ALGORITHMICS WAPPLIED APPLIEDALGORITHMICS\$ CS \$ APPLIEDALGORITHMI D ALGORITHMICS \$ APPLIE EDALGORITHMICS\$APPLI GORITHMICS\$APPLIEDAL HMICS \$ APPLIEDALGORIT

 Compression

 Compression
 16 March 2020
 Sebastian Wild

Outline

Compression

7.1 Context
7.2 Character Encodings
7.3 Huffman Codes
7.4 Run-Length Encoding
7.5 Lempel-Ziv-Welch
7.6 Move-to-Front Transformation
7.7 Burrows-Wheeler Transform

7.1 Context

Overview

- Unit 4-6: How to work with strings
- finding substrings
- finding approximate matches
- finding repeated parts
- Unit 7-8: How to store strings
- computer memory: must be binary
- how to compress strings (save space)
- how to robustly transmit over noisy channels \rightsquigarrow Unit 8

Terminology

- source text: string $S \in \Sigma_{S}^{\star}$ to be stored / transmitted
Σ_{S} is some alphabet
- coded text: encoded data $C \in \Sigma_{C}^{\star}$ that is actually stored / transmitted usually use $\Sigma_{C}=\{0,1\}$
- encoding: algorithm mapping source texts to coded texts
- decoding: algorithm mapping coded texts back to original source text

What is a good encoding scheme?

- Depending on the application, goals can be
- efficiency of encoding/decoding
- resilience to errors/noise in transmission
- security (encryption)
- integrity (detect modifications made by third parties)
- size
- Focus in this unit: size of coded text

Encoding schemes that (try to) minimize the size of coded texts perform data compression.

- We will measure the compression ratio: $\frac{|C| \cdot \lg \left|\Sigma_{C}\right|}{|S| \cdot \lg \left|\Sigma_{S}\right|} \stackrel{\Sigma_{C}=\{0,1\}}{=} \frac{|C|}{|S| \cdot \lg \left|\Sigma_{S}\right|}$
< 1 means successful compression
= 1 means no compression
> 1 means "compression" made it bigger!? (yes, that happens ...)

Types of Data Compression

- Logical vs. Physical
- Logical Compression uses meaning of data
\rightsquigarrow only applies to a certain domain, e.g., sound recordings
- Physical Compression only knows the (physical) bits in the data, not the meaning behind them
- Lossy vs. Lossless
- lossy compression can only decode approximately; the exact source text S is lost
- lossless compression always decodes S exactly
- For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- We will concentrate on physical, lossless compression algorithms.

These techniques can be used for any application.

What makes data compressible?

- Physical, lossless compression methods mainly exploit two types of redundancies in source texts:

1. uneven character frequencies
some characters occur more often than others \rightarrow Part I
2. repetitive texts
different parts in the text are (almost) identical \rightarrow Part II

There is no such thing as a free lunch!
Not everything is compressible (\rightarrow tutorials)
\rightsquigarrow focus on versatile methods that often work

Part I

Exploiting character frequencies

7.2 Character Encodings

Character encodings

- Simplest form of encoding: Encode each source character individually
\rightsquigarrow encoding function $E: \Sigma_{S} \rightarrow \Sigma_{C}^{\star}$
- typically, $\left|\Sigma_{S}\right| \gg\left|\Sigma_{C}\right|$, so need several bits per character
- for $c \in \Sigma_{S}$, we call $E(c)$ the codeword of c
- fixed-length code: $|E(c)|$ is the same for all $c \in \Sigma_{C}$
- variable-length code: not all codewords of same length

