

COMP526 (Fall 2023) University of Liverpool version 2023-11-16 22:13

Learning Outcomes

- **1.** Know and apply *parallelization strategies* for embarrassingly parallel problems.
- 2. Identify *limits of parallel speedups*.
- 3. Understand and use the *parallel random-access-machine* model in its different variants.
- **4.** Be able to *analyze* and compare simple shared-memory parallel algorithms by determining *parallel time and work*.
- **5.** Understand efficient parallel *prefix sum* algorithms.
- *6.* Be able to devise high-level description of *parallel quicksort and mergesort* methods.

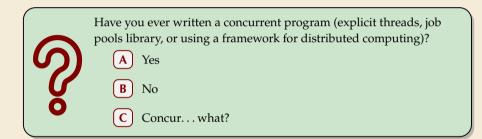
Unit 7: Parallel Algorithms

Outline

7 Parallel Algorithms

- 7.1 Parallel Computation
- 7.2 Parallel String Matching
- 7.3 Parallel Primitives
- 7.4 Parallel Sorting

7.1 Parallel Computation



Types of parallel computation

£££ can't buy you more time . . . but more computers!

→ Challenge: Algorithms for *parallel* computation.

Types of parallel computation

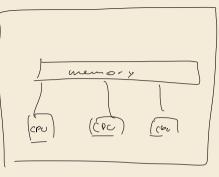
£££ can't buy you more time . . . but more computers! ~ Challenge: Algorithms for *parallel* computation.

There are two main forms of parallelism:

- **1. shared-memory parallel computer** ← *focus of today*
 - ▶ *p processing elements* (PEs, processors) working in parallel
 - single big memory, accessible from every PE
 - communication via shared memory
 - ▶ think: a big server, 128 CPU cores, terabyte of main memory

2. distributed computing

- *p* PEs working in parallel
- each PE has private memory
- communication by sending **messages** via a network
- think: a cluster of individual machines



PRAM – Parallel RAM

▶ extension of the RAM model (recall Unit 1)

- the *p* PEs are identified by ids $0, \ldots, p-1$ (
 - like w (the word size), p is a parameter of the model that can grow with n

RAMO

RA M

- $p = \Theta(n)$ is not unusual maaany processors!
- the PEs all independently run the same RAM-style program (they can use their id there)
- ▶ each PE has its own registers, but MEM is shared among all PEs
- computation runs in synchronous steps: in each time step, every PE executes one instruction

PRAM – Parallel RAM

extension of the RAM model (recall Unit 1)

- the *p* PEs are identified by ids $0, \ldots, p-1$
 - like w (the word size), p is a parameter of the model that can grow with n
 - $p = \Theta(n)$ is not unusual maaany processors!
- the PEs all independently run the same RAM-style program (they can use their id there)
- each PE has its own registers, but MEM is shared among all PEs
- computation runs in synchronous steps: in each time step, every PE executes one instruction
- ► As for RAM:
 - assume a basic "operating system"
 - → write algorithms in pseudocode instead of RAM assembly
 - ▶ NEW: loops and commands can be run "in parallel" (examples coming up)

PRAM – Conflict management

Problem: What if several PEs simultaneously overwrite a memory cell?

- EREW-PRAM (exclusive read, exclusive write) any parallel access to same memory cell is forbidden
 - v cell is **forbidden** (crash if happens)

CREW-PRAM (concurrent read, exclusive write) parallel write access to same memory cell is forbidden, but reading is fine

- CRCW-PRAM (concurrent read, concurrent write) concurrent access is allowed, need a rule for write conflicts:
 - common CRCW-PRAM: all concurrent writes to same cell must write same value
 - arbitrary CRCW-PRAM: some unspecified concurrent write wins
 - ▶ (more exist . . .)

no single model is always adequate, but our default is CREW

PRAM – Execution costs

Cost metrics in PRAMs

- **space:** total amount of accessed memory
- time: number of steps till all PEs finish sometimes called *depth* or *span*

work: total #instructions executed on **all** PEs

assuming sufficiently many PEs!

