ALGORITHMS ${ }^{\text {E FFFICIENT }}$ CIENTALGORITHMS \$EFFI EFFICIENTALGORITHMS $\$$ ENTALGORITHMS\$EFFICI FFICIENTALGORITHMS F E FICIENTALGORITHMS C EF GORITHMS\$EFFICIENTAL

Error-Correcting Codes

16 November 2023
Sebastian Wild

Learning Outcomes

1. Understand the context of error-prone communication.
2. Understand concepts of error-detecting codes and error-correcting codes.
3. Know and understand the terminology of block codes.
4. Know and understand Hamming codes, in particular $(7,4)$ Hamming code.
5. Reason about the suitability of a code for

Unit 6: Error-Correcting Codes

 an application.

Outline

6 Error-Correcting Codes

6.1 Introduction
6.2 Lower Bounds
6.3 Hamming Codes

6.1 Introduction

Noisy Communication

- most forms of communication are "noisy"
- humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

Noisy Communication

- most forms of communication are "noisy"
- humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- How do humans cope with that?
- slow down and/or speak up
- ask to repeat if necessary

Noisy Communication

- most forms of communication are "noisy"
- humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- How do humans cope with that?
- slow down and/or speak up
- ask to repeat if necessary
- But how is it possible (for us)
 to decode a message in the presence of noise \& errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

Noisy Communication

- most forms of communication are "noisy"
- humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- How do humans cope with that?
- slow down and/or speak up
- ask to repeat if necessary
- But how is it possible (for us)
 to decode a message in the presence of noise \& errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!
\rightsquigarrow We can

1. detect errors "This sentence has aao pi dgsdho gioasghds."
2. correct (some) errors "Tiny errs ar corrrected automaticly." (sometimes too eagerly as in the Chinese Whispers / Telephone)

UGH, PEOPLE ARE MAD AT ME AGAIN BECAUSE THEY DONT READ CAREFULLY. I'M BEING PERFECTIY CLEAR IT'S NOT MY FAULT IF EVERYONE MIINTERPRETS WHAT I SAY.
/ WOW, SOUNDS LIKE YOU'RE GREAT AT COMMUNICATING AN ACTIVITY THAT FAMOUSLY INVOLVES JUST ONE PERSON.

Noisy Channels

- computers: copper cables \&
electromagnetic interference
- transmit a binary string
- but occasionally bits can "flip"
\rightsquigarrow want a robust code

Noisy Channels

- computers: copper cables \&
electromagnetic interference
- transmit a binary string
- but occasionally bits can "flip"
\rightsquigarrow want a robust code

- We can aim at

1. error detection
2. error correction
\rightsquigarrow can request a re-transmit
$\rightsquigarrow \quad$ avoid re-transmit for common types of errors

Noisy Channels

- computers: copper cables \&
electromagnetic interference
- transmit a binary string
- but occasionally bits can "flip"
\rightsquigarrow want a robust code

- We can aim at

1. error detection
\rightsquigarrow can request a re-transmit
2. error correction \rightsquigarrow avoid re-transmit for common types of errors

- This will require redundancy: sending more bits than plain message
\rightsquigarrow goal: robust code with lowest redundancy that's the opposite of compression!

Clicker Question

What do you think, how many extra bits do we need to detect a single bit error in a message of 100 bits?

$$
\rightarrow \text { sli.do/comp526 }
$$

Clicker Question

What do you think, how many extra bits do we need to correct a single bit error in a message of 100 bits?

$$
\rightarrow \text { sli.do/comp526 }
$$

6.2 Lower Bounds

Block codes

- model:
- want to send message $S \in\{0,1\}^{\star}$ (bitstream) across a (communication) channel
- any bit transmitted through the channel might flip (0 $\rightarrow 1$ resp. $1 \rightarrow 0$) no other errors occur (no bits lost, duplicated, inserted, etc.)
- instead of S, we send encoded bitstream $C \in\{0,1\}^{\star}$ sender encodes S to C, receiver decodes C to S (hopefuly)
\rightsquigarrow what errors can be detected and/or corrected?

