

#### Outline

# **4** String Matching

- 4.1 Introduction
- 4.2 Brute Force
- 4.3 String Matching with Finite Automata
- 4.4 The Knuth-Morris-Pratt algorithm
- 4.5 Beyond Optimal? The Boyer-Moore Algorithm
- 4.6 The Rabin-Karp Algorithm

# 4.1 Introduction

### **Ubiquitous strings**

- *string* = sequence of characters
  - universal data type for . . . everything!
    - natural language texts
    - programs (source code)
    - websites
    - XML documents
    - DNA sequences
    - bitstrings
    - ... a computer's memory ~~ ultimately any data is a string
  - $\rightsquigarrow\,$  many different tasks and algorithms
  - ► This unit: finding (exact) occurrences of a pattern text.
    - ► Ctrl+F
    - ► grep
    - computer forensics (e.g. find signature of file on disk)
    - virus scanner
  - basis for many advanced applications

#### **Notations**

- *alphabet*  $\Sigma$ : finite set of allowed **characters**;  $\sigma = |\Sigma|$  "*a string over alphabet*  $\Sigma$ "
  - letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, ...)
  - "what you can type on a keyboard", Unicode characters
  - $\{0,1\}$ ; nucleotides  $\{A, C, G, T\}$ ;...

comprehensive standard character set including emoji and all known symbols

- zero-based (like arrays)!

- $\Sigma^n = \Sigma \times \cdots \times \Sigma$ : strings of length  $n \in \mathbb{N}_0$  (*n*-tuples)
- $\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$ : set of **all** (finite) strings over  $\Sigma$
- $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ : set of **all** (finite) **nonempty** strings over  $\Sigma$
- $\varepsilon \in \Sigma^0$ : the *empty* string (same for all alphabets)
- ▶ for  $S \in \Sigma^n$ , write S[i] (other sources:  $S_i$ ) for *i*th character  $(0 \le i < n)$
- for  $S, T \in \Sigma^*$ , write  $ST = S \cdot T$  for concatenation of S and T
- ▶ for  $S \in \Sigma^n$ , write S[i..j] or  $S_{i,j}$  for the substring  $S[i] \cdot S[i+1] \cdots S[j]$   $(0 \le i \le j < n)$ 
  - ► S[0..*j*] is a prefix of S; S[*i*..*n* − 1] is a suffix of S
  - ► S[i..j) = S[i..j-1] (endpoint exclusive)  $\rightsquigarrow S = S[0..n)$

### **String matching – Definition**

Search for a string (pattern) in a large body of text

Input:

- $T \in \Sigma^n$ : The <u>text</u> (haystack) being searched within
- ▶  $P \in \Sigma^m$ : The *pattern* (needle) being searched for; typically  $n \gg m$

#### Output:

- ▶ the first occurrence (match) of P in T:  $\min\{i \in [0..n m) : T[i..i + m] = P\}$
- or NO\_MATCH if there is no such i ("P does not occur in T")

► Variant: Find **all** occurrences of *P* in *T*.

 $\rightsquigarrow$  Can do that iteratively (update *T* to *T*[*i* + 1..*n*) after match at *i*)

#### Example:

- ▶ T = "Where is he?"
- $\blacktriangleright P_1 = "he" \iff i = 1$
- ▶  $P_2 =$ "who"  $\rightsquigarrow$  NO\_MATCH

string matching is implemented in Java in String.indexOf

## 4.2 Brute Force

#### Abstract idea of algorithms

Pattern matching algorithms consist of guesses and checks:

- A guess is a position *i* such that *P* might start at T[i]. Possible guesses (initially) are  $0 \le i \le n - m$ .
- A check of a guess is a pair (i, j) where we compare T[i + j] to P[j].
- Note: need all *m* checks to verify a single correct guess *i*, but it may take (many) fewer checks to recognize an incorrect guess.
- Cost measure: #character comparisons = #checks
- $\rightsquigarrow$  cost  $\leq n \cdot m$  (number of possible checks)

#### **Brute-force method**

1 procedure bruteForceSM(T[0..n), P[0..m)) 2 for i := 0, ..., n - m - 1 do 3 for j := 0, ..., m - 1 do 4 if  $T[i + j] \neq P[j]$  then break inner loop 5 if j == m then return i6 return NO MATCH

- try all guesses i
- check each guess (left to right); stop early on mismatch
- essentially the implementation in Java!