PRAM – Execution costs

Cost metrics in PRAMs

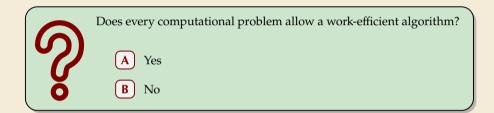
- space: total amount of accessed memory
- time: number of steps till all PEs finish sometimes called *depth* or *span*

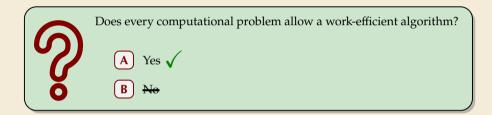
assuming sufficiently many PEs!

work: total #instructions executed on **all** PEs

Holy grail of PRAM algorithms:

- minimal time (=span)
- work (asymptotically) no worse than running time of best sequential algorithm
 "work-efficient" algorithm: work in same Θ-class as best sequential



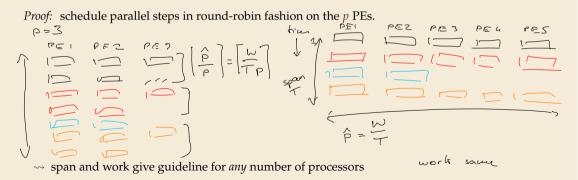


The number of processors

Hold on, my computer does not have $\Theta(n)$ processors! Why should I care for span and work!?

Theorem 7.1 (Brent's Theorem)

If an algorithm has span *T* and work *W* (for an arbitrarily large number of processors), it can be run on a PRAM with *p* PEs in time $O(T + \frac{W}{p})$ (and using O(W) work).



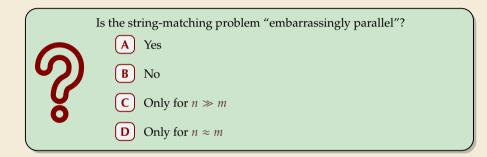
$$\mp rounds \ominus \left(\mp + \frac{\omega}{p} \right)$$

$$\mp \cdot \left[\frac{\omega}{\tau_{p}} \right] \leq \mp \left(\frac{\omega}{\tau_{p}} + 1 \right) = \frac{\omega}{p} + 7$$

7.2 Parallel String Matching

Embarrassingly Parallel

- A problem is called "embarrassingly parallel" if it can immediately be split into many, small subtasks that can be solved completely independently of each other
- ► Typical example: sum of two large matrices (all entries independent)
- \rightsquigarrow best case for parallel computation (simply assign each processor one subtask)
- Sorting is not embarrassingly parallel
 - ▶ no obvious way to define many *small* (= efficiently solvable) subproblems
 - ▶ but: some subtasks of our algorithms are (stay tuned ...)



Parallel string matching – Easy?

- We have seen a plethora of string matching methods in Unit 4
- But all efficient methods seem inherently sequential Indeed, they became efficient only after building on knowledge from previous steps!

Sounds like the *opposite* of parallel!

→ How well can we parallelize string matching?

Here: string matching = find *all* occurrences of *P* in *T* (more natural problem for parallel) always assume $m \le n$

Parallel string matching – Easy?

- ▶ We have seen a plethora of string matching methods in Unit 4
- But all efficient methods seem inherently sequential Indeed, they became efficient only after building on knowledge from previous steps!

Sounds like the *opposite* of parallel!

→ How well can we parallelize string matching?

Here: string matching = find *all* occurrences of P in T (more natural problem for parallel) always assume $m \le n$

Subproblems in string matching:

- string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Parallel string matching – Brute force

Check all guesses in parallel

```
1procedure parallelBruteForce(T[0..n), P[0..m))2for i := 0, ..., n - m - 1 do in parallel only difference to normal brute force!3for j := 0, ..., m - 1 do4if T[i + j] \neq P[j] then break inner loop5if j := m then report match at i6end parallel for
```

• PE k is executing the loop iteration where i = k.

