

COMP526 (Fall 2023) University of Liverpool version 2023-12-07 10:24

Learning Outcomes

- 1. Know the *RMQ problem* and its *connection* to longest common extensions in strings.
- 2. Know and understand trivial RMQ solutions and *sparse tables*.
- **3.** Know and understand the *Cartesian trees* data structure.
- **4.** Know and understand the *exhaustive-tabulation technique* for RMQ with linear-time preprocessing.

Unit 9: Range-Minimum Queries

Outline

9 Range-Minimum Queries

- 9.1 Introduction
- 9.2 RMQ, LCP, LCE, LCA WTF?
- 9.3 Trivial Solutions & Sparse Tables
- 9.4 Cartesian Trees
- 9.5 Exhaustive Tabulation

9.1 Introduction

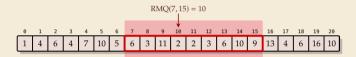
Range-minimum queries (RMQ)

____array/numbers don't change

Given: Static array A[0..n) of numbers

Goal: Find minimum in a range;

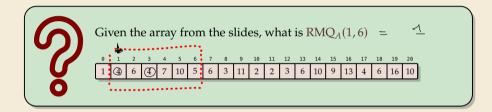
A known in advance and can be preprocessed



Nitpicks:

- Report *index* of minimum, not its value
- Report *leftmost* position in case of ties

Clicker Question



Rules of the Game

- comparison-based ~~values don't matter, only relative order
- Two main quantities of interest:

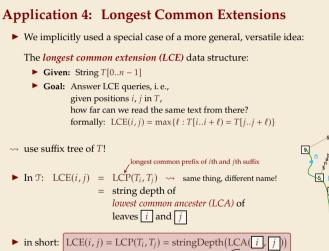
- \checkmark space usage $\leq P(n)$
- **1. Preprocessing time**: Running time P(n) of the preprocessing step
- **2.** Query time: Running time Q(n) of one query (using precomputed data)
- Write $\langle P(n), Q(n) \rangle$ time solution for short

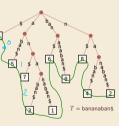
Clicker Question

What do you think, what running times can we achieve? For a $\langle P(n), Q(n) \rangle$ time solution, enter "<P(n),Q(n)>".

9.2 RMQ, LCP, LCE, LCA — WTF?

Recall Unit 8





Recall Unit 8

Efficient LCA

How to find lowest common ancestors?

- Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case \square
- ▶ Could store all LCAs in big table $\rightsquigarrow \Theta(n^2)$ space and preprocessing \square

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is **constant(!) time**.

- a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice

and suffix tree construction inside

 \rightsquigarrow for now, use O(1) LCA as black box.

 \rightarrow After linear preprocessing (time & space), we can find LCEs in O(1) time.

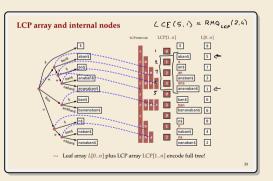
 $< \Theta(u), \Theta(u) >$

16

Finally: Longest common extensions

- ▶ In Unit 8: Left question open how to compute LCA in suffix trees
- But: Enhanced Suffix Array makes life easier!

 $LCE(i, j) = LCP[RMQ_{LCP}(min\{R[i], R[j]\} + 1, max\{R[i], R[j]\})]$

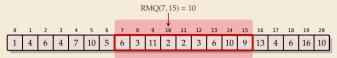


RMQ Implications for LCE

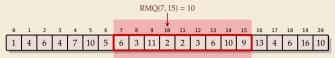
- ▶ Recall: Can compute (inverse) suffix array and LCP array in *O*(*n*) time
- \rightsquigarrow A $\langle P(n), Q(n) \rangle$ time RMQ data structure implies a $\langle P(n), Q(n) \rangle$ time solution for longest-common extensions

(given rank avrag & LCP avrag)

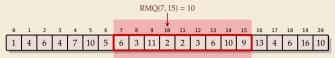
9.3 Trivial Solutions & Sparse Tables



► Two easy solutions show extreme ends of scale:



- ▶ Two easy solutions show extreme ends of scale:
- **1**. Scan on demand
 - no preprocessing at all
 - answer RMQ(i, j) by scanning through A[i..j], keeping track of min
 - $\rightsquigarrow \ \langle O(1), O(n) \rangle$



- Two easy solutions show extreme ends of scale:
- **1**. Scan on demand
 - no preprocessing at all