а

Example:
 T = abbbababbab
 P = abba
 ~~ 15 char cmps

 $(vs n \cdot m = 44)$ 

not too bad!

 a
 ...
 ...
 ...
 ...
 ...

 a
 a
 ...
 ...
 ...
 ...
 ...

 a
 a
 ...
 ...
 ...
 ...
 ...
 ...

 a
 ...
 a
 ...
 ...
 ...
 ...
 ...

 a
 ...
 a
 ...
 ...
 ...
 ...
 ...

 a
 ...
 ...
 a
 ...
 ...
 ...
 ...

 a
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 b
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 a
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 b
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 a
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 b
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 </t

b a

b b a b

b b b a

a b b

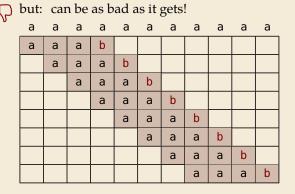
а

а

### **Brute-force method – Discussion**

Brute-force method can be good enough

- typically works well for natural language text
- also for random strings



- Worst possible input:  $P = a^{m-1}b$ ,  $T = a^n$
- Worst-case performance:  $(n m + 1) \cdot m$
- $\rightsquigarrow$  for  $m \le n/2$  that is  $\Theta(mn)$

- ▶ Bad input: lots of self-similarity in  $T! \rightarrow$  can we exploit that?
- ► brute force does 'obviously' stupid repetitive comparisons ~>> can we avoid that?

### Roadmap

- Approach 1 (this week): Use *preprocessing* on the pattern P to eliminate guesses (avoid 'obvious' redundant work)
  - Deterministic finite automata (DFA)
  - Knuth-Morris-Pratt algorithm
  - Boyer-Moore algorithm
  - Rabin-Karp algorithm
- Approach 2 (~> Unit 6): Do preprocessing on the text T Can find matches in time *independent of text size(!)* 
  - inverted indices
  - Suffix trees
  - Suffix arrays

# 4.3 String Matching with Finite Automata

#### **Theoretical Computer Science to the rescue!**

- string matching = deciding whether  $T \in \Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- $\Sigma^* \cdot P \cdot \Sigma^*$  is *regular* formal language
- $\rightsquigarrow \exists$  deterministic finite automaton (DFA) to recognize  $\Sigma^{\star} \cdot P \cdot \Sigma^{\star}$
- $\rightsquigarrow$  can check for occurrence of *P* in |T| = n steps!





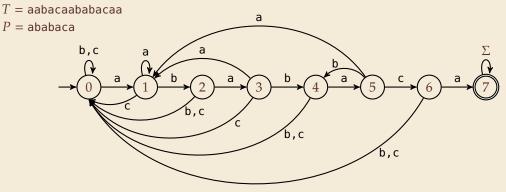
We are not quite done yet.

- ▶ (Problem 0: programmer might not know automata and formal languages . . . )
- Problem 1: existence alone does not give an algorithm!
- Problem 2: automaton could be very big!

### String matching with DFA

- Assume first, we already have a deterministic automaton
- How does string matching work?

#### Example:



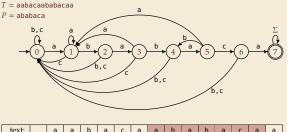
| text:  |   | а | а | b | а | с | а | а | b | а | b | а | С | а | а |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| state: | 0 | 1 | 1 | 2 | 3 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 |

### String matching DFA – Intuition

Why does this work?

