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Why study sorting?
I fundamental problem of computer science that is still not

Algorithm with optimal #comparisons in worst case?

solved

I building brick of many more advanced algorithms
I for preprocessing
I as subroutine

I playground of manageable complexity
to practice algorithmic techniques

Here:
I “classic” fast sorting method

I parallel sorting
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Part I
The Basics



Rules of the game
I Given:

I array �[0..= − 1] of = objects
I a total order relation ≤ among �[0], . . . , �[= − 1]

(a comparison function)

I Goal: rearrange (=permute) elements within �,
so that � is sorted, i. e., �[0] ≤ �[1] ≤ · · · ≤ �[= − 1]

I for now: � stored in main memory (internal sorting)
single processor (sequential sorting)
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3.1 Mergesort



Merging sorted lists

 

run1 run2 result
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Merging sorted lists

 

run1 run2 result
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Mergesort
1 proceduremergesort(�[;..A])
2 = := A − ; + 1
3 if = ≥ 1 return
4 < := ; +

⌊
=
2
⌋

5 mergesort(�[;..< − 1])
6 mergesort(�[<..A])
7 merge(�[;..< − 1], �[<..A], buf )
8 copy buf to �[;..A]

I recursive procedure; divide & conquer

I merging needs
I temporary storage for result

of same size as merged runs
I to read and write each element twice

(once for merging, once for copying back)

Analysis: count “element visits” (read and/or write)

�(=) =
{

0 = ≤ 1
�(b=/2c) + �(d=/2e) + 2= = ≥ 2

same for best and worst case!

Simplification = = 2:

�(2:) =
{

0 : ≤ 0

2 · �(2:−1) + 2 · 2: : ≥ 1
= 2 · 2: + 22 · 2:−1 + 23 · 2:−2 + · · · + 2: · 21 = 2: · 2:

�(=) = 2= lg(=) = Θ(= log =)
and for arbitrary = we have �(=) ≤ �(next larger power of 2) ≤ 4= lg(=) + 2= = Θ(= log =) 4



Mergesort – Discussion

optimal time complexity of Θ(= log =) in the worst case

stable sorting method i. e., retains relative order of equal-key items

memory access is sequential (scans over arrays)

requires
there are in-place merging methods,
but they are substantially more complicated
and not (widely) used

Θ(=) extra space

5



3.2 Quicksort



Partitioning around a pivot

 

?

I no extra space needed

I visits each element once

I returns rank/position of pivot
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Partitioning around a pivot

 

<? >?<? >?<? <? >?>?<?

I no extra space needed

I visits each element once

I returns rank/position of pivot
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Partitioning – Detailed code
Beware: details easy to get wrong; use this code!

1 procedure partition(�, 1)
2 // input: array �[0..= − 1], position of pivot 1 ∈ [0..= − 1]
3 swap(�[0], �[1])
4 8 := 0, 9 := =

5 while true do
6 do 8 := 8 + 1 while 8 < = and �[8] < �[0]
7 do 9 := 9 − 1 while 9 ≥ 1 and �[9] > �[0]
8 if 8 ≥ 9 then break (goto 8)
9 else swap(�[8], �[9])

10 end while
11 swap(�[0], �[9])
12 return 9

Loop invariant (5–10): � ? ≤ ? ≥ ??
8 9
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Quicksort
1 procedure quicksort(�[;..A])
2 if ; ≥ A then return
3 1 := choosePivot(�[;..A])
4 9 := partition(�[;..A], 1)
5 quicksort(�[;.. 9 − 1])
6 quicksort(�[9 + 1..A])

I recursive procedure; divide & conquer

I choice of pivot can be
I fixed position  dangerous!
I random
I more sophisticated, e. g., median of 3
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Quicksort & Binary Search Trees

Quicksort Binary Search Tree (BST)

7 4 2 9 1 3 8 5 6

4 2 1 3 5 6 9 87

2 1 3 5 64 8 9

1 3 62 5 8

1 3 6

7 4 2 9 1 3 8 5 6

7

4

2

9

1 3

85

6

I recursion tree of quicksort = binary search tree from successive insertion

I comparisons in quicksort = comparisons to built BST

I comparisons in quicksort ≈ comparisons to search each element in BST
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Quicksort – Worst Case
I Problem: BSTs can degenerate 1

2

3

4

5

6

I Cost to search for : is : − 1

 Total cost
∑=
:=1(: − 1) = =(= − 1)

2 ∼ 1
2=

2

 quicksort worst-case running time is in Θ(=2)
terribly slow!