Fixed-length codes

- fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

0000000 NUL	0010000 DLE	0100000	01100000	1000000 @	1010000 P	1100000	1110000 p
0000001 SOH	0010001 DC1	0100001 !	01100011	1000001 A	1010001 Q	1100001 a	1110001 q
0000010 STX	0010010 DC2	0100010 "	01100102	1000010 B	1010010 R	1100010 b	1110010 r
0000011 ETX	0010011 DC3	0100011 \#	01100113	1000011 C	1010011 S	1100011 c	1110011 s
0000100 EOT	0010100 DC4	0100100 \$	01101004	1000100 D	1010100 T	1100100 d	1110100 t
0000101 ENQ	0010101 NAK	0100101 \%	01101015	1000101 E	1010101 U	1100101 e	1110101 u
0000110 ACK	0010110 SYN	0100110 \&	01101106	1000110 F	1010110 V	1100110 f	1110110 v
0000111 BEL	0010111 ETB	0100111	01101117	1000111 G	1010111 W	1100111 g	1110111 W
0001000 BS	0011000 CAN	0101000 (01110008	1001000 H	1011000 X	1101000 h	1111000 x
0001001 HT	0011001 EM	0101001)	01110019	1001001 I	1011001 Y	1101001 i	1111001 y
0001010 LF	0011010 SUB	0101010 *	0111010 :	1001010 J	1011010 Z	1101010 j	1111010 z
0001011 VT	0011011 ESC	$0101011+$	0111011 ;	1001011 K	1011011 [1101011 k	1111011 \{
0001100 FF	0011100 FS	0101100	$0111100<$	1001100 L	1011100 \}	1101100 l	1111100
0001101 CR	0011101 GS	0101101 -	$0111101=$	1001101 M	1011101]	1101101 m	1111101 \}
0001110 S0	0011110 RS	0101110	0111110 >	1001110 N	1011110 ^	1101110 n	1111110 ~
0001111 SI	0011111 US	0101111 /	0111111 ?	10011110	1011111	11011110	1111111 DEL

- 7 bit per character
- just enough for English letters and a few symbols (plus control characters)

Fixed-length codes - Discussion

0
Encoding \& Decoding as fast as it gets

中
Unless all characters equally likely, it wastes a lot of space
qi
inflexible (how to support adding a new character?)

Variable-length codes

- to gain more flexibility, have to allow different lengths for codewords
- actually an old idea: Morse Code

International Morse Code

A dasth of a dot is one unit.
2. A dash is three units.
. The space between parts of the same letter is one unit.
4. The space between letters is three units,

https://commons.wikimedia.org/wiki/File:Morse-code-tree.svg
https://commons.wikimedia.org/wiki/File:
International Morse_Code.svg

Variable-length codes - UTF-8

- Modern example: UTF-8 encoding of Unicode:
default encoding for text-files, XML, HTML since 2009
- Encodes any Unicode character (137994 as of May 2019, and counting)
- uses 1-4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- Every ASCII character is encoded in 1 byte with leading bit 0 , followed by the 7 bits for ASCII
- Non-ASCII charactters start with 1-4 1s indicating the total number of bytes, followed by a 0 and 3-5 bits.
The remaining bytes each start with 10 followed by 6 bits.

Char. number range (hexadecimal)	UTF-8 octet sequence (binary)
0000 0000-0000 007F	0xxxxxxx 0000 0080-0000 07FF
110xxxxx 10xxxxxx	
0000 0800-0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx
0001 0000-0010 FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

- Suppose we have the following code:

c	a	n	b	s
$E(c)$	0	10	110	100

- Happily encode text $S=$ banana with the coded text $C=\frac{1100100100}{b} \frac{1}{n} \frac{a}{n} \frac{a}{}$
$4 C=1100100100$ decodes both to banana and to bass: $\frac{1100100100}{b} \frac{\mathrm{a}}{\mathrm{s}} \mathrm{s}$
\rightsquigarrow not a valid code . . (cannot tolerate ambiguity) but how should we have known?
$E(\mathrm{n})=10$ is a (proper) prefix of $E(\mathrm{~s})=100$
\rightsquigarrow Leaves decoding wondering whether to stop after reading 10 or continue
\rightsquigarrow Require a prefix-free code: No codeword is a prefix of another. prefix-free \Longrightarrow instantaneously decodable

Code tries

- From now on only consider prefix-free codes E : $E(c)$ is not a prefix of $E\left(c^{\prime}\right)$ for any $c, c^{\prime} \in \Sigma_{S}$.
- Example:

c	A	E	N	0	T	U
$E(c)$	01	101	001	100	11	000

Any prefix-free code corresponds to a (code) trie (trie of codewords) with characters of Σ_{S} at leaves.
no need for end-of-string symbols \$ here (already prefix-free!)