Main insight:

State q means: "we have seen P[0..q) until here (but not any longer prefix of P)"



| text:  |   | а | а | b | а | с | а | а | b | а | b | а | с | а | а |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| state: | 0 | 1 | 1 | 2 | 3 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 |

▶ If the next text character *c* does not match, we know:

- (i) text seen so far ends with  $P[0...q) \cdot c$
- (ii)  $P[0...q) \cdot c$  is not a prefix of P
- (iii) without reading c, P[0..q) was the *longest* prefix of P that ends here.
- $\rightsquigarrow$  New longest matched prefix will be (weakly) shorter than q
- → All information about the text needed to determine it is contained in  $P[0...q) \cdot c!$

#### NFA instead of DFA?

It remains to *construct* the DFA.

► trivial part: 
$$\rightarrow 0$$
  $\stackrel{\Sigma}{\longrightarrow} 1$   $\stackrel{b}{\longrightarrow} 2$   $\stackrel{a}{\longrightarrow} 3$   $\stackrel{b}{\longrightarrow} 4$   $\stackrel{a}{\longrightarrow} 5$   $\stackrel{c}{\longrightarrow} 6$   $\stackrel{a}{\longrightarrow} 7$ 

• that actually is a *nondeterministic finite automaton* (NFA) for  $\Sigma^* P \Sigma^*$ 

→ We *could* use the NFA directly for string matching:

- at any point in time, we are in a set of states
- accept when one of them is final state

#### **Example:**

| text:  |   | а   | а   | b   | а     | с | а   | а   | b   | а     | b     | а       | с   | а     | а     |
|--------|---|-----|-----|-----|-------|---|-----|-----|-----|-------|-------|---------|-----|-------|-------|
| state: | 0 | 0,1 | 0,1 | 0,2 | 0,1,3 | 0 | 0,1 | 0,1 | 0,2 | 0,1,3 | 0,2,4 | 0,1,3,5 | 0,6 | 0,1,7 | 0,1,7 |

But maintaining a whole set makes this slow ...

### **Computing DFA directly**



You have an NFA and want a DFA? Simply apply the power-set construction (and maybe DFA minimization)!

The powerset method has exponential state blow up! I guess I might as well use brute force ...



**Ingenious algorithm** by Knuth, Morris, and Pratt: construct DFA *inductively*: Suppose we add character P[j] to automaton  $A_{j-1}$  for P[0..j - 1]

- ▶ add new state and matching transition → easy
- for each  $c \neq P[j]$ , we need  $\delta(j, c)$  (transition from j) when reading c)
- $\delta(j, c) = \text{ length of the longest prefix of } P[0..j)c \text{ that is a suffix of } P[1..j)c$ 
  - = state of automaton after reading P[1..j)c
  - $\leq j \rightsquigarrow$  can use known automaton  $A_{j-1}$  for that!
- $\rightsquigarrow$  can directly compute  $A_j$  from  $A_{j-1}$ !

seems to require simulating automata  $m \cdot \sigma$  times

State *q* means: "we have seen *P*[0..*q*) until here (but not any longer prefix of *P*)"

### **Computing DFA efficiently**

- **KMP's second insight:** simulations in one step differ only in last symbol
- → simply maintain state *x*, the state after reading P[1..j 1].
  - copy its transitions
  - update x by following transitions for P[j]
- Demo: Algorithms videos of Sedgewick and Wayne

| Knuth-Morris-Pratt construction demo (in linear                                                           | time           | .) |    |            |                   | I |
|-----------------------------------------------------------------------------------------------------------|----------------|----|----|------------|-------------------|---|
| Mismatch transition. For each state j and char c !=<br>dfa[c][j] = dfa[c][X]; then update X = dfa[pat.cha |                |    |    | ), si      | et                |   |
|                                                                                                           |                |    | x. | simu       | lation of B A B A |   |
|                                                                                                           |                |    | 3  |            | 5                 |   |
|                                                                                                           | В              | Α. | В  | A          | С                 |   |
| A                                                                                                         |                |    |    |            | 1                 |   |
| dfa[][j] B 0                                                                                              |                |    |    |            | 4                 |   |
| C   0                                                                                                     |                |    | 0  |            |                   |   |
|                                                                                                           | <b>B</b> - A - | 5  |    | <b>→</b> ( | 6)                |   |

https://cuvids.io/app/video/194/watch

#### String matching with DFA – Discussion

#### Time:

- Matching: *n* table lookups for DFA transitions
- ▶ building DFA:  $\Theta(m\sigma)$  time (constant time per transition edge).
- $\rightsquigarrow \Theta(m\sigma + n)$  time for string matching.