- → requires that all iterations can be done **independently**!
- ▶ Different PEs work in lockstep (synchronized after each instruction)
- similar to OpenMP #pragma omp parallel for
- ▶ checking whether *no* match was found by *any* PE more effort → ... stay tuned

Parallel string matching – Brute force

Check all guesses in parallel

```
1procedure parallelBruteForce(T[0..n), P[0..m))2for i := 0, ..., n - m - 1 do in parallel only difference to normal brute force!3for j := 0, ..., m - 1 do4if T[i + j] \neq P[j] then break inner loop5if j := m then report match at i6end parallel for
```

• PE k is executing the loop iteration where i = k.

- → requires that all iterations can be done **independently**!
- ▶ Different PEs work in lockstep (synchronized after each instruction)
- similar to OpenMP #pragma omp parallel for

▶ checking whether *no* match was found by *any* PE more effort → ... stay tuned

Work: $\Theta((n-m)m) \rightsquigarrow$ not great ... much more than best sequential

Parallel string matching – Blocking

Divide *T* into overlapping blocks of 2m - 1 characters: T[0..2m - 1), T[m..3m - 1), T[2m..4m - 1), T[3m..5m - 1)...

Search all blocks in parallel, each using efficient sequential method

- procedure blockingStringMatching(T[0..n), P[0..m))
- for $b := 0, \ldots, \lceil n/m \rceil$ do in parallel

```
<sup>3</sup> result := KMP(T[bm .. (b+1)m - 1), P)
```

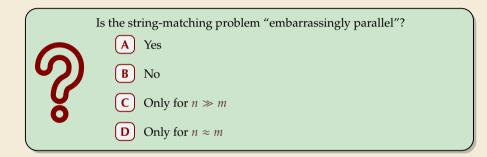
- $_{4}$ if result \neq NO_MATCH then report match at result
- 5 end parallel for

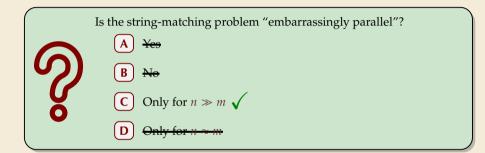
Parallel string matching – Blocking

- Divide *T* into **overlapping** blocks of 2m 1 characters: T[0..2m 1), T[m..3m 1), T[2m..4m 1), T[3m..5m 1)...
 - Search all blocks in parallel, each using efficient sequential method
 - procedure blockingStringMatching(T[0..n), P[0..m))
 - for $b := 0, \ldots, \lceil n/m \rceil$ do in parallel 2
 - result := $\operatorname{KMP}(T[bm ... (b+1)m 1), P)$ O(m + 2m) = O(m)3
 - if result \neq NO MATCH then report match at result 0 \odot 4
 - end parallel for 5
 - → Time:
 - loop body has text of length n' = 2m 1 and pattern of length m
 - \rightsquigarrow KPM runtime $\Theta(n'+m) = \Theta(m)$
 - \rightsquigarrow Work: $\Theta(\frac{n}{m} \cdot m) = \Theta(n) \rightsquigarrow$ work efficient!

KMP noumos fine O(u+m) for T(O.n) PTO. m)

 $O(\tilde{-})$





Parallel string matching – Discussion

very simple methods

 \square could even run distributed with access to part of *T*

 \square parallel speedup only for $m \ll n$

Parallel string matching – Discussion

very simple methods

 \bigcirc could even run distributed with access to part of *T*

 \bigcap parallel speedup only for $m \ll n$

work-efficient methods with better parallel time possible?

 \rightsquigarrow must genuinely parallelize the matching process! (and the preprocessing of the pattern)

→ needs new ideas (much more complicated, but possible!)

Parallel string matching – Discussion

very simple methods

 \square could even run distributed with access to part of *T*

 \bigcap parallel speedup only for $m \ll n$

work-efficient methods with better parallel time possible?