• answer RMQ(i, j) by scanning through A[i..j], keeping track of min

 $\rightsquigarrow \ \left< O(1), O(n) \right>$

2. Precompute all

- ▶ Precompute all answers in a big 2D array *M*[0..*n*)[0..*n*)
- queries simple: RMQ(i, j) = M[i][j]

 $\rightsquigarrow \ \langle O(n^3), O(1) \rangle$

- Two easy solutions show extreme ends of scale:
- **1**. Scan on demand
 - no preprocessing at all

► answer RMQ(*i*, *j*) by scanning through A[i..j], keeping track of min for i = 0, ..., n - l $\Rightarrow \langle O(1), O(n) \rangle$ if l = -1; Π

2. Precompute all

- ▶ Precompute all answers in a big 2D array *M*[0..*n*)[0..*n*)
- queries simple: RMQ(i, j) = M[i][j]
- $\rightsquigarrow \ \langle O(n^3), O(1) \rangle$
- ▶ Preprocessing can reuse partial results \rightsquigarrow $(O(n^2), O(1))$

$$\frac{1}{2}$$

$$if l = = 1 : \Pi[i][i,l] = d$$

$$a = M[i][i+l-1]$$

$$b = j+1$$

$$if A[a] \leq A[b]$$

$$M[i][i,l] = a$$

$$d_{-a}$$

$$M[i][t,l] = 5$$

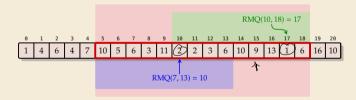
▶ Idea: Like "precompute-all", but keep only some entries

```
• store M[i][j] iff \ell = j - i + 1 is 2^k.
```

- $\rightsquigarrow \leq n \cdot \lg n$ entries
- \rightsquigarrow Can be stored as M'[i][k]

- ▶ Idea: Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k . $\Rightarrow \leq n \cdot \lg n$ entries
 - \rightsquigarrow Can be stored as M'[i][k]
- ► How to answer queries?

- ▶ Idea: Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k . $\Rightarrow \leq n \cdot \lg n$ entries
 - \rightsquigarrow Can be stored as M'[i][k]
- How to answer queries?



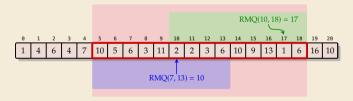
1. Find k with $\ell/2 \le 2^k \le \ell$

3

Cover range [i..j] by
 2^k positions right from i and
 2^k positions left from j

$$RMQ(i, j) = arg min{A[rmq_1], A[rmq_2]} & \mu' [i] [L] \\with rmq_1 = RMQ(i, i + 2^k - 1) \\rmq_2 = RMQ(j - 2^k + 1, j) \\& \ddots & \mu' [j - 2^k + 1] [L] \end{cases}$$

- ▶ Idea: Like "precompute-all", but keep only some entries
- ▶ store M[i][j] iff $\ell = j i + 1$ is 2^k . $\Rightarrow \leq n \cdot \lg n$ entries
 - \rightsquigarrow Can be stored as M'[i][k]
- How to answer queries?



- **1.** Find *k* with $\ell/2 \le 2^k \le \ell$
- Cover range [i...j] by
 2^k positions right from *i* and
 2^k positions left from *j*

3.
$$\operatorname{RMQ}(i, j) =$$

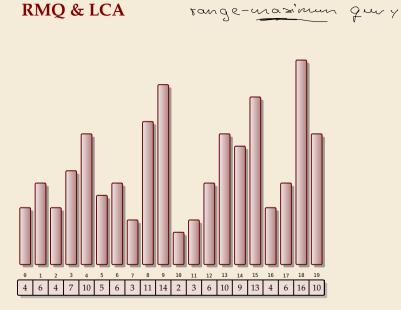
 $\operatorname{arg min}\{A[rmq_1], A[rmq_2]\}$
with $rmq_1 = \operatorname{RMQ}(i, i + 2^k - 1)$
 $rmq_2 = \operatorname{RMQ}(j - 2^k + 1, j)$

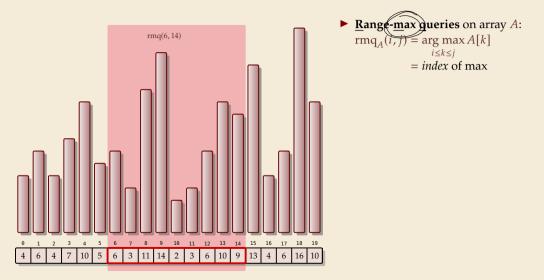
- Preprocessing can be done in $O(n \log n)$ times
- $\rightsquigarrow \langle O(n \log n), O(1) \rangle$ time solution!