#### Space:

•  $\Theta(m\sigma)$  space for transition matrix.

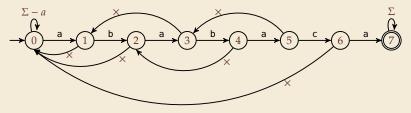
**fast matching** time actually: hard to beat! total time asymptotically optimal for small alphabet (for  $\sigma = O(n/m)$ )

💭 substantial **space overhead**, in particular for large alphabets

# 4.4 The Knuth-Morris-Pratt algorithm

#### **Failure Links**

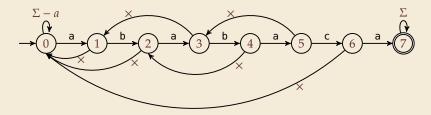
- ► Recall: String matching with is DFA fast, but needs table of  $m \times \sigma$  transitions.
- ▶ in fast DFA construction, we used that all simulations differ only by *last* symbol
- ✓ KMP's third insight: do this last step of simulation from state *x* during *matching*! ... but how?
- **Answer:** Use a new type of transition, the *failure links* 
  - Use this transition (only) if no other one fits.
  - ▶ × *does not consume a character.* → might follow several failure links



→ Computations are deterministic (but automaton is not a real DFA.)

#### **Failure link automaton – Example**

**Example:** T = abababaaaca, P = ababaca





(after reading this character)

### The Knuth-Morris-Pratt Algorithm

<sup>1</sup> procedure KMP(T[0..n-1], P[0..m-1]) fail[0..m] := failureLinks(P)2 i := 0 // current position in T3 q := 0 // current state of KMP automaton4 while i < n do 5 if T[i] == P[q] then 6 if q == m - 1 then 7 **return** i - q // occurrence found 8 else 9 i := i + 1; q := q + 110 else // *i.e.*  $T[i] \neq P[q]$ 11 if  $q \ge 1$  then 12  $q := fail[q] // follow one \times$ 13 else 14 i := i + 115 end while 16 return NO MATCH 17

- only need single array *fail* for failure links
- (procedure failureLinks later)

Analysis: (matching part)

- always have fail[j] < j for  $j \ge 1$
- $\rightsquigarrow$  in each iteration
  - either advance position in text (i := i + 1)
  - or shift pattern forward (guess *i* - *j*)
- each can happen at most *n* times
- $\rightsquigarrow \leq 2n$  symbol comparisons!

### **Computing failure links**

▶ failure links point to error state *x* (from DFA construction)

 $\rightarrow$  run same algorithm, but store *fail*[*j*] := *x* instead of copying all transitions

```
<sup>1</sup> procedure failureLinks(P[0..m-1])
      fail[0] := 0
2
      x := 0
3
      for j := 1, ..., m - 1 do
4
           fail[i] := x
5
           // update failure state using failure links
6
           while P[x] \neq P[j]
7
                if x == 0 then
8
                    x := -1; break
9
                x := fail[x]
10
           x := x + 1
11
```

#### Analysis:

- *m* iterations of for loop
- while loop always decrements x
- x is incremented only once per iteration of for loop
- $\rightsquigarrow \leq m$  iterations of while loop *in total*
- $\rightsquigarrow \leq 2m$  symbol comparisons

#### **Knuth-Morris-Pratt – Discussion**

#### ► Time:

- $\leq 2n + 2m = O(n + m)$  character comparisons
- clearly must at least read both T and P
- $\rightsquigarrow$  KMP has optimal worst-case complexity!

#### Space:

•  $\Theta(m)$  space for failure links

total time asymptotically optimal (for any alphabet size)reasonable extra space

#### The KMP prefix function

- ▶ It turns out that the failure links are useful beyond KMP
- ▶ a slight variation is more widely used: (for historic reasons) the (KMP) *prefix function*  $F : [1..m 1] \rightarrow [0..m 1]$ :

F[j] is the length of the longest prefix of P[0..j] that is a suffix of P[1..j].