 $\rightsquigarrow must genuinely parallelize the matching process! \qquad (and the preprocessing of the pattern)$

→ needs new ideas (much more complicated, but possible!)

Parallel string matching – State of the art:

- ► *O*(log *m*) time & work-efficient parallel string matching (very complicated)
 - this is optimal for CREW-PRAM
- ▶ on CRCW-PRAM: matching part even in *O*(1) time (easy)

but preprocessing requires $\Theta(\log \log m)$ time (very complicated)

7.3 Parallel Primitives

Building blocks

- Most nontrivial problems need tricks to be parallelized
- Some versatile building blocks are known that help in many problems
- --- We study some of them now, before we apply them to *parallel sorting*

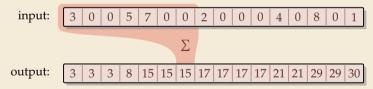
The following problems might not look natural at first sight . . . but turn out to be good abstractions. \rightarrow *bear with me*

Prefix sums

Prefix-sum problem (also: cumulative sums, running totals)

- Given: array A[0..n) of numbers
- ▶ Goal: compute all prefix sums A[0] + · · · + A[i] for i = 0, . . . , n − 1 may be done "in-place", i. e., by overwriting A

Example:





Prefix sums – Sequential

- sequential solution does n 1 additions
- but: cannot parallelize them!
 data dependencies!
- $\rightsquigarrow need \ a \ different \ approach$

procedure prefixSum(A[0..n))

2 **for**
$$i := 1, ..., n - 1$$
 do

$$A[i] := A[i-1] + A[i]$$

Prefix sums – Sequential

- sequential solution does n 1 additions
- but: cannot parallelize them!
 data dependencies!
- \rightsquigarrow need a different approach

Let's try a simpler problem first.

Excursion: Sum

- Given: array A[0..n) of numbers
- ► Goal: compute A[0] + A[1] + · · · + A[n 1] (solved by prefix sums)

¹ **procedure** prefixSum(A[0..n)) ² **for** i := 1, ..., n - 1 **do** ³ A[i] := A[i-1] + A[i]

Prefix sums – Sequential

- sequential solution does n 1 additions
- but: cannot parallelize them!
 data dependencies!
- → need a different approach

Let's try a simpler problem first.

Excursion: Sum

- Given: array A[0..n) of numbers
- ► Goal: compute A[0] + A[1] + · · · + A[n 1] (solved by prefix sums)

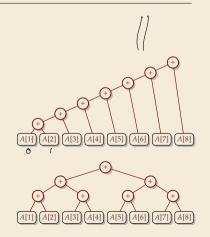
Any algorithm *must* do n - 1 binary additions

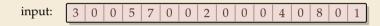
 \rightsquigarrow Height of tree = parallel time!

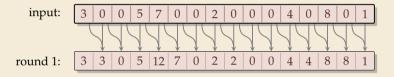
procedure prefixSum(A[0..n))

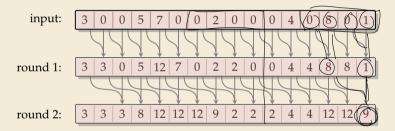
for
$$i := 1, ..., n - 1$$
 do

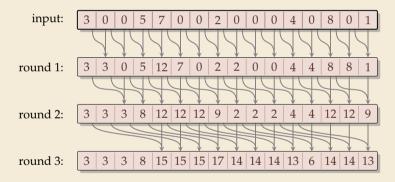
$$A[i] := A[i-1] + A[i]$$

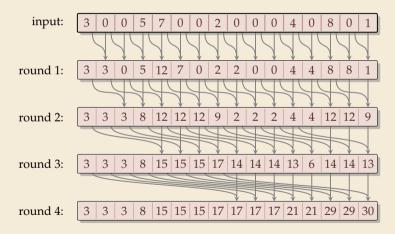


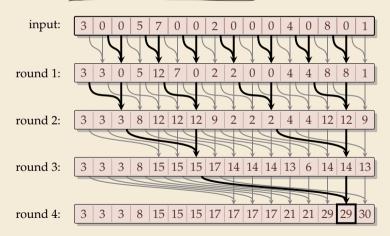












Parallel prefix sums – Code

```
    can be realized in-place (overwriting A)
    assumption: in each parallel step, all reads precede all writes
    veeds explicit
synchronization
```