But, we can fix this:

Randomized quicksort:

I choose a random pivot in each step

 same as randomly shuffling input before sorting
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Randomized Quicksort – Analysis
I �(=) element visits (as for mergesort)

 quicksort needs ∼ 2 ln(2) · = lg = ≈ 1.39= lg = in expectation

I also: very unlikely to be much worse:
e. g., one can prove: Pr[cost > 10= lg =] = $(=−2.5)
distribution of costs is “concentrated around mean”

I intuition: have to be constantly unlucky with pivot choice
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Quicksort – Discussion

fastest general-purpose method

Θ(= log =) average case

works in-place (no extra space required)

memory access is sequential (scans over arrays)

Θ(=2)worst case (although extremely unlikely)

not a stable sorting method

Open problem: Simple algorithm that is stable in-place.
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3.3 Comparison-Based Lower Bound



Lower Bounds
I Lower bound: mathematical proof that no algorithm can do better.

I very powerful concept: bulletproof impossibility result
≈ conservation of energy in physics

I (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound

 can speak of “optimal algorithms”

I To prove a statement about all algorithms, we must precisely define what that is!

I already know one option: the word-RAM model

I Here: use a simpler, more restricted model.

13



The Comparison Model
I In the comparison model data can only be accessed in two ways:

I comparing two elements
I moving elements around (e. g. copying, swapping)

I Cost: number of these operations.

I This makes very few assumptions on the kind of objects we are

That’s good!
Keeps algorithms general!

sorting.

I Mergesort and Quicksort work in the comparison model.

 Every comparison-based sorting algorithm corresponds to a decision tree.
I only model comparisons  ignore data movement
I nodes = comparisons the algorithm does
I next comparisons can depend on outcomes  different subtrees
I child links = outcomes of comparison
I leaf = unique initial input permutation compatible with comparison outcomes
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Comparison Lower Bound
Example: Comparison tree for a sorting method for �[0..2]:

�[0] : �[1]

�[1] : �[2] �[1] : �[2]

�[0] : �[2] �[0] : �[2]1,2,3 3,2,1

1,3,2 2,3,1 2,1,3 3,1,2

≤ >

≤ >

≤ >

>≤

≤ >

1,2,3
1,3,2
2,1,3
2,3,1
3,1,2
3,2,1

1,2,3
1,3,2
2,3,1

2,1,3
3,1,2
3,2,1

1,3,2
2,3,1

2,1,3
3,1,2

I Execution = follow a path in
comparison tree.

 height of comparison tree =
worst-case # comparisons

I comparison trees are binary trees
 ℓ leaves  height ≥ dlg(ℓ )e

I comparison trees for sorting
method must have ≥ =! leaves

 height ≥ lg(=!)

more precisely: lg(=!) = = lg = − lg(4)= + $(log =)

∼ = lg =

I Mergesort achieves ∼ = lg = comparisons  asymptotically comparison-optimal!

I Open (theory) problem: Can we sort with = lg = − lg(4)
≈ 1.4427

= + >(=) comparisons?
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3.4 Integer Sorting



How to beat a lower bound
I Does the above lower bound mean, sorting always takes time Ω(= log =)?

I Not necessarily; only in the comparison model!
 Lower bounds show where to change the model!

I Here: sort = integers
I can do a lotwith integers: add them up, compute averages, . . . (full power of word-RAM)

 we are notworking in the comparison model
 above lower bound does not apply!