• Can show: fail[j] = F[j-1] for  $j \ge 1$ , and hence

fail[j] = length of thelongest prefix of P[0..j)that is a suffix of P[1..j). 4.5 Beyond Optimal? The Boyer-Moore Algorithm

#### Motivation

- ▶ KMP is an optimal algorithm, isn't it? What else could we hope for?
- ► KMP is "only" optimal in the worst-case (and up to constant factors)
- how many comparisons do we need for the following instance? T = aaaaaaaaaaaaaaaaaaa, P = xxxxx
  - there are no matches
  - we can *certify* the correctness of that output with only 4 comparisons:

| Т | а | а | а | а | а | а | а | а | а | а | а | а | а | а | а | а |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   | х |   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   | х |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | х |   |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   | х |

→ We did *not* even read most text characters!

#### **Boyer-Moore Algorithm**

- Let's check guesses from right to left!
- ▶ If we are lucky, we can eliminate several shifts in one shot!

must avoid (excessive) redundant checks, e. g., for  $T = a^n$ ,  $P = ba^{m-1}$ 

- $\rightsquigarrow$  New rules:
  - ▶ **Bad character jumps**: Upon mismatch at *T*[*i*] = *c*:
    - ▶ If *P* does not contain *c*, shift *P* entirely past *i*!
    - ▶ Otherwise, shift *P* to align the *last occurrence* of *c* in *P* with *T*[*i*].
  - Good suffix jumps:

Upon a mismatch, shift so that the already matched *suffix* of *P* aligns with a previous occurrence of that suffix (or part of it) in *P*. (Details follow; ideas similar to KMP failure links)

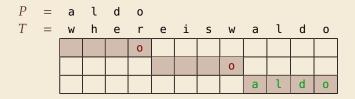
 $\rightsquigarrow\,$  two possible shifts (next guesses); use larger jump.

#### **Boyer-Moore Algorithm – Code**

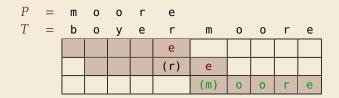
```
<sup>1</sup> procedure boyerMoore(T[0..n-1], P[0..m-1])
       \lambda := \text{computeLastOccurrences}(P)
2
       \gamma := \text{computeGoodSuffixes}(P)
3
      i := 0 // current guess
4
      while i \leq n - m
5
            j := m - 1 // next position in P to check
6
            while j \ge 0 \land P[j] == T[i + j] do
7
                i := i - 1
8
            if j = -1 then
9
                 return i
10
            else
11
                 i := i + \max\{j - \lambda[T[i+j]], \gamma[j]\}
12
       return NO MATCH
13
```

- $\lambda$  and  $\gamma$  explained below
- shift forward is larger of two heuristics
- shift is always positive (see below)

#### **Bad character examples**



 $\rightsquigarrow$  6 characters not looked at



→ 4 characters not looked at

#### **Last-Occurrence Function**

- Preprocess pattern P and alphabet  $\Sigma$
- *last-occurrence function*  $\lambda[c]$  defined as
  - the largest index *i* such that P[i] = c or
  - ▶ −1 if no such index exists

► Example: P - moore

| LAdii        | ipic. | 1 - | - 11101 | JIC |            |   | Р | = | m | 0 | 0 |
|--------------|-------|-----|---------|-----|------------|---|---|---|---|---|---|
| С            | m     | 0   | r       | е   | all others |   | Т | = | b | 0 | у |
| $\lambda[c]$ | 0     | 2   | 3       | 4   | -1         | • |   |   |   |   |   |
|              |       |     |         |     |            | • |   |   |   |   |   |

$$i = 0, j = 4, T[i + j] = r, \lambda[r] = 3$$
  
 $\rightsquigarrow$  shift by  $j - \lambda[T[i + j]] = 1$ 

r

е

e r

e (r) moore

е

- $\lambda$  easily computed in  $O(m + |\Sigma|)$  time.
- store as array  $\lambda[0..\sigma 1]$ .