procedure parallelPrefixSums(A[0..n)) for $r := 1, \ldots \lceil \lg n \rceil$ do 2 *step* := 2^{r-1} 3 **for** $i := step, \ldots n - 1$ **do in parallel** \bigcirc 4 $x := A[i] + A[i - step] \qquad \qquad \bigcirc (1) \qquad \bigcirc (1) \qquad \bigcirc (2) \qquad (2) \qquad \bigcirc (2) \qquad (2) \qquad \bigcirc (2) \qquad (2$ 5 6 end parallel for 7 end for 8

Parallel prefix sums – Analysis

► Time:

- all additions of one round run in parallel
- ▶ $\lceil \lg n \rceil$ rounds
- $\rightsquigarrow \Theta(\log n)$ time best possible!

► Work:

- ▶ $\geq \frac{n}{2}$ additions in all rounds (except maybe last round)
- $\rightsquigarrow \Theta(n \log n)$ work
- more than the $\Theta(n)$ sequential algorithm!

Parallel prefix sums – Analysis

► Time:

- all additions of one round run in parallel
- ▶ $\lceil \lg n \rceil$ rounds
- $\rightsquigarrow \Theta(\log n)$ time best possible!

► Work:

- ▶ $\geq \frac{n}{2}$ additions in all rounds (except maybe last round)
- $\rightsquigarrow \Theta(n \log n)$ work
- more than the $\Theta(n)$ sequential algorithm!
- ► Typical trade-off: greater parallelism at the expense of more overall work

Parallel prefix sums – Analysis

► Time:

- all additions of one round run in parallel
- ▶ $\lceil \lg n \rceil$ rounds
- $\rightsquigarrow \Theta(\log n)$ time best possible!

► Work:

- $\blacktriangleright \geq \frac{n}{2}$ additions in all rounds (except maybe last round)
- $\rightsquigarrow \Theta(n \log n)$ work
- more than the $\Theta(n)$ sequential algorithm!
- ► Typical trade-off: greater parallelism at the expense of more overall work

► For prefix sums:

- can actually get $\Theta(n)$ work in *twice* that time!
- $\rightsquigarrow~$ algorithm is slightly more complicated
- ▶ instead here: linear work in *thrice* the time using "blocking trick"

Work-efficient parallel prefix sums

_recall string matching!

standard trick to improve work: compute small blocks sequentially

- 1. Set $b := \lceil \lg n \rceil$ n = 12 in example to $\lceil l_5 n \rceil = 4 = 5$
- **2.** For blocks of *b* consecutive indices, i. e., *A*[0..*b*), *A*[*b*..2*b*), . . . **do in parallel**:
 - ▶ compute local prefix sums with fast **sequential** algorithm
- **3.** Use previous work-inefficient parallel algorithm only on **rightmost elements** of block, i. e., to compute prefix sums of *A*[*b* − 1], *A*[2*b* − 1], *A*[3*b* − 1], . . .
- **4.** For blocks *A*[0..*b*), *A*[*b*..2*b*), . . . do in parallel: Add block-prefix sums to local prefix sums

Analysis:

► Time:

- ► 2. & 4.: $\Theta(b) = \Theta(\log n)$ time
- ► 3. $\Theta(\log(n/b)) = \Theta(\log n)$ time

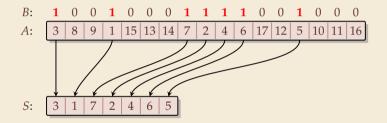
► Work:

- ▶ 2. & 4.: $\Theta(b)$ per block × $\lceil \frac{n}{b} \rceil$ blocks $\rightsquigarrow \Theta(n)$
- ► 3. $\Theta(\frac{n}{b}\log(\frac{n}{b})) = \Theta(n)$

Compacting subsequences

How do prefix sums help with sorting? one more step to go ...