- Encode AN $_{\mathrm{L}}$ ANT $\rightarrow 010010000100111$
- Decode $111000001010111 \rightarrow$ TO_EAT

Who decodes the decoder?

- Depending on the application, we have to store/transmit the used code!
- We distinguish:
- fixed coding: code agreed upon in advance, not transmitted (e. g., Morse, UTF-8)
- static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes \rightarrow next)
- adaptive coding: code depends on message and changes during encoding; implicitly stored withing the message (e. g., LZW \rightarrow below)
7.3 Huffman Codes

Character frequencies

- Goal: Find character encoding that produces short coded text
- Convention here: fix $\Sigma_{C}=\{0,1\}$ (binary codes), abbreviate $\Sigma=\Sigma_{S}$,
- Observation: Some letters occur more often than others.

Typical English prose:

e	12.70\%	d	4.25\%	-	p	1.93\%	-
t	9.06\%	1	4.03\%	-	b	1.49\%	-
a	8.17\%	c	2.78\%	\square	v	0.98\%	-
o	7.51\%	u	2.76\%	\square	k	0.77\%	I
i	6.97\%	m	2.41\%	-	j	0.15\%	I
n	6.75\%	w	2.36\%	\square	x	0.15\%	1
s	6.33\%	f	2.23\%	-	q	0.10\%	,
h	6.09\%	g	2.02\%	\square	z	0.07\%	,
r	5.99\%	y	1.97\%	\square			

\rightsquigarrow Want shorter codes for more frequent characters!

Huffman coding

e. g. frequencies / probabilities

- Given: Σ and weights $w: \Sigma \rightarrow \mathbb{R}_{\geq 0}$
- Goal: prefix-free code E (= code trie) for Σ that minimizes coded text length
i. e., a code trie minimizing $\quad \sum_{c \in \Sigma} w(c) \cdot|E(c)|$
- If we use $w(c)=\#$ occurrences of c in S, this is the character encoding with smallest possible $|C|$
\rightsquigarrow best possible character-wise encoding
- Quite ambitious! Is this efficiently possible?

Huffman's algorithm

- Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

1. Find two characters a, b with lowest weights.

- We will encode them with the same prefix, plus one distinguishing bit, i. e., $E(\mathrm{a})=u 0$ and $E(\mathrm{~b})=u 1$ for a bitstring $u \in\{0,1\}^{\star} \quad$ (u to be determined)

2. (Conceptually) replace a and b by a single character "ab" with $w(\mathrm{ab})=w(\mathrm{a})+w(\mathrm{~b})$.
3. Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines $u=E$ ($a b$).

- efficient implementation using a (min-oriented) priority queue
- start by inserting all characters with their weight as key
- step 1 uses two deleteMin calls
- step 2 inserts a new character with the sum of old weights as key

Huffman's algorithm - Example

- Example text: $S=$ LOSSLESS $\rightsquigarrow \Sigma_{S}=\{E, L, 0, S\}$
- Character frequencies: $\mathrm{E}: 1, \quad \mathrm{~L}: 2, \quad 0: 1, \quad \mathrm{~S}: 4$

\rightsquigarrow Huffman tree (code trie for Huffman code)
LOSSLESS $\rightarrow 01001110100011$
compression ratio: $\frac{14}{8 \cdot \log 4}=\frac{14}{16} \approx 88 \%$

Huffman tree - tie breaking

- The above procedure is ambiguous:
- which characters to choose when weights are equal?
- which subtree goes left, which goes right?
- For COMP 526: always use the following rule:

1. To break ties when selecting the two characters, first use the smallest letter according to the alphabetical order, or the tree containing the smallest alphabetical letter.
2. When combining two trees of different values, place the lower-valued tree on the left (corresponding to a 0-bit).
3. When combining trees of equal value, place the one containing the smallest letter to the left.