I but: a priori unclear how much arithmetic helps for sorting . . .
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Counting sort
I Important parameter: size/range of numbers

I numbers in range [0..*) = {0, . . . , * − 1} typically* = 21  1-bit binary numbers

I We can sort = integers in Θ(= +*) time and Θ(*) space when 1 ≤ F
word sizeCounting sort

1 procedure countingSort(�[0..= − 1])
2 // � contains integers in range [0..*).
3 �[0..* − 1] := new integer array, initialized to 0
4 // Count occurrences
5 for 8 := 0, . . . , = − 1
6 �[�[8]] := �[�[8]] + 1
7 8 := 0 // Produce sorted list
8 for : := 0, . . . * − 1
9 for 9 := 1, . . . �[:]
10 �[8] := :; 8 := 8 + 1

I count how often each possible
value occurs

I produce sorted result directly
from counts

I circumvents lower bound by
using integers as array index /
pointer offset

 Can sort = integers in range [0..*)with* = $(=) in time and space Θ(=).
17



Integer Sorting – State of the art
I $(=) time sorting also possible for numbers in range* = $(=2) for constant 2.

I radix sort with radix 2F

I algorithm theory
I suppose* = 2F , but F can be arbitrary function of =
I how fast can we sort = such F-bit integers on a F-bit word-RAM?

I for F = $(log =): linear time (radix/counting sort)
I for F = Ω(log2+� =): linear time (signature sort)
I for F in between: can do $(=

√
lg lg =) (very complicated algorithm)

don’t know if that is best possible!

∗ ∗ ∗

I for the rest of this unit: back to the comparisons model!
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Part II
Sorting with of many processors



3.5 Parallel computation



Types of parallel computation
£££ can’t buy you more time, but more computers!
 Challenge: Algorithms for parallel computation.

There are two main forms of parallelism
1. shared-memory parallel computer ← focus of today

I ? processing elements (PEs, processors) working in parallel
I single big memory, accessible from every PE
I communication via shared memory

I think: a big server, 128 CPU cores, terabyte of main memory

2. distributed computing
I ? PEs working in parallel
I each PE has private memory
I communication by sending messages via a network

I think: a cluster of individual machines, supercomputers
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PRAM – Parallel RAM
I extension of the RAMmodel (see unit 1)

I the ? PEs are identified by ids 1, . . . , ?
I like F (the word size), ? is a parameter of the model that can grow with =
I ? = Θ(=) is not unusual maaany processors!

I the PEs all independently run a RAM-style program
(they can use their id there)

I each PE has its own registers, but MEM is shared among all PEs

I computation runs in synchronous steps:
in each time step, every PE executes one instruction
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PRAM – Conflict management
Problem: What if several PEs simultaneously overwrite a memory cell?

I EREW-PRAM (exclusive read, exclusive write)
any parallel access to same memory cell is forbidden (crash if happens)

I CREW-PRAM (concurrent read, exclusive write)
parallel write access to same memory cell is forbidden, but reading is fine

I CRCW-PRAM (concurrent read, concurrent write)
concurrent access is allowed,
need a rule for write conflicts:
I common CRCW-PRAM:

all concurrent writes to same cell must write same value
I arbitrary CRCW-PRAM:

some unspecified concurrent write wins
I (more exist . . . )

I no single model is always adequate, but our default is CREW
21



PRAM – Execution costs
Cost metrics in PRAMs

I space: total amount of accessed memory

I time: number of steps till all PEs finish assuming sufficiently many PEs!
sometimes called depth or span

I work: total #instructions executed on all PEs

Holy grail of PRAM algorithms:

I minimal time

I work (asymptotically) no worse than running time of best sequential algorithm
I work-efficient algorithm: work in same Θ-class as best sequential
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The number of processors
Hold on, my computer does not have Θ(=) processors! Why should I care for span and work!?

