
5 Parallel
String Matching

2 March 2020

Sebastian Wild

version 2020-03-02 21:49 H

Outline

5 Parallel String Matching
5.1 Elementary Tricks
5.2 Periodicity
5.3 String Matching by Duels

Parallelizing string matching
I We have seen a plethora of string matching methods

I But all efficient methods seem inherently sequential
Indeed, they became efficient only after building on knowledge from previous

Sounds like the opposite of parallel!

steps!

 This unit:
I How well can we parallelize string matching?
I What new ideas can help?

Here: string matching = find all occurrences of % in) (more natural problem for parallel)
always assume < ≤ =

1

5.1 Elementary Tricks

Embarrassingly Parallel
I A problem is called “embarrassingly parallel”

if it can immediately be split into many, small subtasks
that can be solved completely independently of each other

I Typical example: sum of two large matrices (all entries independent)

 best case for parallel computation (simply assign each processor one subtask)

I Sorting is not embarrassingly parallel
I no obvious way to define many small (=efficiently solvable) subproblems
I but: some subtasks of our algorithms are, e. g., comparing all elements with pivot

2

Elementary parallel string matching
Subproblems in string matching:

I string matching = check all guesses 8 = 0, . . . , = − < − 1
I checking one guess is a subtask!

Approach 1:

I Check all guesses in parallel

 Time: Θ(<)
 Work: Θ((= − <)<) not great . . .

Approach 2:

I Divide) into overlapping blocks of 2< characters:
)[0..2<),)[<..3<),)[2<..4<),)[3<..5<). . .

I Find matches inside blocks in parallel, using efficient sequential method
 Θ(2< + <) = Θ(<) each

 Time: Θ(<) Work: Θ(=< · <) = Θ(=)
3

Elementary parallel matching – Discussion
very simple methods

could even run distributed with access to part of)

parallel speedup only for < � =

Goal:

I methods with better parallel time! higher speedup

 must genuinely parallelize the matching process! (and the preprocessing of the pattern)

 need new ideas

4

5.2 Periodicity

Periodicity of Strings
I (= ([0..= − 1] has period ? iff ∀8 ∈ [0..= − ?) : ([8] = ([8 + ?]

I ? = 0 and any ? ≥ = are trivial periods but these are not very interesting . . .

Examples:
I (= baaababaaab has period 6:

? = 6

(b a a a b a b a a a b

(b a a a b a b a a a b
= = = = =

I (= abaabaabaaba has period 3:

? = 3

(a b a a b a a b a a b a

(a b a a b a a b a a b a

= = = = = = = = =

5

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)
? ∈ [1..=] is the shortest period in (= ([0..= − 1]
iff ([0..= − ?) is the longest prefix that is also a suffix of ([?..=). J

([0..= − 1] has minimal period ? ⇐⇒ fail[=] = = − ?

? = 3

fail[=] = 9

(a b a a b a a b a a b a

(a b a a b a a b a a b a

= = = = = = = = =

0 1 2 3 4 5 6 7 8 9 10 11

6

Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)
If string (= ([0..= − 1] has periods ? and @ with ? + @ ≤ =,
then it has also period gcd

greatest common divisor

(?, @). J

Proof: see tutorials; hint: recall Euclid’s algorithm

7

Periodic strings
I What does the smallest period ? tell us about a string ([0..= − 1]?
I Two distinct regimes:

1. (is periodic: ? ≤ =
2

More precisely: (is totally determined by a string � = �[0..? − 1] = ([0..? − 1]
(keeps repeating � until = characters are filled

 (is highly repetitive!

2. (is aperiodic (also non-periodic): ? > =
2

(cannot be written as (= �: · . with : ≥ 2 and . a prefix of �

8

5.3 String Matching by Duels

Periods and Matching
Witnesses for non-periodicity:
I Assume, %[0..< − 1] does not have period ?

 ∃ witness against periodicity: position $ ∈ [0..< − ?) : %[$] ≠ %[$ + ?]

Dueling via witnesses:
I If %[0..< − 1] does not have period ?, then

at most one of positions 8 and 8 + ? can be (the starting position of) an occurrence of %.

Proof: Cannot have)[(8 + ?) + $] = %[$] ≠ %[$ + ?] =)[8 + ($ + ?)].

I Duel between guess 8 and 8 + ?:
compare text character overlapped with witness $

9

String Matching by Duels – Sequential
Assume that pattern % is aperiodic. (we will deal with periodic case later)

Algorithm:

1. Set � := b<2 c

2. Compute witnesses $[1..�] against periodicity for all ? ≤ <
2 .

3. For each block of � consecutive indices [0..�), [�..2�), [2�..3�), . . .
run � − 1 duels to eliminate all but one guesses in the block

4. check remaining d =� e = $(=/<) guesses naively

Analysis:

1. $(1)

2. later ($(<))

3. $(=<) blocks
$(<) duels each

4. $(=<),
≤ < cmps each

 another worst-case $(= + <) string matching method!

10

String Matching by Duels – Parallel
Assume that pattern % is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set � := b<2 c

2. Compute witnesses $[1..�] against periodicity for all ? ≤ <
2 .

3. For each block of � consecutive indices [0..�), [�..2�), [2�..3�), . . .
run � − 1 duels to eliminate all but one guesses in the block

4. check remaining d =� e = $(=/<) guesses naively

How to parallelize:

1. —

2. later ($(log2(<)))

3. blocks in parallel (indep.),
tournament of dlg�e rounds

4. check in parallel
collect result (like prefix sum)

Tournament of duals:
I each dual eliminates one guess

 declare other guess winner
I conceptually like prefix sum! 0 1 2 3 4 5 6 7

 Matching part can be done in $(log<) parallel time and $(=)work!
11

Computing witnesses
It remains to find the witnesses $[1..�].

sequentially:

I an elementary procedure is similar in spirit to KMP failure array

I can be computed in Θ(<) time

parallel:
I much more complicated beyond scope of the module

I first $(log2(<)) time on CREW-RAM
I later $(log<) time and $(<)work using pseudoperiod method

12

Parallel Matching – State of the art
I $(log<) time & work-efficient parallel string matching

I this is optimal for CREW-PRAM

I on CRCW-PRAM: matching part even in $(1) time(!)
but preprocessing requires Θ(log log<) time

13

	Parallel String Matching
	 Parallelizing string matching
	Elementary Tricks
	 Embarrassingly Parallel
	 Elementary parallel string matching
	 Elementary parallel matching – Discussion

	Periodicity
	 Periodicity of Strings
	 Periodicity and KMP
	Lemma 5.1: Periodicity = Longest Overlap
	 Periodicity Lemma
	Lemma 5.2: Periodicity Lemma
	 Periodic strings

	String Matching by Duels
	 Periods and Matching
	 String Matching by Duels – Sequential
	 String Matching by Duels – Parallel
	 Computing witnesses
	 Parallel Matching – State of the art