Huffman code - Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w: \Sigma \rightarrow \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E: \Sigma \rightarrow\{0,1\}^{\star}$ with minimal expected codeword length $\ell(E)=\sum_{c \in \Sigma} w(c) \cdot|E(c)|$, among all prefix-free codes for Σ.

Proof sketch: by induction over $\sigma=|\Sigma|$

- Given any optimal prefix-free code E^{*} (as its code trie).
- code trie $\rightsquigarrow \exists$ two sibling leaves x, y at largest depth D
- swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- any optimal code for $\Sigma^{\prime}=\Sigma \backslash\{\mathrm{a}, \mathrm{b}\} \cup\{\mathrm{ab}\}$ yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
\rightsquigarrow recursive call yields optimal code for Σ^{\prime} by inductive hypothesis, so Huffman's algorithm finds optimal code for Σ.

Entropy

Definition 7.2 (Entropy)

Given probabilities p_{1}, \ldots, p_{n} (for outcomes $1, \ldots, n$ of a random variable), the entropy of the distribution is defined as

$$
\mathcal{H}\left(p_{1}, \ldots, p_{n}\right)=-\sum_{i=1}^{n} p_{i} \lg p_{i}=\sum_{i=1}^{n} p_{i} \lg \left(\frac{1}{p_{i}}\right)
$$

- entropy is a measure of information content of a distribution
- more precisely: the expected number of bits (Yes/No questions) required to nail down the random value
\rightsquigarrow would ideally encode value i using $\lg \left(1 / p_{i}\right)$ bits that is not always possible; cannot use 1.5 bits ... but:

Theorem 7.3 (Entropy bounds for Huffman codes)

For any $\Sigma=\left\{a_{1}, \ldots, a_{\sigma}\right\}$ and $w: \Sigma \rightarrow \mathbb{R}_{\geq 0}$ and its Huffman code E, we have

$$
\mathcal{H}\left(\frac{w\left(a_{1}\right)}{W}, \ldots, \frac{w\left(a_{\sigma}\right)}{W}\right) \leq \ell(E) \leq \mathcal{H}\left(\frac{w\left(a_{1}\right)}{W}, \ldots, \frac{w\left(a_{\sigma}\right)}{W}\right)+1
$$

where $W=w\left(a_{1}\right)+\cdots+w\left(a_{\sigma}\right)$.

Encoding with Huffman code

- The overall encoding procedure is as follows:
- Pass 1: Count character frequencies in S
- Construct Huffman code E (as above)
- Store the Huffman code in C (details omitted)
- Pass 2: Encode each character in S using E and append result to C
- Decoding works as follows:
- Decode the Huffman code E from C. (details omitted)
- Decode S character by character from C using the code trie.
- Note: Decoding is much simpler/faster!

Huffman coding - Discussion

- running time complexity: $O(\sigma \log \sigma)$ to construct code
- build $\mathrm{PQ}+\sigma$ times 2 deleteMins and 1 insert
- can do $\Theta(\sigma)$ time when characters already sorted by weight
- time for encoding: $O(n+|C|)$
- many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

\oiiint
optimal prefix-free character encoding
very fast decoding
robust encoding local errors only affect 1-2 symbols
needs 2 passes over source text for encoding

- one-pass variants possible, but more complicated
\square
have to store code alongside with coded text

Part II

Compressing repetitive texts

Beyond Character Encoding

- Many "natural" texts show repetitive redundancy

> All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will not capture such repetitions
\rightsquigarrow Huffman won't compression this very much
\rightsquigarrow Have to encode whole phrases of S by a codeword