Block codes

- model:
- want to send message $S \in\{0,1\}^{\star}$ (bitstream) across a (communication) channel
- any bit transmitted through the channel might flip ($0 \rightarrow 1$ resp. $1 \rightarrow 0$)
no other errors occur (no bits lost, duplicated, inserted, etc.)
- instead of S, we send encoded bitstream $C \in\{0,1\}^{\star}$ sender encodes S to C, receiver decodes C to S (hopefuly)
\rightsquigarrow what errors can be detected and/or corrected?
- all codes discussed here are block codes
- divide S into messages $m \in\{0,1\}^{k}$ of k bits each $\quad(k=$ message length $)$
- encode each message (separately) as $C(m) \in\{0,1\}^{n} \quad(n=$ block length, $n \geq k)$
\rightsquigarrow can analyze everything block-wise

Block codes

- model:
- want to send message $S \in\{0,1\}^{\star}$ (bitstream) across a (communication) channel
- any bit transmitted through the channel might flip (0 $\rightarrow 1$ resp. $1 \rightarrow 0$)
no other errors occur (no bits lost, duplicated, inserted, etc.)
- instead of S, we send encoded bitstream $C \in\{0,1\}^{\star}$ sender encodes S to C, receiver decodes C to S (hopefuly)
\rightsquigarrow what errors can be detected and/or corrected?
- all codes discussed here are block codes
- divide S into messages $m \in\{0,1\}^{k}$ of k bits each $\quad(k=$ message length $)$
- encode each message (separately) as $C(m) \in\{0,1\}^{n} \quad(n=$ block length, $n \geq k)$
\rightsquigarrow can analyze everything block-wise
- between 0 and n bits might be flipped

detect?
- how many flipped bits can we correct without retransmit?
i. e. decoding m still possible

Code distance

$$
m \neq m^{\prime} \Longrightarrow C(m) \neq C\left(m^{\prime}\right)
$$

- each block code is an injective function $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$

Code distance

$$
m \neq m^{\prime} \Longrightarrow C(m) \neq C\left(m^{\prime}\right)
$$

- each block code is an injective function $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$
- define $\mathcal{C}=$ set of all codewords $=C\left(\{0,1\}^{k}\right)=\left\{b \in\{0,1\}^{n}: \exists m \in\{0,1\}^{k}: b=C(m)\right\}$
$\rightsquigarrow \mathcal{C} \subseteq\{0,1\}^{n}$
$\left.|\mathcal{C}|=2^{k}\right)$ out of $2^{n} n$-bit strings are valid codewords
- decoding $=$ finding closest valid codeword

Code distance

$$
m \neq m^{\prime} \Longrightarrow C(m) \neq C\left(m^{\prime}\right)
$$

- each block code is an injective function $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$
- define $\mathcal{C}=$ set of all codewords $=C\left(\{0,1\}^{k}\right)$

$$
\begin{aligned}
& d_{H}(\text { 'aba', 'aba') } \\
& =2
\end{aligned}
$$

$\rightsquigarrow \mathcal{C} \subseteq\{0,1\}^{n}$

$$
|\mathcal{C}|=2^{k} \text { out of } 2^{n} n \text {-bit strings are valid codewords }
$$

- decoding $=$ finding closest valid codeword

$$
\begin{aligned}
d_{H}= & \text { \#positions where } \\
& \text { words differ }
\end{aligned}
$$

- distance of code:
$d=$ minimal Hamming distance of any two codewords $=\min _{x, y \in \mathbb{C}} d_{H}(x, y)$

$$
x \neq y
$$

Code distance

$$
m \neq m^{\prime} \Longrightarrow C(m) \neq C\left(m^{\prime}\right)
$$

- each block code is an injective function $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$

(a) m was send, $C(m)=y$
(b) m^{\prime} was sent, $C\left(m^{\prime}\right)=x$ and d bits flipped
- distance of code:

(a) $C(m)=x$ $\operatorname{sen} \in$ Gila as x^{\prime}
(b) $C\left(n^{\prime}\right)=y$ Slip f bits $\leadsto x^{\prime}$

Lower Bounds

- Main advantage of concept of code distance: can prove lower bounds on block length

Lower Bounds

- Main advantage of concept of code distance: can prove lower bounds on block length
Given block length n, message length k, code distance d, we must have:
- Singleton bound: $\quad 2^{k} \leq 2^{n-(d-1)} \rightsquigarrow n \not n \geq k+d-1$
- proof sketch: We have 2^{k} codeswords with distance d
after deleting the first $d-1$ bits, all are still distinct but there are only $2^{n-(d-1)}$ such shorter bitstrings.