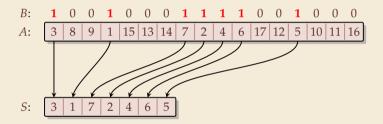
Goal: Compact a subsequence of an array



Compacting subsequences

How do prefix sums help with sorting? one more step to go ...

Goal: Compact a subsequence of an array

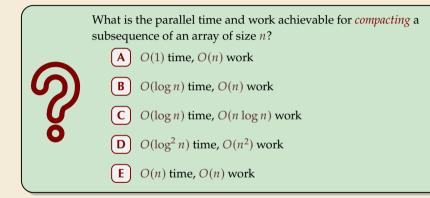


Use prefix sums on bitvector *B*

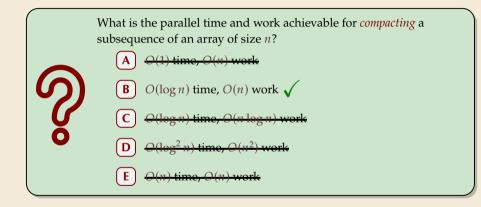
 \rightsquigarrow offset of selected cells in *S*

$$C := B // deep copy of B O(O_{GG} c_{1}) = good2 parallelPrefixSums(C) O(c_{1}) = good3 for $j := 0, ..., n - 1$ do in parallel
4 if $B[j] = 1$ then $S[C[j] - 1] := A[j] O(1)$ o(c_{1}) = good
5 end parallel for$$

Clicker Question



Clicker Question



7.4 Parallel Sorting

Parallel Mergesort

Recursive calls can run in parallel (data independent)!

Parallel Mergesort

- Recursive calls can run in parallel (data independent)!
- ▶ how about merging sorted halves *A*[*l*..*m*) and *A*[*m*..*r*)?
- Our pointer-based sequential method seems hard to parallelize
- $\rightsquigarrow~$ Must treat all elements independently.

Parallel Mergesort

- Recursive calls can run in parallel (data independent)!
- ▶ how about merging sorted halves *A*[*l*..*m*) and *A*[*m*..*r*)?
- Our pointer-based sequential method seems hard to parallelize
- → Must treat all elements independently.
 - correct position of x in sorted output = rank of x breaking ties by position in π

#elements < x

- # elements $\leq x$ = # elements from A[l..m) that are $\leq x$ + # elements from A[m..r) that are $\leq x$
- rank in own run is simply the index of x in that run!
- ▶ find rank in **other** run by *binary search*
- \rightsquigarrow can move *x* directly to correct position

 \mathbf{x}

Parallel Mergesort – Code

```
procedure parMergesort(A[l..r), buf)
        m := l + \lfloor (r - l)/2 \rfloor
2
        in parallel { parMergesort(A[l..m), buf), parMergesort(A[m..r), buf) }
3
        parallelMerge(A[1..m), A[m..r), buf)
4
       for i = l, \ldots, r - 1 do in parallel // copy back in parallel
5
            A[i] := buf[i]
6
                                                                                        parallel Merse ( = = = )
       end parallel for
7
                                                                     , sequential ( ~ span allos n)
8
   procedure parallelMerge(A[l..m), A[m..r), buf)
9
            i = 1, ..., m - 1 do in parallel

r := (i - l) + \text{binarySearch}(A[m..r), A[i]) // binarySearch(A, x) returns #elements < x in A O(( logn))

<math>\cdots o_i l_i
        for i = 1, \ldots, m - 1 do in parallel
10
11
12
       end parallel for
13
       for j = m, \ldots, r - 1 do in parallel
14
            r := \text{binarySearch}(A[1..m), A[j]) + (j - m)
15
            buf[r] = A[i]
16
       end parallel for
17
```

