~ € C{0,1}" [|G| = 2K out of 2" n-bit strings are valid codewords weadwiog ¢ becawiy

> decoding = finding closest valid codeword @) s send, Cldny
(8) was sead | C(W") =X

» distance of code:
d = minimal Hamming distance of any two codewords = miré du(x,y)
x,y€C

Implications for codes
({ W (\< ‘ ys < ?'E

1. Need distance d to detect all errors flipping up to d — 1 bits.
e = b

@) Clw) = >
2. Need distance d to correct all errors flipping up to \_%J bits. R & Gils ~sx’
(L Cfy = 3

QA',‘p f HLJ ~ x7

5
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Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length

otherwise no such code exists

Given block length 7, message length k, code distance d, we must have:

» Singleton bound: 2 <21 ., m

> proof sketch: We have 2k codeswords with distance d
after deleting the first d — 1 bits, all are still distinct

but there are only 2" _éd"_[\l) such shorter bitstrings.
[4) L2

2 k Co iﬂ\we wiﬂ



Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length otherwise no such code exists
Given block length 7, message length k, Wwe must have:

&sSoint  Howruiiey - :
» Singleton bound: 2F <2~V . p>k+d-1 St s <bells

> proof sketch: We have 2F codeswords with distance d
after deleting the first d — 1 bits, all are still distinct
but there are only 2"~(4=1) such shorter bitstrings.

S
. on " k "
» Hamming bound: 2" < T 2z 2 - (1\)
) £=0 ( f ) f=0
» proof idea: consider “balls” of bitstrings around codewords
count bitstrings with Hamming-distance < t = |(d —1)/2]

correcting t errors means all these balls are disjoint
so 2k - ball size < 2"

~» We will come back to these.
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» simplest possible error-detecting code: add a parity bit

[011011110]0
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Parity Bit

» simplest possible error-detecting code: add a parity bit

[011011110]0
—— B {0 if number of ones is even

i 8 8 8 &8 B &8 § ¢ 1 if number of ones is odd
elelv0DlI®lI®1I®1LSD =0
XOR

~ code distance 2
» can detect any single-bit error (actually, any odd number of flipped bits)

» used in many hardware (communication) protocols
» PCI buses, serial buses
» caches

» early forms of main memory
[ﬁ very simple and cheap

E@ cannot correct any errors



Clicker Question

What do you think, how many extra bits do we need to detect a
single bit error in a message of 100 bits?

o
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Error-correcting codes

any downtime is expensive!

» typical application: heavy-duty server RAM
» bits can randomly flip  (e.g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2
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Error-correcting codes

any downtime is expensive!

» typical application: heavy-duty server RAM
» bits can randomly flip  (e.g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

2572

2  Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!
» upon read, do majority vote
> if only one bit flipped, the other two (correct) will still win

[@ triples the cost! You want WHAT!?!

instead of 200% (!)

-:-%ﬁ
6/@ Can do it with 11% extra memory!

!
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How to locate errors?

> Idea: Use several parity bits

» each covers a subset of bits

» clever subsets ~- violated/valid parity bit pattern narrows down error

A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, . .

(

111,
By

|

|

110,
Be

[

101,
Bs

1

B4

2

|
I
11,
B3

|
|
1
B>

2

[

1o
By

., B; with the following constraints:

Cs B4 @ B5 ® By ® By
C1 = B, ® B3z ® B @ By
Co B1® B3 @ Bs @ By

7
CDC'LQA-\) ‘Q/-A

o O O



How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits

» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cy B4 @ B5 ® By ® By
C1 = B, ® B3z ® B @ By
B1 ® B3 ® B5 ® By

| 1 c
(1] [ I [ ’

111, 110, 101, 100, 011, 010 1,

By Bg Bs By Bj B> By

Observe: t Be gl Co=Ci= 1~ C=loy, = &

» No error (all 7 bits correct) ~~ C = CpC1Cqy =000, =0 \/
» What happens if (exactly) 1 bit, say B; flips?

o
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How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cy B4 @ B5 ® By ® By
C1 = B, ® B3z ® B @ By
B1 ® B3 ® B5 ® By

| 1 c
(1] [ I [ ’
111, 110, 101, 100, 011, 010, 1,

By Bg Bs By Bj B> By

Observe:
» No error (all 7 bits correct) ~~ C = CpC1Cqy =000, =0 \/
» What happens if (exactly) 1 bit, say B; flips?
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How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

C, = By®Bs®@Bs®B; = 0
!
| | | Cq =B2€BB3®36€BB7?0
Co = Bi®B;®Bs®By = 0
(Tl [ I [ o ’
111, 110, 101, 100, 011, 010, 001

By Bg Bs By Bj B> By

Observe:
» No error (all 7 bits correct) ~~ C = CpC1Cqy =000, =0 \/
» What happens if (exactly) 1 bit, say B; flips?

Cj =1 iff jthbitin binary representation of i is 1] ~+ C encodes position of error!




(7, 4) Hamming Code

» How can we turn this into a code?

( [ [ [

11 [ [ 1 r
111, 110, 101, 100, 011, 010, 001,
B; Bs Bs By Bz By B

B4 @& Bs @ Bg & By
B, & B3 & B¢ & By
B1® B3 & B; & By

e 9

10



(7, 4) Hamming Code

» How can we turn this into a code?