Lower Bounds

- Main advantage of concept of code distance: can prove lower bounds on block length

Given block length n, message length k, code distance d, we must have:

- Singleton bound: $\quad 2^{k} \leq 2^{n-(d-1)} \rightsquigarrow n \geq k+d-1$
disjoint "Hammins-balls"
- proof sketch: We have 2^{k} codeswords with distance d after deleting the first $d-1$ bits, all are still distinct but there are only $2^{n-(d-1)}$ such shorter bitstrings.
- Hamming bound: $\quad 2^{k} \leq \frac{2^{n}}{\sum_{f=0}^{\lfloor(d-1) / 2\rfloor}\binom{n}{f}}$

- proof idea: consider "balls" of bitstrings around codewords count bitstrings with Hamming-distance $\leq t=\lfloor(d-1) / 2\rfloor$ correcting t errors means all these balls are disjoint so $2^{k} \cdot$ ball size $\leq 2^{n}$

\rightsquigarrow We will come back to these.

6.3 Hamming Codes

Parity Bit

- simplest possible error-detecting code: add a parity bit

Parity Bit

- simplest possible error-detecting code: add a parity bit

\rightsquigarrow code distance 2
- can detect any single-bit error
(actually, any odd number of flipped bits)
- used in many hardware (communication) protocols
- PCI buses, serial buses
- caches
- early forms of main memory

Parity Bit

- simplest possible error-detecting code: add a parity bit

\rightsquigarrow code distance 2
- can detect any single-bit error
(actually, any odd number of flipped bits)
- used in many hardware (communication) protocols
- PCI buses, serial buses
- caches
- early forms of main memory

0
very simple and cheap
cannot correct any errors

Clicker Question

What do you think, how many extra bits do we need to detect a single bit error in a message of 100 bits?

$$
\rightarrow \text { sli.do/comp526 }
$$

Error-correcting codes

- typical application: heavy-duty server RAM
- bits can randomly flip (e.g., by cosmic rays)
- individually very unlikely, but in always-on server with lots of RAM, it happens! https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Error-correcting codes

- typical application: heavy-duty server RAM
- bits can randomly flip (e.g., by cosmic rays)
- individually very unlikely, but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

Error-correcting codes

- typical application: heavy-duty server RAM
- bits can randomly flip (e.g., by cosmic rays)
- individually very unlikely, but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

- Yes! store every bit three times!
- upon read, do majority vote
- if only one bit flipped, the other two (correct) will still win

Error-correcting codes

- typical application: heavy-duty server RAM
- bits can randomly flip (e.g., by cosmic rays)
- individually very unlikely, but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

- Yes! store every bit three times!
- upon read, do majority vote
- if only one bit flipped, the other two (correct) will still win q triples the cost!

Error-correcting codes

- typical application: heavy-duty server RAM
- bits can randomly flip (e.g., by cosmic rays)
- individually very unlikely, but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

- Yes! store every bit three times!
- upon read, do majority vote
- if only one bit flipped, the other two (correct) will still win q triples the cost!

instead of 200\% (!)
Can do it with 11% extra memory!

How to locate errors?

- Idea: Use several parity bits
- each covers a subset of bits
- clever subsets \rightsquigarrow violated/valid parity bit pattern narrows down error

How to locate errors?

- Idea: Use several parity bits
- each covers a subset of bits
- clever subsets \rightsquigarrow violated/valid parity bit pattern narrows down error
\ flipped bit can be one of the parity bits!

How to locate errors?

- Idea: Use several parity bits
- each covers a subset of bits
- clever subsets \rightsquigarrow violated/valid parity bit pattern narrows down error \ flipped bit can be one of the parity bits!
- Consider $n=7$ bits B_{1}, \ldots, B_{7} with the following constraints:

How to locate errors?