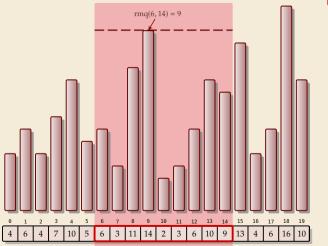
$$\frac{1}{2} \left[i, i + 2^{k-1} \right] \longrightarrow \left[i, i + 2^{k+1} - i \right]$$

9.4 Cartesian Trees

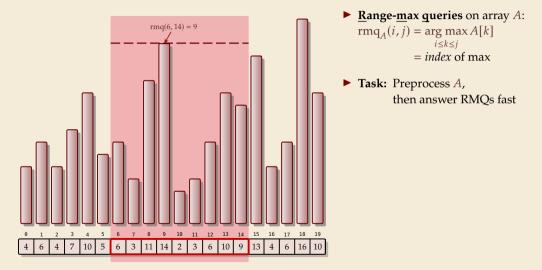
θ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
4	6	4	7	10	5	6	3	11	14	2	3	6	10	9	13	4	6	16	10

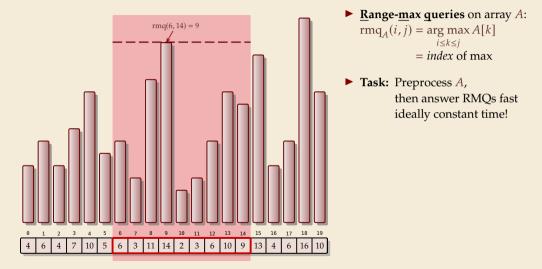


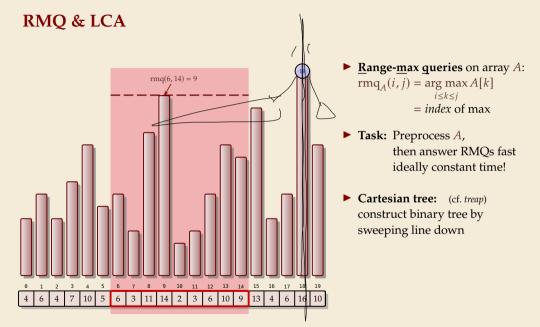


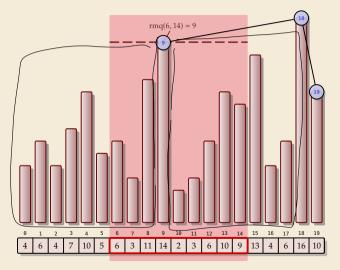


• <u>**Range-max queries**</u> on array *A*: $\operatorname{rmq}_{A}(i, j) = \operatorname{arg max}_{\substack{i \le k \le j \\ = index}} A[k]$

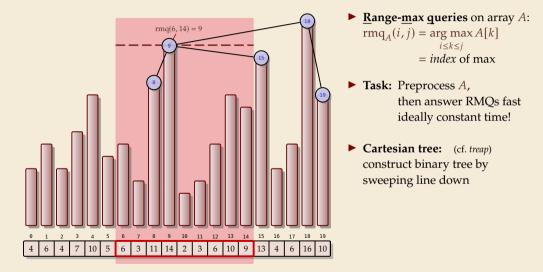


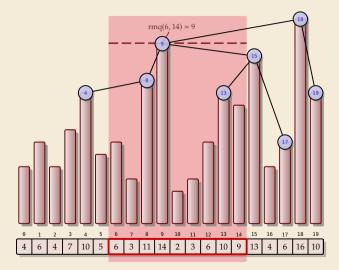




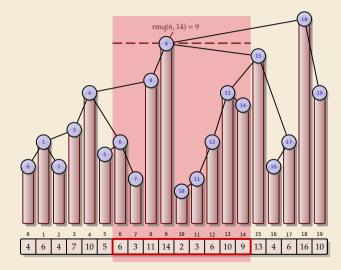


- <u>**Range-max queries**</u> on array *A*: $\operatorname{rmq}_{A}(i, j) = \operatorname{arg max}_{\substack{i \le k \le j \\ = index}} A[k]$
- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down