Parallel mergesort – Analysis

► Time:

- merge: $\Theta(\log n)$ from binary search, rest O(1)
- mergesort: depth of recursion tree is $\Theta(\log n)$ -
- \rightsquigarrow total time $O(\log^2(n))$

Work:

• merge: *n* binary searches $\rightsquigarrow \Theta(n \log n)$

 \rightsquigarrow mergesort: $O(n \log^2(n))$ work

Parallel mergesort – Analysis

Time:

- merge: $\Theta(\log n)$ from binary search, rest O(1)
- mergesort: depth of recursion tree is $\Theta(\log n)$
- \rightsquigarrow total time $O(\log^2(n))$

Work:

• merge: *n* binary searches $\rightsquigarrow \Theta(n \log n)$ \rightsquigarrow mergesort: $O(n \log^2(n))$ work

- work can be reduced to $\Theta(n)$ for merge (complicated!)
 - do full binary searches only for regularly sampled elements
 - ranks of remaining elements are sandwiched between sampled ranks
 - use a sequential method for small blocks, treat blocks in parallel
 - (details omitted)

Parallel Quicksort

Let's try to parallelize Quicksort

- ► As for Mergesort, recursive calls can run in parallel
- our sequential partitioning algorithm seems hard to parallelize

Parallel Quicksort

Let's try to parallelize Quicksort

- ► As for Mergesort, recursive calls can run in parallel
- our sequential partitioning algorithm seems hard to parallelize
- but can split partitioning into *phases*:
 - **1. comparisons:** compare all elements to pivot (in parallel), store result in bitvectors
 - 2. compute prefix sums of bit vectors (in parallel as above)
 - 3. compact subsequences of small and large elements (in parallel as above)

Parallel Quicksort – Code

```
procedure parOuicksort(A[l..r))
       b := choosePivot(A[l..r))
2
      i := parallelPartition(A[l..r), b)
3
       in parallel { parOuicksort(A[1..i)), parOuicksort(A[i + 1..r)) }
4
5
6 procedure parallelPartition(A[0..n), b)
       swap(A[n-1], A[b]); p := A[n-1]
7
      for i = 0, \ldots, n - 2 do in parallel
8
           S[i] := [A[i] \le p]  // S[i] is 1 or 0
9
           L[i] := 1 - S[i]
10
      end parallel for
11
       in parallel { parallelPrefixSum(S[0..n-2]); parallelPrefixSum(L[0..n-2]) }
12
13
      i := S[n-2] + 1
      for i = 0, \ldots, n - 2 do in parallel
14
          x := A[i]
15
           if x \le p then A[S[i] - 1] := x
16
           else A[i + L[i]] := x
17
      end parallel for
18
      A[i] := v
19
       return j
20
```

Parallel Quicksort – Analysis

► Time:

- ▶ partition: all O(1) time except prefix sums $\rightsquigarrow \Theta(\log n)$ time
- ► Quicksort: expected depth of recursion tree is $\Theta(\log n)$
- \rightsquigarrow total time $O(\log^2(n))$ in expectation

Work:

- ▶ partition: O(n) time except prefix sums $\rightsquigarrow \Theta(n)$ work (with work-efficient prefix-sums algorithm)
- \rightsquigarrow Quicksort $O(n \log(n))$ work in expectation
- (expected) work-efficient parallel sorting!

Parallel sorting – State of the art

- ▶ more sophisticated methods can sort in *O*(log *n*) parallel time on CREW-PRAM
- practical challenge: small units of work add overhead
- ▶ need a lot of PEs to see improvement from *O*(log *n*) parallel time
- $\rightsquigarrow\,$ implementations tend to use simpler methods above
 - check the Java library sources for interesting examples! java.util.Arrays.parallelSort(int[])