- Idea: Use several parity bits
- each covers a subset of bits
- clever subsets \rightsquigarrow violated/valid parity bit pattern narrows down error
\ flipped bit can be one of the parity bits!
- Consider $n=7$ bits B_{1}, \ldots, B_{7} with the following constraints:

Observe:

$$
{ }^{4} B_{5} \text { flipped } C_{2}=C_{0}=1 \sim C=101_{2}=5
$$

- No error (all 7 bits correct) $\rightsquigarrow C=C_{2} C_{1} C_{0}=000_{2}=0 \sqrt{ }$
- What happens if (exactly) 1 bit, say B_{i} flips?

How to locate errors?

- Idea: Use several parity bits
- each covers a subset of bits
- clever subsets \rightsquigarrow violated/valid parity bit pattern narrows down error
\ flipped bit can be one of the parity bits!
- Consider $n=7$ bits B_{1}, \ldots, B_{7} with the following constraints:

Observe:

- No error (all 7 bits correct) $\rightsquigarrow C=C_{2} C_{1} C_{0}=000{ }_{2}=0 \downarrow$
- What happens if (exactly) 1 bit, say B_{i} flips?

$$
C_{j}=1 \mathrm{iff} j \text { th bit in binary representation of } i \text { is } 1
$$

How to locate errors?

- Idea: Use several parity bits
- each covers a subset of bits
- clever subsets \rightsquigarrow violated/valid parity bit pattern narrows down error
\ flipped bit can be one of the parity bits!
- Consider $n=7$ bits B_{1}, \ldots, B_{7} with the following constraints:

Observe:

- No error (all 7 bits correct) $\rightsquigarrow C=C_{2} C_{1} C_{0}=0002=0 \downarrow$
- What happens if (exactly) 1 bit, say B_{i} flips?

$$
C_{j}=1 \text { iff } j \text { th bit in binary representation of } i \text { is } 1
$$

(7, 4) Hamming Code

- How can we turn this into a code?

(7, 4) Hamming Code

- How can we turn this into a code?

- B_{4}, B_{2} and B_{1} occur only in one constraint each \rightsquigarrow define them based on rest!
- $(7,4)$ Hamming Code - Encoding

1. Given: message $D_{3} D_{2} D_{1} D_{0}$ of length $k=4$

(7, 4) Hamming Code

- How can we turn this into a code?

- B_{4}, B_{2} and B_{1} occur only in one constraint each \rightsquigarrow define them based on rest!
- $(7,4)$ Hamming Code - Encoding

1. Given: message $D_{3} D_{2} D_{1} D_{0}$ of length $k=4$
2. copy $D_{3} D_{2} D_{1} D_{0}$ to $B_{7} B_{6} B_{5} B_{3}$

(7, 4) Hamming Code

- How can we turn this into a code?

- B_{4}, B_{2} and B_{1} occur only in one constraint each \rightsquigarrow define them based on rest!
- $(7,4)$ Hamming Code - Encoding

1. Given: message $D_{3} D_{2} D_{1} D_{0}$ of length $k=4$
2. copy $D_{3} D_{2} D_{1} D_{0}$ to $B_{7} B_{6} B_{5} B_{3}$
3. compute $P_{2} P_{1} P_{0}=B_{4} B_{2} B_{1}$ so that $C=0$

(7, 4) Hamming Code

- How can we turn this into a code?

- B_{4}, B_{2} and B_{1} occur only in one constraint each \rightsquigarrow define them based on rest!
- $(7,4)$ Hamming Code - Encoding

1. Given: message $D_{3} D_{2} D_{1} D_{0}$ of length $k=4$
2. copy $D_{3} D_{2} D_{1} D_{0}$ to $B_{7} B_{6} B_{5} B_{3}$
3. compute $P_{2} P_{1} P_{0}=B_{4} B_{2} B_{1}$ so that $C=0$
4. send $D_{3} D_{2} D_{1} P_{2} D_{0} P_{1} P_{0}$

(7, 4) Hamming Code - Decoding

- $(7,4)$ Hamming Code - Decoding

1. Given: block $B_{7} B_{6} B_{5} B_{4} B_{3} B_{2} B_{1}$ of length $n=7$
2. compute C (as above)
3. if $C=0$ no (detectable) error occurred
otherwise, flip B_{C} (the C th bit was twisted)
4. return 4-bit message $B_{7} B_{6} B_{5} B_{3}$

Clicker Question

What is the code distance of $(7,4)$ Hamming code?