Theorem 3.1 (Brent’s Theorem:)
If an algorithm has span ) and work, (for an arbitrarily large number of processors), it can
be run on a PRAM with ? PEs in time $() + ,

? ) (and using $(,)work). J

Proof: schedule parallel steps in round-robin fashion on the ? PEs.

 span and work give guideline for any number of processors
23



3.6 Parallel primitives



Prefix sums
Before we come to parallel sorting, we study some useful building blocks.

Prefix-sum problem (also: cumulative sums, running totals)

I Given: array �[0..= − 1] of numbers

I Goal: compute all prefix sums �[0] + · · · + �[8] for 8 = 0, . . . , = − 1
may be done “in-place”, i. e., by overwriting �

Example:

∑3 0 0 5 7 0 0 2 0 0 0 4 0 8 0 1input:

3 3 3 8 15 15 15 17 17 17 17 21 21 29 29 30output:
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Prefix sums – Sequential
I sequential solution does = − 1 additions

I but: cannot parallelize them
data dependencies!

 need a different approach

1 procedure prefixSum(�[0..= − 1])
2 for 8 := 1, . . . , = − 1 do
3 �[8] := �[8 − 1] + �[8]

Let’s try a simpler problem first.

Excursion: Sum
I Given: array �[0..= − 1] of numbers

I Goal: compute �[0] + �[1] + · · · + �[= − 1]
(solved by prefix sums)

Any algorithm must do = − 1 binary additions

 Depth of tree = parallel time!

�[1] �[2] �[3] �[4] �[5] �[6] �[7] �[8]

+
+

+
+

+
+

+

�[1] �[2] �[3] �[4] �[5] �[6] �[7] �[8]

+ + + +

+ +

+
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Parallel prefix sums
I Idea: Compute all prefix sums with balanced trees in parallel

Remember partial results for reuse

3 0 0 5 7 0 0 2 0 0 0 4 0 8 0 1input:

3 3 0 5 12 7 0 2 2 0 0 4 4 8 8 1round 1:

3 3 3 8 12 12 12 9 2 2 2 4 4 12 12 9round 2:

3 3 3 8 15 15 15 17 14 14 14 13 6 14 14 13round 3:

3 3 3 8 15 15 15 17 17 17 17 21 21 29 29 30round 4:
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Parallel prefix sums – Code
I can be realized in-place (overwriting �)

I assumption: in each parallel step, all reads precede all writes

1 procedure parallelPrefixSums(�[0..= − 1])
2 for A := 1, . . . dlg =e do
3 step := 2A−1

4 for 8 := step, . . . = − 1 do in parallel
5 �[8] := �[8] + �[8 − step]
6 end parallel for
7 end for
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Parallel prefix sums – Analysis
I Time:

I all additions of one round run in parallel
I dlg =e rounds
 Θ(log =) time best possible!

I Work:
I ≥ =

2 additions in all rounds (except maybe last round)
 Θ(= log =)work
I more than the Θ(=) sequential algorithm!

I Typical trade-off: greater parallelism at the expense of more overall work

I For prefix sums:
I can actually get Θ(=)work in twice that time!
 algorithm is slightly more complicated
I instead here: linear work in thrice the time using “blocking trick”
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Work-efficient parallel prefix sums
standard trick to improve work: compute small blocks sequentially

1. Set 1 := dlg =e
2. For blocks of 1 consecutive indices, i. e., �[0..1), �[1..21), . . . do in parallel:

compute local prefix sums sequentially

3. Use previous work-inefficient algorithm only on leftmost elements of block,
i. e., to compute prefix sums of �[0], �[1], �[21], . . .

4. For blocks �[0..1), �[1..21), . . . do in parallel:
Add block-prefix sums to local prefix sums

Analysis:
I Time:

I 2. & 4.: Θ(1) = Θ(log =) time
I 3. Θ(log(=/1)) = Θ(log =) times

I Work:
I 2. & 4.: Θ(1) per block × d =

1
e blocks  Θ(=)

I 3. Θ
(
=
1

log( =
1
)
)
= Θ(=)
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Compacting subsequences
How do prefix sums help with sorting?