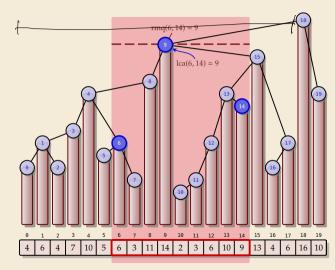




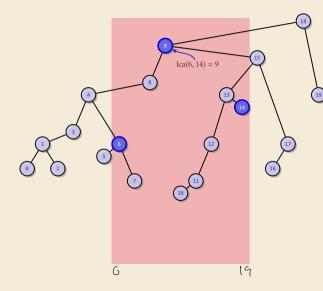
- <u>**Range-max queries**</u> on array *A*: $\operatorname{rmq}_{A}(i, j) = \operatorname{arg max}_{i \le k \le j} A[k]$ = index of max
- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down



- <u>**Range-max queries**</u> on array *A*: $\operatorname{rmq}_{A}(i, j) = \operatorname{arg max}_{\substack{i \le k \le j \\ = index}} A[k]$
- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down



- <u>**Range-max queries**</u> on array *A*: $\operatorname{rmq}_{A}(i, j) = \operatorname{arg max}_{\substack{i \le k \le j \\ = index}} A[k]$
- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- rmq(i, j) = <u>lowest common ancestor (LCA)</u>

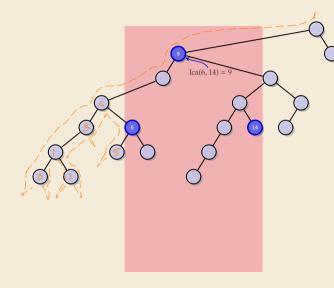


• <u>**Range-max queries**</u> on array *A*: $\operatorname{rmq}_{A}(i, j) = \operatorname{arg max}_{\substack{i \le k \le j \\ = index}} A[k]$

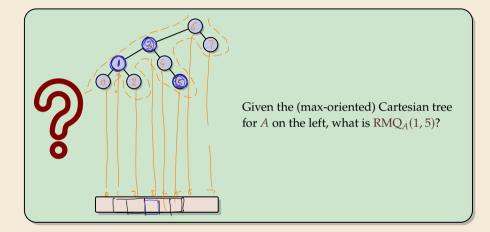
- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- rmq(i, j) = lowest common ancestor (LCA)

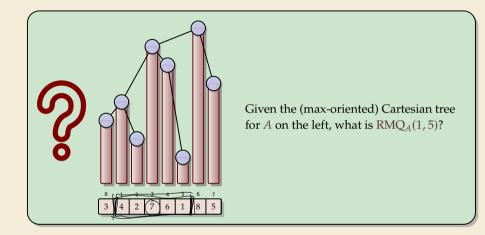
RMQ & LCA

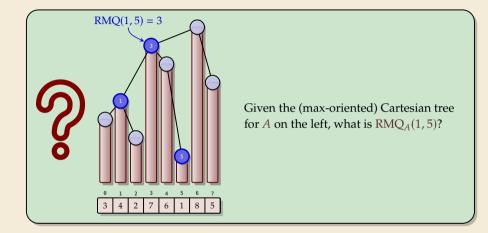
inorder traversal , lett - celd - visht



- <u>**Range-max queries**</u> on array *A*: $\operatorname{rmq}_{A}(i, j) = \operatorname{arg max}_{\substack{i \le k \le j \\ = index}} A[k]$
- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- rmq(i, j) = inorder of <u>lowest common ancestor (LCA)</u> of ith and jth node in inorder

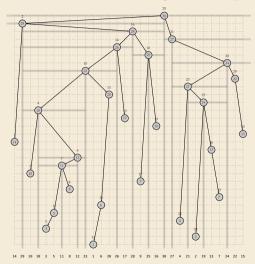




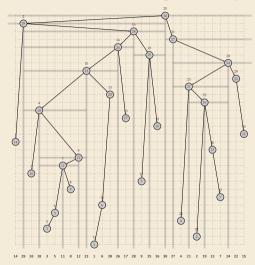


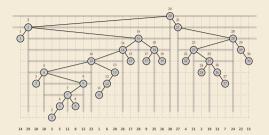


Cartesian Tree – Larger Example

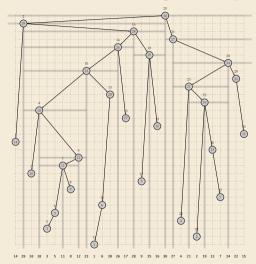


Cartesian Tree – Larger Example

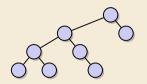




Cartesian Tree – Larger Example



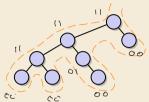
Counting binary trees



 Given the Cartesian tree, all RMQ answers are determined

and vice versa!