### Good suffix examples

**1.**  $P = sells_shells$ 

| S | h | е | i | ι | а | ы | S | е   | ι   | ι   | S   | ц | S | h | е | ι | ι | S |
|---|---|---|---|---|---|---|---|-----|-----|-----|-----|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   | h | е   | ι   | ι   | S   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   | (e) | (l) | (1) | (s) |   |   |   |   |   |   |   |

**2.** P = odetofood

| i | ι | i | k | е | f | 0 | 0   | d   | f | r | 0 | m | m | е | х | i | С | 0 |
|---|---|---|---|---|---|---|-----|-----|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   | 0 | f | 0 | 0   | d   |   |   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   | (0) | (d) |   |   |   |   |   |   |   |   |   |   |

#### matched suffix

- **Crucial ingredient:** longest suffix of P[j+1..m-1] that occurs earlier in *P*.
- 2 cases (as illustrated above)
  - **1.** complete suffix occurs in  $P \rightarrow$  characters left of suffix are *not* known to match
  - **2.** part of suffix occurs at beginning of *P*

### Good suffix jumps

- Precompute good suffix jumps  $\gamma[0..m-1]$ :
  - For  $0 \le j < m$ ,  $\gamma[j]$  stores shift if search failed at P[j]
  - At this point, had T[i+j+1..i+m-1] = P[j+1..m-1], but  $T[i] \neq P[j]$
  - $\rightsquigarrow \gamma[j]$  is the shift  $m 1 \ell$  for the *largest*  $\ell$  such that
    - ▶ P[j+1...m-1] is a suffix of  $P[0...\ell]$  and  $P[j] \neq P[\ell-m+j+1]$

|  |  |  | h | е   | ι   | ι   | S   |  |  |  |  |
|--|--|--|---|-----|-----|-----|-----|--|--|--|--|
|  |  |  | × | (e) | (1) | (l) | (s) |  |  |  |  |

-OR-

•  $P[0...\ell]$  is a suffix of P[j+1,...,m-1]

|  |  | 0 | f | 0 | 0   | d   |  |  |  |  |  |
|--|--|---|---|---|-----|-----|--|--|--|--|--|
|  |  |   |   |   | (0) | (d) |  |  |  |  |  |

• Computable (similar to KMP failure function) in  $\Theta(m)$  time.

Note: You do not need to know how to find the values γ[j] for the exam, but you should be able to find the next guess on examples.

#### **Boyer-Moore algorithm – Discussion**

Worst-case running time  $\in O(n + m + |\Sigma|)$  if *P* does *not* occur in *T*. (follows from not at all obvious analysis!)

 $\bigcirc$  As given, worst-case running time  $\Theta(nm)$  if we want to report all occurrences

- To avoid that, have to keep track of implied matches. (tricky because they can be in the "middle" of P)
- Note: KMP reports all matches in O(n + m) without modifications!

On typical *English text*, Boyer Moore probes only approx. 25% of the characters in *T*!
 ~> Faster than KMP on English text.

 $\square$  requires moderate extra space  $\Theta(m + \sigma)$ 

# 4.6 The Rabin-Karp Algorithm

### **Space – The final frontier**

- ▶ Knuth-Morris-Pratt has great worst case and real-time guarantees
- Boyer-Moore has great typical behavior
- ► What else to hope for?
- All require Ω(m) extra space; can be substantial for large patterns!
- Can we avoid that?