(6]
C1
[ [ [
“f | r 71 — Co
111, 110, 101, 100, 011, 01
B; Bs Bs By B3 2 B Bi

B4 @& Bs @ Bg & By
B, & B3 & B¢ & By
B1® B3 & B; & By

I1=1l=Il=
o OO

» By, B, and Bj occur only in one constraint each ~~ define them based on rest!

» (7,4) Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
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(7, 4) Hamming Code

» How can we turn this into a code?

(6]
C1
( ( (
“f i r T r Co
111, 110, 101, 100, 011, 010, 001,
By Be Bs By Bj B

B4 @& Bs @ Bg & By
B, & B3 & B¢ & By
B1® B3 & B; & By

I1=1l=Il=
o OO

D3 D, Dy Dy

» By, B, and Bj occur only in one constraint each ~~ define them based on rest!

» (7,4) Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
2. copy D3D>D1Dg to B7B¢BsB3

10



(7, 4) Hamming Code

» How can we turn this into a code?

ﬁ [ [ [
11 [ [ 1 r
111, 110, 101, 100, 011, 01
B, B¢ Bs By Bz By B

AN \
SR

Ds 58 D, B8 D; RSy Do S R

P,
Py
Py

» By, B, and Bj occur only in one constraint each ~~

» (7,4) Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
2. copy D3D>D1Dg to B7B¢BsB3
3. compute P,P1Py = B4ByB; so that C =0

B4 @& Bs @ Bg & By
B, & B3 & B¢ & By
B1® B3 & B; & By

I1=1l=Il=
o OO

D3 @& Dy @ D,
D3 @& Dy @ Dy
D3 @ D1 & Dy

define them based on rest!



(7, 4) Hamming Code

» How can we turn this into a code?

ﬁ ( ([
11 [ [ [
111, 110, 101, 100, 011, 01 1,
By Bg Bs By Bj B> By
\ A\N \\ 3
N\ X, =
S [ ) 4
\2 ¥ 12
Ds D Dy P; Dy Py Py

C2=B469B569B6€BB7%0
Cq =B2@33®B6@B7$0
Co = Bi1®B3®Bs®By =0
P, = D3® Dy @ D,

P1 = D3® D, @ Dy
Py = D3 @ D, & Dy

» By, B, and Bj occur only in one constraint each ~~ define them based on rest!

» (7,4) Hamming Code — Encoding

1. Given: message D3D,D1Dy of length k = 4

2. copy D3D>D1Dg to B7B¢BsB3
3. compute P,P1Py = B4ByB; so that C =0
4

. send D3D>D1P>DyP1Py

10



(7, 4) Hamming Code — Decoding

» (7,4) Hamming Code — Decoding

1
2%
3.

Given: block ByBsB5B4B3ByB1 of lengthn =7
compute C (as above)

if C = 0 no (detectable) error occurred
otherwise, flip B¢ (the Cth bit was twisted)

return 4-bit message ByBgB5B3

11



Clicker Question

What is the code distance of (7, 4) Hamming code?

(a) 0 () 4
(8) 1 (F) 5
(c) 2 (6) 6
(D) 3 (H) 27
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Clicker Question

What is the code distance of (7, 4) Hamming code?

(A) 8 (E) 4
(8) + (F) s
(c) 2 () 6
(p) 3y (H) ==
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(7, 4) Hamming Code — Properties !
k “n
» Hamming bound: 2z 2 Z ( ?)

» 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~ each codeword covers 8 of all possible 7-bit strings

> 24.23 =97 ., exactly cover space of 7-bit strings

WA
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(7, 4) Hamming Code — Properties

» Hamming bound:
» 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~ each codeword covers 8 of all possible 7-bit strings

> 24.23 =97 ., exactly cover space of 7-bit strings

» distance d = 3

» can correct any 1-bit error

» How about 2-bit errors?

> We can detect that something went wrong.

» But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

» Variant: store one additional parity bit for entire block

~+ Can detect any 2-bit error, but not correct it.

12



Hamming Codes — General recipe

> construction can be generalized:
» Start with n = 2¢ — 1 bits for £ € N (we had ¢ = 3)
» use the ¢ bits whose index is a power of 2 as parity bits
» the other n — ( are data bits

e
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Hamming Codes — General recipe

> construction can be generalized:

» Start with n = 2¢ — 1 bits for £ € N (we had ¢ = 3)
» use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

[b simple and efficient coding / decoding
[ﬁ)] fairly space-efficient

13



Outlook
> Indeed: (2/-1, 2/~¢—1) Hamming Code is “perfect” code

~ cannot use fewer bits . . . = matches Hamming lower bound

> if message length is 20 —¢—1forl e Ns,

i.e, oneof1,4,11,26,57,120,247,502,1013, . ..

» and we want to correct 1-bit errors
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Outlook

> Indeed: (2/-1, 2/~¢—1) Hamming Code is “perfect” code

~ cannot use fewer bits . . . = matches Hamming lower bound

> if message length is 20— ¢ —1forfeNs»
i.e.,,oneof1,4,11,26,57,120,247,502,1013, ...

» and we want to correct 1-bit errors

» For other scenarios, finding good codes is an active research area

» information theory predicts that almost all randomly chosen codes are good(!)
> but these are inefficient to decode

~ clever tricks and constructions needed

14



