

Outline

1 Machines & Models

- **1.1** Algorithm analysis
- 1.2 The RAM Model
- 1.3 Asymptotics & Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions. $\sum_{\text{think: recipe}}^{N}$

More precisely:

e.g. Java program

- mechanically executable
 → no "common sense" needed
- **2.** finite description ≠ finite computation!
- 3. solves a problem, i. e., a class of problem instances x + y, not only 17 + 4

typical example: *bubblesort*

not a specific program but underlying idea

What is a data structure?

A data structure is

- 1. a rule for encoding data (in computer memory), plus
- 2. algorithms to work with it (queries, updates, etc.)

typical example: binary search tree

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good "usually" means

- fast running time
- moderate memory *space* usage

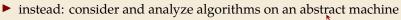
Algorithm analysis is a way to

- compare different algorithms,
- predict their performance in an application

Running time experiment

Why not simply run and time it?

- results only apply to
 - single *test* machine
 - tested inputs
 - tested implementation
 - ▶ ...
 - *≠* universal truths



- $\rightsquigarrow \ provable \ statements \ for \ model$
- $\rightsquigarrow \ testable \ model \ hypotheses$

survives Pentium 4

 \rightsquigarrow Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

worst-case performance: consider the *worst* of all inputs as our cost metric

best-case performance: consider the *best* of all inputs as our cost metric

average-case performance:

consider the average/expectation of a random input as our cost metric

Usually, we apply the above for *inputs of same size n*.

 \rightsquigarrow performance is only a **function of** *n*.

1.2 The RAM Model

Machine models

The machine model decides

- what algorithms are possible
- how they are described (= programming language)
- what an execution *costs*
- **Goal:** Machine model should be detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Random Access Machines

Random access machine (RAM)

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], ...
- fixed number of *registers* R_1, \ldots, R_r (say r = 100)
- every memory cell MEM[*i*] and register R_i stores a *w*-bit integer, i. e., a number in $[0..2^w 1]$ *w* is the word width; typically $2^w \approx n$
- Instructions:
 - ▶ load & store: R_i := MEM[R_j] MEM[R_j] := R_i
 ▶ operations on registers: R_k := R_i + R_j (arithmetic is *modulo* 2^w!) also R_i - R_j, R_i · R_j, R_i div R_j, R_i mod R_j C-style operations (bitwise and/or/xor, left/right shift)
 - conditional and unconditional jumps
- cost: number of executed instructions

, we will see further models later

→ The RAM is the standard model for sequential computation.

Pseudocode

Typical simplifications for convenience:

more abstract *pseudocode* to specify algorithms code that humans understand (easily)

• count *dominant operations* (e.g. array accesses) instead of all operations

In both cases: can go to full detail if needed.

1.3 Asymptotics & Big-Oh

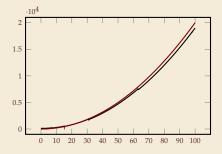
Why asymptotics?

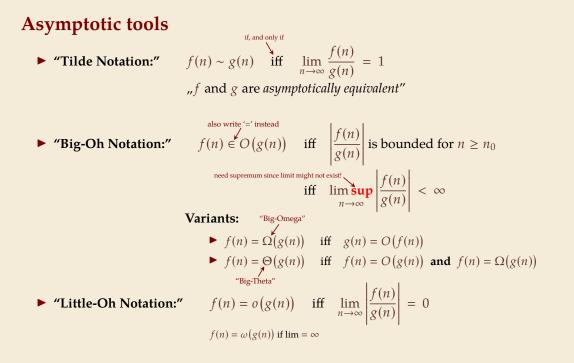
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

Asymptotics = approximation around ∞

Example: Consider a function f(n) given by $2n^2 - 3n\lfloor \log_2(n+1) \rfloor + 7n - 3\lfloor \log_2(n+1) \rfloor + 120 \sim 2n^2$





Asymptotics – Example 1

Basic examples:

- ► $20n^3 + 10n \lg(n) + 5 \sim 20n^3 = \Theta(n^3)$
- ► $3 \lg(n^2) + \lg(\lg(n)) = \Theta(\log n)$
- ▶ $10^{100} = O(1)$

Frequent orders of growth

- ▶ logarithmic $\Theta(\log n)$ Note: a, b > 0 constants $\rightsquigarrow \Theta(\log_a(n)) = \Theta(\log_b(n))$
- linear $\Theta(n)$
- linearithmic $\Theta(n \log n)$
- quadratic $\Theta(n^2)$
- polynomial $O(n^c)$ for constant c
- exponential $O(c^n)$ for constant c Note: a > b > 0 constants $\rightsquigarrow b^n = o(a^n)$

Asymptotics – Example 2

Square-and-multiply algorithm for computing x^m with $m \in \mathbb{N}$

Inputs:

- *m* as binary number (array of bits)
- n =#bits in m
- x a floating-point number

```
1 double pow(double base, boolean[] exponentBits) {
2     double res = 1;
3     for (boolean bit : exponentBits) {
4         res *= res;
5         if (bit) res *= base;
6     }
7     return res;
8 }
```

- ► Cost: *C* = # multiplications
- C = n (line 4) + #one-bits binary representation of *m* (line 5)

 $\rightsquigarrow n \le C \le 2n$