(A) 0
(E) 4
(B) 1
(F) 5
(C) 2
(G) 6
(D) 3
(H) ≥ 7

\rightarrow sli.do/comp526

Clicker Question

What is the code distance of $(7,4)$ Hamming code?

(A) \because
(E) 4
(B) 4
(F) 5
(C) 2
(G) 6
(D) $3 \sqrt{ }$
$\mathrm{H} \geq 7$

(7, 4) Hamming Code - Properties

- Hamming bound:
- 2^{4} valid 7 -bit codewords (on per message)
- any of the 7 single-bit errors corrected towards valid codeword
\rightsquigarrow each codeword covers 8 of all possible 7-bit strings
- $2^{4} \cdot 2^{3}=2^{7} \rightsquigarrow$ exactly cover space of 7-bit strings

(7, 4) Hamming Code - Properties

- Hamming bound:
- 2^{4} valid 7 -bit codewords (on per message)
- any of the 7 single-bit errors corrected towards valid codeword
\rightsquigarrow each codeword covers 8 of all possible 7-bit strings
- $2^{4} \cdot 2^{3}=2^{7} \rightsquigarrow$ exactly cover space of 7-bit strings
- distance $d=3$
- can correct any 1-bit error

(7, 4) Hamming Code - Properties

- Hamming bound:
- 2^{4} valid 7 -bit codewords (on per message)
- any of the 7 single-bit errors corrected towards valid codeword
\rightsquigarrow each codeword covers 8 of all possible 7-bit strings
- $2^{4} \cdot 2^{3}=2^{7} \rightsquigarrow$ exactly cover space of 7-bit strings
- distance $d=3$
- can correct any 1-bit error

- How about 2-bit errors?
- We can detect that something went wrong.
- But: above decoder mistakes it for a (different!) 1-bit error and "corrects" that
- Variant: store one additional parity bit for entire block
\rightsquigarrow Can detect any 2-bit error, but not correct it.

Hamming Codes - General recipe

- construction can be generalized:
- Start with $n=2^{\ell}-1$ bits for $\ell \in \mathbb{N} \quad$ (we had $\ell=3$)
- use the ℓ bits whose index is a power of 2 as parity bits
- the other $n-\ell$ are data bits

Hamming Codes - General recipe

- construction can be generalized:
- Start with $n=2^{\ell}-1$ bits for $\ell \in \mathbb{N} \quad$ (we had $\ell=3$)
- use the ℓ bits whose index is a power of 2 as parity bits
- the other $n-\ell$ are data bits
- Choosing $\ell=7$ we can encode entire word of memory (64 bit) with 11% overhead (using only 64 out of the 120 possible data bits)

Hamming Codes - General recipe

- construction can be generalized:
- Start with $n=2^{\ell}-1$ bits for $\ell \in \mathbb{N} \quad$ (we had $\ell=3$)
- use the ℓ bits whose index is a power of 2 as parity bits
- the other $n-\ell$ are data bits
- Choosing $\ell=7$ we can encode entire word of memory (64 bit) with 11% overhead (using only 64 out of the 120 possible data bits)
\leftrightarrow
simple and efficient coding / decoding
0
fairly space-efficient

Outlook

- Indeed: $\left(2^{\ell}-1,2^{\ell}-\ell-1\right)$ Hamming Code is "perfect" code
\rightsquigarrow cannot use fewer bits . . .
$=$ matches Hamming lower bound
- if message length is $2^{\ell}-\ell-1$ for $\ell \in \mathbb{N}_{\geq 2}$
i. e., one of $1,4,11,26,57,120,247,502,1013, \ldots$
- and we want to correct 1-bit errors

Outlook

- Indeed: $\left(2^{\ell}-1,2^{\ell}-\ell-1\right)$ Hamming Code is "perfect" code
\rightsquigarrow cannot use fewer bits ...
$=$ matches Hamming lower bound
- if message length is $2^{\ell}-\ell-1$ for $\ell \in \mathbb{N}_{\geq 2}$
i. e., one of $1,4,11,26,57,120,247,502,1013, \ldots$
- and we want to correct 1-bit errors
- For other scenarios, finding good codes is an active research area
- information theory predicts that almost all randomly chosen codes are good(!)
- but these are inefficient to decode
\rightsquigarrow clever tricks and constructions needed