7.4 Run-Length Encoding

Run-Length encoding

- simplest form of repetition: runs of characters

000000000000000000000000000000000000000 00 000101100100000111111000000000011111000 00111111111100011111111100000011111111000 001100000000000000000111000111000000000 001100000000000000000011001110000000000 001100000000000000000011001110000000000 001101100000000000000111001100111110006 001111111100000000000111001111111111000 001110111110000000001110001111100111100
000000000111000000011100001110000001110 000000000111000000011000001110000001100 000000000011000000110000000110000001119 000000000011000001110000001110000001100 000000000111000111000000000110000001110 000000000110000111000000000111000011100 001101111110001111011101000011111111000 000101100000001010011001000000100100000 00000000000000000000000000000000000000 000000000000000000000000000000000000
same character repeated

- here: only consider $\Sigma_{S}=\{0,1\}$ (work on a binary representation)
- can be extended for larger alphabets
\rightsquigarrow run-length encoding (RLE):
use runs as phrases: $S=\underbrace{00000} \underbrace{111} \underbrace{0000}$
\rightsquigarrow We have to store
- the first bit of S (either 0 or 1)
- the length each each run
- Note: don't have to store bit for later runs since they must alternate.
- Example becomes: 0,5,3,4
- Question: How to encode a run length k in binary?
(k can be arbitrarily large!)

Elias codes

- Need a prefix-free encoding for $\mathbb{N}=\{1,2,3, \ldots$,
- must allow arbitrarily large integers
- must know when to stop reading
- But that's simple! Just use unary encoding!
$7 \mapsto 00000001 \quad 3 \mapsto 0001 \quad 0 \mapsto 1 \quad 30 \mapsto 0000000000000000000000000000001$
T Much too long
- (wasn't the whole point of RLE to get rid of long runs??)
- Refinement: Elias gamma code
- Store the length ℓ of the binary representation in unary
- Followed by the binary digits themselves
- little tricks:
- always $\ell \geq 1$, so store $\ell-1$ instead
- binary representation always starts with $1 \rightsquigarrow$ don't need terminating 1 in unary
\rightsquigarrow Elias gamma code $=\ell-1$ zeros, followed by binary representation
Examples: $1 \mapsto 1, \quad 3 \mapsto 011, \quad 5 \mapsto 00101, \quad 30 \mapsto 000011110$

Run-length encoding - Examples

- Encoding:
$S=11111110010000000000000000000011111111111$
$C=10011101010000101000001011$

Compression ratio: $26 / 41 \approx 63 \%$

- Decoding:
$C=00001101001001010$
$b=$
$\ell=$
$k=$
$S=00000000000001111011$

Run-length encoding - Discussion

- extensions to larger alphabets possible (must store next character then)
- used in some image formats (e.g. TIFF)

0
fairly simple and fast
0
can compress n bits to $\Theta(\log n)$!
for extreme case of constant number of runs
negligible compression for many common types of data

- No compression until run lengths $k \geq 6$
- expansion when run lengths $k=2$ or 6

7.5 Lempel-Ziv-Welch

Warmup

https://www.flickr.com/photos/quintanaroo/2742726346

Lempel-Ziv Compression

- Huffman and RLE mostly take advantage of frequent or repeated single characters.
- Observation: Certain substrings are much more frequent than others.
- in English text: the, be, to, of, and, a, in, that, have, I
- in HTML: "<a href", "<img src","
"
- Lempel-Ziv stands for family of adaptive compression algorithms.
- Idea: store repeated parts by reference!
\rightsquigarrow each codeword refers to
- either a single character in Σ_{S},
- or a substring of S (that both encoder and decoder have already seen).
- Variants of Lempel-Ziv compression
- "LZ77" Original version ("sliding window")

Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, . . . DEFLATE used in (pk)zip, gzip, PNG

- "LZ78" Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, . . . LZW used in compress, GIF

Lempel-Ziv-Welch

- here: Lempel-Ziv-Welch (LZW) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
- all codewords have k bits (typical: $k=12$) \rightsquigarrow fixed-length
- but they represent a variable portion of the source text!
- maintain a dictionary D with 2^{k} entries \rightsquigarrow codewords = indices in dictionary
- initially, first $\left|\Sigma_{S}\right|$ entries encode single characters (rest is empty)
- add a new entry to D after each step:
- Encoding: after encoding a substring x of S, add $x c$ to D where c is the character that follows x in S.