Goal: Compact a subsequence of an array

1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0
3 8 9 1 15 13 14 7 2 4 6 17 12 5 10 11 16�:

�:

(: 3 1 7 2 4 6 5

Use prefix sums on bitvector �

 offset of selected cells in (

1 parallelPrefixSums(�)
2 for 9 := 0, . . . , = − 1 do in parallel
3 if �[9] == 1 then ([�[9] − 1] := �[9]
4 end parallel for
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3.7 Parallel sorting



Parallel quicksort
Let’s try to parallelize quicksort
I recursive calls can run in parallel (data independent)

I our sequential partitioning algorithm seems hard to parallelize

I but can split partitioning into rounds:
1. comparisons: compare all elements pivot (in parallel), store bitvector
2. compute prefix sums of bit vectors (in parallel as above)
3. compact subsequences of small and large elements (in parallel as above)
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Parallel quicksort – Code
1 procedure parQuicksort(�[;..A])
2 1 := choosePivot(�[;..A])
3 9 := parallelPartition(�[;..A], 1)
4 in parallel { parQuicksort(�[;.. 9 − 1]), parQuicksort(�[9 + 1..A]) }
5

6 procedure parallelPartition(�[;..A], 1)
7 swap(�[= − 1], �[1]); ? := �[= − 1]
8 for 8 = 0, . . . , = − 2 do in parallel
9 ([8] :=

[
�[8] ≤ ?

]
// �[8] is 1 or 0

10 ![8] := 1 − ([8]
11 end parallel for
12 in parallel { parallelPrefixSum(([0..= − 2]); parallelPrefixSum(![0..= − 2]) }
13 9 := ([= − 2] + 1
14 for 8 = 0, . . . , = − 2 do in parallel
15 G := �[8]
16 if G ≤ ? then �[([8] − 1] := G

17 else �[9 + ![8]] := G

18 end parallel for
19 �[9] := ?

20 return 9
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Parallel quicksort – Analysis
I Time:

I partition: all $(1) time except prefix sums  Θ(log =) time
I quicksort: expected depth of recursion tree is Θ(log =)
 total time $(log2(=)) in expectation

I Work:
I partition: $(=) time except prefix sums  Θ(= log =)work
 quicksort $(= log2(=))work in expectation

I using a work-efficient prefix-sums algorithm yields (expected) work-efficient sorting!
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Parallel mergesort
I As for quicksort, recursive calls can run in parallelX
I how about merging sorted halves �[;..< − 1] and �[<..A]?

I Must treat elements independently.
I correct position of G in sorted output = rank

#elements ≤ G
of G

I # elements ≤ G = # elements from �[;..< − 1] that are ≤ G
+ # elements from �[<..A] that are ≤ G

I Note: rank in own run is simply the index of G in that run
I find rank in other run by binary search
 can move it to correct position

34



Parallel mergesort – Analysis
I Time:

I merge: Θ(=) from binary search, rest $(1)
I mergesort: depth of recursion tree is Θ(log =)
 total time $(log2(=))

I Work:
I merge: = binary searches  Θ(= log =)
 mergesort: $(= log2(=))work

I work can be reduced to Θ(=) for merge
I do full binary searches only for regularly sampled elements
I ranks of remaining elements are sandwiched between sampled ranks
I use a sequential method for small blocks, treat blocks in parallel
I (detailed omitted)
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Parallel sorting – State of the art
I more sophisticated methods can sort in $(log =) parallel time on CREW-RAM

I practical challenge: small units of work add overhead

I need a lot of PEs to see improvement from $(log =) parallel time

 implementations tend to use simpler methods above
I check the Java library sources for interesting examples!

java.util.Arrays.parallelSort(int[])

36

https://hg.openjdk.java.net/jdk/jdk/file/tip/src/java.base/share/classes/java/util/Arrays.java#l512
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