1] 4
1R HME H JF
)HNEH A<+
1 HOID AL Qo
T HBAAEC
TS HA < HT
I Wita ol oS L S
1O A<
AR HUNOAC
)N A0 H <[
JOO CH =69+
IHUASE TN~
(=AM ITEFEON
DI HBHHQD
IFAAdHT S <
1H [A MO T
IEHALOUERU
Od<<U IHT
O N a W - RS
(AN AO=
YO AU I

_| |

Parallel

String Matching

2 March 2020

Sebastian Wild

version 2020-03-02 21:49 H

Outline

5 Parallel String Matching

5.1 Elementary Tricks
5.2 Periodicity
5.3 String Matching by Duels

Parallelizing string matching

» We have seen a plethora of string matching methods

» But all efficient methods seem inherently sequential
Indeed, they became efficient only after building on knowledge from previous steps!

Sounds like the opposite of parallel!

~+ This unit:
»> How well can we parallelize string matching?

» What new ideas can help?

Here: string matching = find all occurrences of P in T' (more natural problem for parallel)
always assume m < n

5.1 Elementary Tricks

Embarrassingly Parallel

» A problem is called “embarrassingly parallel”
if it can immediately be split into many, small subtasks
that can be solved completely independently of each other

» Typical example: sum of two large matrices (all entries independent)

~~ best case for parallel computation (simply assign each processor one subtask)

» Sorting is not embarrassingly parallel

» no obvious way to define many small (=efficiently solvable) subproblems

» but: some subtasks of our algorithms are, e. g., comparing all elements with pivot

Elementary parallel string matching
Subproblems in string matching:
» string matching = check all guessesi =0,...,n —m —1
» checking one guess is a subtask!
Approach 1:

» Check all guesses in parallel
~» Time: ©O(m)

~» Work: ©((n —m)m) ~» notgreat...
Approach 2:

» Divide T into overlapping blocks of 2m characters:
T[0..2m), T[m..3m), T[2m..4m), T[3m..5m). ..

» Find matches inside blocks in parallel, using efficient sequential method
~ OQ2m +m) = O(m) each

~ Time: ©(m) Work: O(;; - m) = ©(n)

Elementary parallel matching — Discussion

[fb very simple methods

[fb could even run distributed with access to part of T

Eg) parallel speedup only for m < n

Goal:
» methods with better parallel time! ~~ higher speedup
~» must genuinely parallelize the matching process! (and the preprocessing of the pattern)

~» need new ideas

5.2 Periodicity

Periodicity of Strings
» S =S5[0..n — 1] has period p iff Vie[0..n—p):S[i]=S[i+p]
» p =0and any p > n are trivial periods

Examples:
» S = baaababaaab has period 6:

S{b a a a b a b a a a b
2 S T T TR Il i
P= S|b a a a b

b a a a b

Q

» S = abaabaabaaba has period 3:

Sla b a a b a a b a a b a
T T T I [N TR 1
Sla b a a b a a b a b a

p=3

Q

but these are not very interesting . . .

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)
p € [1..n] is the shortest period in S = S[0..n — 1]
iff 5[0..n — p) is the longest prefix that is also a suffix of S[p..n).

S[0..n — 1] has minimal period p &= fail[n]=n—-p

<] 2_34 7 8 9 18 11
S| a a ab aab aab a

>
no

p=3

o |~

Sla b a a b a a b a a b a

Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)
If string S = S[0..n — 1] has periods p and g withp + g < n,
then it has also period ged(p, q).

greatest common divisor

PTOOf.' see tutorials; hint: recall Euclid’s algorithm

Periodic strings

» What does the smallest period p tell us about a string S[0..n — 1]?
» Two distinct regimes:

1. Sis periodic: p < %
More precisely: S is totally determined by a string F = F[0..p — 1] = S[0..p — 1]
S keeps repeating F until n characters are filled

~ S is highly repetitive!

2. S is aperiodic (also non-periodic): p > 7
S cannot be written as S = F¥ - Y with k > 2 and Y a prefix of F

5.3 String Matching by Duels

Periods and Matching

Witnesses for non-periodicity:

» Assume, P[0..m — 1] does not have period p

~> J witness against periodicity: position w € [0..m — p) : Plw] # Plw + p]

Dueling via witnesses:

» If P[0..m — 1] does not have period p, then
at most one of positions i and 7 + p can be (the starting position of) an occurrence of P.

Proof: Cannot have T[(i + p) + w] = Plw] # Plw + p] = T[i + (w + p)].

q p
» Duel between guess i and i + p:
. . r \
compare text character overlapped with witness @ I ‘ '\

String Matching by Duels — Sequential

[Assurne that pattern P is aperiodic.] (we will deal with periodic case later)
Algorithm: Analysis:
1. Setu:=[7] 1. O()
2. Compute witnesses w[1..1] against periodicity for all p < 7. 2. ~»later (O(m))
3. For each block of y consecutive indices [0..1), [p..21), [2u..3u), - . . 3. O(;;) blocks
run p — 1 duels to eliminate all but one guesses in the block O(m) duels each
4. check remaining fﬁ] = O(n/m) guesses naively 4. O(),

< m cmps each

~+ another worst-case O(n + m) string matching method!

10

String Matching by Duels — Parallel

[ASSUI’I’IG that pattern Pis aperiodic] (can deal with periodic case separately; details omitted)
Algorithm: How to parallelize:
1. Sety := %] 1. —

2. Compute witnesses w[1..1] against periodicity for all p < % 2. ~~ later (O(logz(m)))
3. For each block of i1 consecutive indices [0..u), [p..2p), [2p..31), ... 3. blocks in parallel (indep.),
run i — 1 duels to eliminate all but one guesses in the block tournament of [lg 1] rounds
4. check remaining fﬁ] = O(n/m) guesses naively 4. check in parallel
collect result (like prefix sum)
PR
Tournament of duals: ¥
He -/ $ "\:, g
» each dual eliminates one guess /I] 7’ Pz

~+ declare other guess winner

'
[I
» conceptually like prefix sum! @ . . \. . \. @{ .

~» Matching part can be done in O(log 1) parallel time and O(n) work!

11

Computing witnesses

It remains to find the witnesses w[1..u].

sequentially:
» an elementary procedure is similar in spirit to KMP failure array
» can be computed in @(m) time

parallel:

» much more complicated ~~ beyond scope of the module
> first O(logz(m)) time on CREW-RAM
» later O(logm) time and O(m) work using pseudoperiod method

12

Parallel Matching — State of the art

» O(logm) time & work-efficient parallel string matching
» this is optimal for CREW-PRAM

» on CRCW-PRAM: matching part even in O(1) time(!)
but preprocessing requires @ (loglog) time

13

	Parallel String Matching
	 Parallelizing string matching
	Elementary Tricks
	 Embarrassingly Parallel
	 Elementary parallel string matching
	 Elementary parallel matching – Discussion

	Periodicity
	 Periodicity of Strings
	 Periodicity and KMP
	Lemma 5.1: Periodicity = Longest Overlap
	 Periodicity Lemma
	Lemma 5.2: Periodicity Lemma
	 Periodic strings

	String Matching by Duels
	 Periods and Matching
	 String Matching by Duels – Sequential
	 String Matching by Duels – Parallel
	 Computing witnesses
	 Parallel Matching – State of the art