\rightsquigarrow new codeword in D
- D actually stores codewords for x and c, not the expanded string

LZW encoding - Example

Input: YO! ${ }_{\Psi} Y O U!_{\lrcorner} Y O U R_{\lrcorner} Y O Y O!$

$$
\Sigma_{S}=\text { ASCII character set (0-127) }
$$

Y	0	!	4	Y0	U	$!{ }_{4}$	YOU	R	${ }_{4} \mathrm{Y}$	0	Y0	!
$C=89$	79	33	32	128	85	130	132	82	131	79	128	33

$D=$	Code	String	Code	String
	.		128	YO
	32	\sqcup	129	$0!$
	33	!	130	$!{ }_{4}$
	. .		131	${ }_{4} \mathrm{Y}$
	79	0	132	YOU
	\ldots		133	U!
	82	R	134	$!{ }_{4} Y$
	\ldots		135	YOUR
	85	U	136	R_{L}
	...		137	${ }_{4} \mathrm{YO}$
	89	Y	138	OY
	\ldots		139	YO!

LZW encoding - Code

```
procedure LZWencode(S[0..n))
    \(x:=\varepsilon / /\) previous phrase, initially empty
    \(C:=\varepsilon / /\) output, initially empty
    \(D:=\) dictionary, initialized with codes for \(c \in \Sigma_{S} / /\) stored as trie
    \(k:=\left|\Sigma_{S}\right| / /\) next free codeword
    for \(i:=0, \ldots, n-1\) do
        c := \(S[i]\)
        if \(D\).contains \(\operatorname{Key}(x c)\) then
            \(x:=x c\)
        else
        \(C:=C \cdot D \cdot \operatorname{get}(x) / / /\) append codeword for \(x\)
        \(D . p u t(x c, k) / /\) add \(x c\) to \(D\), assigning next free codeword
            \(k:=k+1 ; \backslash x:=c\)
    end for
    \(C\) := C \(\cdot\) D.codeFor \((x)\)
    return \(C\)
```


LZW decoding

- Decoder has to replay the process of growing the dictionary!
\rightsquigarrow Decoding:
after decoding a substring y of S, add $x c$ to D, where x is previously encoded/decoded substring of S, and $c=y[0]$ (first character of y)

\rightsquigarrow Note: only start adding to D after second substring of S is decoded

LZW decoding - Example

- Same idea: build dictionary while reading string.
- Example: 6765783266129133

$D=$| Code \# | String |
| :---: | :---: |
| \ldots
 32 \ddots
 \ldots
 \ldots
 65 A
 66 B
 67 C
 \ldots
 78 N
 \ldots
 83 S
 \ldots | |

input	decodes to	Code \#	String (human)	String (computer)
67	C			
65	A	128	CA	$67, \mathrm{~A}$
78	N	129	AN	$65, \mathrm{~N}$
32	u	130	$\mathrm{~N}_{\text {匕 }}$	$78, \sqcup$
66	B	131	乙 B	$32, \mathrm{~B}$
129	AN	132	BA	$66, \mathrm{~A}$
133	???	133		

LZW decoding - Bootstrapping

- example: Want to decode 133, but not yet in dictionary!

1. decoder is "one step behind" in creating dictionary
\rightsquigarrow problem occurs if we want to use a code that we are just about to build.