Counting binary trees



 Given the Cartesian tree, all RMQ answers are determined and vice versa!

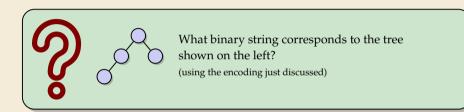
▶ How many different Cartesian trees are there for arrays of length *n*?

▶ known result: Catalan numbers
$$\frac{1}{n+1} \binom{2n}{n}$$

▶ easy to see: $\leq 2^{2n}$ can enade binary free with $2n$

→ many arrays will give rise to the same Cartesian tree Can we exploit that?

11 11 11 00 00 01 00 00



9.5 Exhaustive Tabulation

Four Russians?

The exhaustive-tabulation technique to follow is often called "Four Russians trick" ...

- The algorithmic technique was published 1970 by
 V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev
- ▶ all worked in Moscow at that time . . . but not even clear if all are Russians!

(Arlazarov and Kronrod are Russian)

Four Russians?

The exhaustive-tabulation technique to follow is often called "Four Russians trick" ...

- The algorithmic technique was published 1970 by
 V. L. Arlazarov, E. A. Dinitz, M. A. Kronrod, and I. A. Faradžev
- ▶ all worked in Moscow at that time . . . but not even clear if all are Russians!

(Arlazarov and Kronrod are Russian)

American authors coined the slightly derogatory "Method of Four Russians" ... name in widespread use

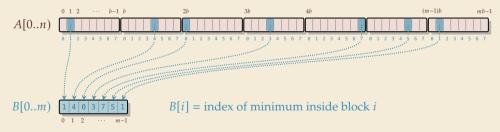
Bootstrapping

- We know a $\langle O(n \log n), O(1) \rangle$ time solution
- If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)!$

Bootstrapping

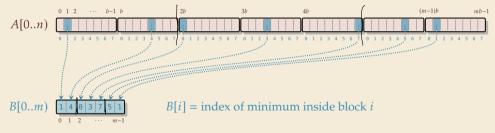
- We know a $\langle O(n \log n), O(1) \rangle$ time solution
- If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)!$
- Break *A* into blocks of $b = \lceil \frac{1}{4} \lg n \rceil$ numbers

• Create array of block minima B[0..m) for $m = \lceil n/b \rceil = O(n/\log n)$

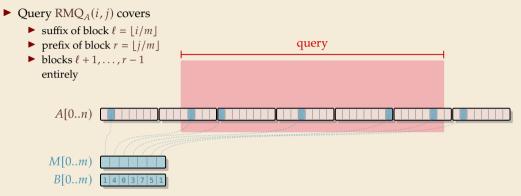


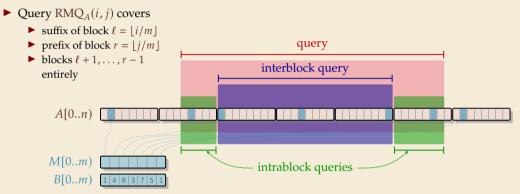
Bootstrapping

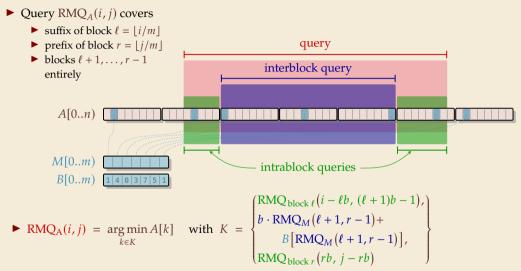
- We know a $\langle O(n \log n), O(1) \rangle$ time solution
- If we use that for $m = \Theta(n/\log n)$ elements, $O(m \log m) = O(n)!$
- Break *A* into blocks of $b = \lceil \frac{1}{4} \lg n \rceil$ numbers
- Create array of block minima B[0..m) for $m = \lceil n/b \rceil = O(n/\log n)$