#### **Rabin-Karp Fingerprint Algorithm – Idea**

**Idea:** use *hashing* (but without explicit hash tables)

- Precompute & store only hash of pattern
- Compute hash for each guess
- ▶ If hashes agree, check characterwise

**Example:** (treat (sub)strings as decimal numbers) P = 59265 T = 3141592653589793238Hash function:  $h(x) = x \mod 97$  $\rightsquigarrow h(P) = 95.$ 

$$\frac{3 \ 1 \ 4 \ 1 \ 5}{h(31415) = 84} = 2 \ 6 \ 5 \ 3 \ 5 \ 8 \ 9 \ 7 \ 9 \ 3 \ 2 \ 3 \ 8$$

$$h(31415) = 84$$

$$h(14159) = 94$$

$$h(141592) = 76$$

$$h(15926) = 18$$

$$h(59262) = 95$$

#### **Rabin-Karp Fingerprint Algorithm – First Attempt**

<sup>1</sup> **procedure** rabinKarpSimplistic(T[0..n-1], P[0..m-1]) M := suitable prime number 2  $h_P := \text{computeHash}(P[0..m-1)], M)$ 3 **for** i := 0, ..., n - m **do** 4  $h_T := \text{computeHash}(T[i..i + m - 1], M)$ 5 if  $h_T == h_P$  then 6 if T[i..i + m - 1] == P // m comparisons 7 then return *i* 8 return NO MATCH 9

• never misses a match since  $h(S_1) \neq h(S_2)$  implies  $S_1 \neq S_2$ 

▶ h(T[k..k+m-1]) depends on *m* characters  $\rightsquigarrow$  naive computation takes  $\Theta(m)$  time

 $\rightsquigarrow$  Running time is  $\Theta(mn)$  for search miss . . . can we improve this?

#### **Rabin-Karp Fingerprint Algorithm – Fast Rehash**

- **Crucial insight:** We can update hashes in constant time.
  - Use previous hash to compute next hash
  - ► *O*(1) time per hash, except first one

#### Example:

- ▶ Pre-compute: 10000 mod 97 = 9
- ▶ Previous hash: 41592 mod 97 = 76
- ▶ Next hash: 15926 mod 97 = ??

#### **Observation:**

$$15926 \mod 97 = (41592 - (4 \cdot 10000)) \cdot 10 + 6 \mod 97$$
  
= (76 - (4 \cdot 9 \cdot)) \cdot 10 + 6 \cdot 6 \cdot 97  
= 406 \cdot 6 \cdot 97 = 18

for above hash function!

#### **Rabin-Karp Fingerprint Algorithm – Code**

- use a convenient radix  $R \ge \sigma$  (R = 10 in our examples;  $R = 2^k$  is faster)
- Choose modulus *M* at *random* to be huge prime (randomization against worst-case inputs)

▶ all numbers remain  $\leq 2R^2 \iff O(1)$  time arithmetic on word-RAM

<sup>1</sup> procedure rabinKarp(T[0..n-1], P[0..m-1], R) M := suitable prime number 2  $h_P := \text{computeHash}(P[0..m-1)], M)$ 3  $h_T := \text{computeHash}(T[0..m-1], M)$ 4  $s := R^{m-1} \mod M$ 5 **for** i := 0, ..., n - m **do** 6 if  $h_T == h_P$  then 7 **if** T[i..i + m - 1] = P8 return *i* 9 if i < n - m then 10  $h_T := ((h_T - T[i] \cdot s) \cdot R + T[i + m]) \mod M$ 11 return NO MATCH 12

### **Rabin-Karp – Discussion**

- $\bigcirc$  Expected running time is O(m + n)
- $\bigoplus_{\substack{\Theta(mn) \text{ worst-case;}} \\ \text{but this is very unlikely} }$
- Extends to 2D patterns and other generalizations
- Only constant extra space!

### **String Matching Conclusion**

|                  | Brute-<br>Force | DFA            | KMP  | BM                     | RK                  | Suffix<br>trees*      |
|------------------|-----------------|----------------|------|------------------------|---------------------|-----------------------|
| Preproc.<br>time | _               | $O(m \Sigma )$ | O(m) | $O(m + \sigma)$        | O(m)                | <i>O</i> ( <i>n</i> ) |
| Search<br>time   | O(nm)           | O(n)           | O(n) | O(n)<br>(often better) | O(n + m) (expected) | O(m)                  |
| Extra<br>space   | —               | $O(m \Sigma )$ | O(m) | $O(m + \sigma)$        | <i>O</i> (1)        | O(n)                  |

\* (see Unit 6)