- But then we actually know what is going on:
- Situation: decode using k in the step that will define k.
- decoder know last phrase x, needs phrase $y=D[k]=x c$

1. en/decode x.
2. store $D[k]:=x \boldsymbol{c}$
3. next phrase y equals $D[k]$ $\rightsquigarrow D[k]=x \boldsymbol{c}=x \cdot x[0] \quad$ (all known)

LZW decoding - Code

```
procedure LZWdecode(C[0..m))
    \(D:=\) dictionary \(\left[0 . .2^{d}\right) \rightarrow \Sigma_{S}^{+}\), initialized with codes for \(c \in \Sigma_{S} / /\) stored as array
    \(k:=\left|\Sigma_{S}\right| / /\) next unused codeword
    \(q:=C[0] / /\) first codeword
    \(y:=D[q] / /\) lookup meaning of \(q\) in \(D\)
    \(S:=y / /\) output, initially first phrase
    for \(j:=1, \ldots, m-1\) do
    \(x:=y\) // remember last decoded phrase
    \(q:=C[j] / /\) next codeword
    if \(q==k\) then
        \(y:=x \cdot x[0] / /\) bootstrap case
    else
        \(y:=D[q]\)
        \(S:=S \cdot y / /\) append decoded phrase
        \(D[k]:=x \cdot y[0] / /\) store new phrase
        \(k:=k+1\)
    end for
    return \(S\)
```


LZW decoding - Example continued

- Example: 676578326612913383

$D=$	Code \#	String
	32	\sqcup
	65	A
	66	B
	67	C
	78	N
	83	S

input	decodes to	Code \#	String (human)	String (computer)
67	C			
65	A	128	CA	$67, \mathrm{~A}$
78	N	129	AN	$65, \mathrm{~N}$
32	u	130	$\mathrm{~N}_{\text {ப }}$	$78, \sqcup$
66	B	131	ப B	$32, \mathrm{~B}$
129	AN	132	BA	$66, \mathrm{~A}$
133	ANA	133	ANA	$129, \mathrm{~A}$
83	S	134	ANAS	$133, \mathrm{~S}$

LZW - Discussion

- As presented, LZW uses coded alphabet $\Sigma_{C}=\left[0.2^{d}\right)$.
\rightsquigarrow use another encoding for code numbers \mapsto binary, e. g., Huffman
- need a rule when dictionary is full; different options:
- increment $d \leadsto$ longer codewords
- "flush" dictionary and start from scratch \rightsquigarrow limits extra space usage
- often: reserve a codeword to trigger flush at any time
- encoding and decoding both run in linear time (assuming $\left|\Sigma_{S}\right|$ constant)

0
fast encoding \& decoding
works in streaming model (no random access, no backtrack on input needed)
significant compression for many types of data
captures only local repetitions (with bounded dictionary)

Compression summary

Huffman codes	Run-length encoding	Lempel-Ziv-Welch
fixed-to-variable	variable-to-variable	variable-to-fixed
2-pass	1-pass	
must send dictionary	can be worse than ASCII	1-pass
can be worse than ASCII on English text	bad on text	45% compression
optimal binary character encopding	good on long runs text (e.g., pictures)	good on English text
rarely used directly		
part of pkzip, JPEG, MP3	farely used directly machines, old picture-formats	GIF, part of PDF, Unix compress

Part III

Text Transforms

Text transformations

- compression is effective is we have one the following:
- long runs \rightsquigarrow RLE
- frequently used characters \rightsquigarrow Huffman
- many (local) repeated substrings \rightsquigarrow LZW
- but methods can be frustratingly "blind" to other "obvious" redundancies
- LZW: repetition too distant 4 dictionary already flushed
- Huffman: changing probabilities (local clusters) 4 averaged out globally
- RLE: run of alternating pairs of characters 4 not a run
- Enter: text transformations
- invertible functions of text
- do not by themselves reduce the space usage
- but help compressors "see" redundancy
\rightsquigarrow use as pre-/postprocessing in compression pipeline

7.6 Move-to-Front Transformation

Move to Front

- Move to Front (MTF) is a heuristic for self-adjusting linked lists
- unsorted linked list of objects
- whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
\rightsquigarrow list "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- Here: use such a list for storing source alphabet Σ_{S}
- to encode c, access it in list an
- encode c using it (old) position in list (then apply MTF).
\rightsquigarrow codewords are integers, i.e., $\Sigma_{C}=[0 . . \sigma)$
\rightsquigarrow clusters of few characters \rightsquigarrow many small numbers