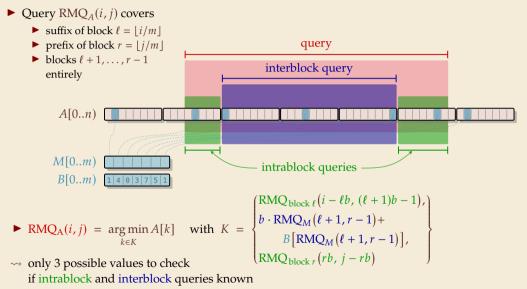


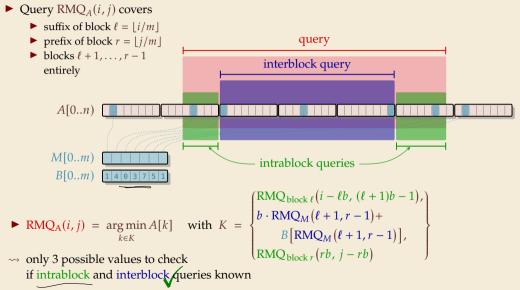
- \rightsquigarrow Use sparse tables for *B*.
- \rightsquigarrow Can solve RMQs in B[0..m) in $\langle O(n), O(1) \rangle$ time











Intrablock queries [1]

- → It remains to solve the intrablock queries!

• Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!

Intrablock queries [1]

- → It remains to solve the intrablock queries!
- Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!
- many blocks, but just $b = \lceil \frac{1}{4} \lg n \rceil$ numbers long
 - \rightsquigarrow Cartesian tree of *b* elements can be encoded using $2b = \frac{1}{2} \lg n$ bits
 - $\xrightarrow{\text{# different Cartesian trees is } \leq 2^{2b} = 2^{\frac{1}{2} \lg n} = \left(2^{\lg n}\right)^{1/2} = \sqrt{n}$
 - → many equivalent blocks!

Intrablock queries [1]

- $\rightsquigarrow\,$ It remains to solve the intrablock queries!
- Want $\langle O(n), O(1) \rangle$ time overall must include preprocessing for all $m = \left\lceil \frac{n}{b} \right\rceil = \Theta\left(\frac{n}{\log n}\right)$ blocks!
- many blocks, but just $b = \lceil \frac{1}{4} \lg n \rceil$ numbers long
 - \rightsquigarrow Cartesian tree of *b* elements can be encoded using $2b = \frac{1}{2} \lg n$ bits

$$\rightarrow$$
 # different Cartesian trees is $\leq 2^{2b} = 2^{\frac{1}{2} \lg n} = (2^{\lg n})^{1/2} = \sqrt{n}$

- $\rightsquigarrow many \ equivalent \ blocks!$
- → *Exhaustive Tabulation Technique:*
 - 1. represent each subproblem by storing its *type* (here: encoding of Cartesian tree)
 - 2. enumerate all possible subproblem types and their solutions
 - **3.** use type as index in a large *lookup table*

Intrablock queries [2]

- **1**. For each block, compute 2*b* bit representation of Cartesian tree
 - can be done in linear time

Intrablock queries [2]

- **1**. For each block, compute 2*b* bit representation of Cartesian tree
 - can be done in linear time
- **2.** Compute large lookup table

b=4				
A or	Block type	i	j	RMQ(i, j)
ý Z _s				
	:			
		_	~	
	11000100	0	3	ſ
	и	1	3	1
	5		-	2
	5	Z	3	L
	:			

Intrablock queries [2]

- **1**. For each block, compute 2*b* bit representation of Cartesian tree
 - can be done in linear time
- 2. Compute large lookup table

Block type	i	j	RMQ(i, j)
:			
·			
:			

- $\leq \sqrt{n}$ block types
- $\leq b^2$ combinations for *i* and *j*
- $\rightsquigarrow \Theta(\sqrt{n} \cdot \log^2 n)$ rows
- each row can be computed in O(log n) time
- \rightsquigarrow overall preprocessing: O(n) time!

Discussion

- $\langle O(n), O(1) \rangle$ time solution for RMQ
- $\rightsquigarrow \langle O(n), O(1) \rangle$ time solution for LCE in strings!

Discussion

• $\langle O(n), O(1) \rangle$ time solution for RMQ

 $\rightsquigarrow \langle O(n), O(1) \rangle$ time solution for LCE in strings!

optimal preprocessing and query time!a bit complicated

Discussion

• $\langle O(n), O(1) \rangle$ time solution for RMQ

 $\rightsquigarrow \langle O(n), O(1) \rangle$ time solution for LCE in strings!

optimal preprocessing and query time!a bit complicated

Research questions:

- Reduce the space usage
- ► Avoid access to *A* at query time