MTF - Code

- Transform (encode):
${ }_{1}$ procedure MTF-encode(S[0..n))
$2 \quad L:=$ list containing Σ_{C} (sorted order)
$C:=\varepsilon$
for $i:=0, \ldots, n-1$ do
$c:=S[i]$
$p:=$ position of c in L
$C:=C \cdot p$
Move c to front of L
end for
return C
- Inverse transform (decode):

```
{ } _ { 1 } ^ { 1 } \text { procedure MTF-encode(C[0..m))}
    L:= list containing }\mp@subsup{\Sigma}{C}{}\mathrm{ (sorted order)
    S := \varepsilon
    for j:= 0,\ldots,m-1 do
        p := C[j]
        c := character at position p in L
        S:= S c c
        Move c to front of L
    end for
    return S
```

- Important: encoding and decoding produce same accesses to list

MTF - Example

$S=$ INEFFICIENCIES

$$
C=8136703613433318
$$

- What does a run in S encode to in C ?
- What does a run in C mean about the source S ?

MTF - Discussion

- MTF itself does not compress text (if we store codewords with fixed length)
\rightsquigarrow prime use as part of longer pipeline
- two simple ideas for encoding codewords:
- Elias gamma code \rightsquigarrow smaller numbers gets shorter codewords works well for text with small "local effective" alphabet
- Huffman code (better compression, but need 2 passes)
- but: most effective after BWT (\rightarrow next)

7.7 Burrows-Wheeler Transform

Burrows-Wheeler Transform

- Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
- coded text has same letters as source, just in a different order
- But: The coded text (typically) more compressible with MTF(!)
- Encoding algorithm needs all of S (no streaming possible).
\rightsquigarrow BWT is a block compression method.
- BWT followed by MTF, RLE, and Huffman is the algorithm used by the bzip2 program. achieves best compression on English text of any algorithm we have seen:

```
4 0 4 7 3 9 2 ~ b i b l e . t x t ~
1191071 bible.txt.gz
8 8 8 6 0 4 ~ b i b l e . t x t . 7 z ~
845635 bible.txt.bz2
```


BWT transform

- cyclic shift of a string:
- add end-of-word character $\$$ to S (as in Unit 6)

- The Burrows-Wheeler Transform proceeds in three steps:

1. Place all cyclic shifts of S in a list L
2. Sort the strings in L lexicographically
3. B is the list of trailing characters (last column, top-down) of each string in L

BWT transform - Example

$$
S=a l f_{\lrcorner} e^{e a t s}{ }_{L} a l f a l f a \$
$$

1. Write all cyclic shifts
2. Sort cyclic shifts
3. Extract last column
$B=\operatorname{asff} \$ f_{\mathrm{L}} \mathrm{e}_{\mathrm{\iota}} l \mathrm{lllaaata}$
```
alf
```

lfeeats alfalfa\$a
f_{4} eats ${ }_{\text {ulf }}$ alfalfa\$al
seats alfalfa\$alf
eats ${ }^{\text {alfalfa\$alf }}$
ats ${ }_{4}$ alfalfa\$alfe
ts alfalfa\$alfuea
$s_{4} a l f a l f a \$ a l f$ eat
цalfalfa\$alfueats
alfalfa\$alf_eats
lfalfa\$alfeats
falfa\$alfeatsual
alfa\$alfeatsualf
lfa\$alfeatsualfa
fa\$alffeats alfal
a\$alfeeatsualfalf
\$alfueatsualfalfa
\$alffeats alfalfa цalfalfa\$alfueats eats ${ }^{\text {alfalfa\$alf }}$ a\$alfeatsualfalf alfeats_alfalfa\$ alfa\$alfeatsualf alfalfa\$alfueats ats_alfalfa\$alfe eats ${ }_{5}$ alfalfa\$alf f_{4} eats ${ }^{\text {alfalfa\$al }}$ fa\$alffeatsualfal falfa\$alfueatsual $l_{\text {L }}$ eats ${ }^{\text {ulfalfa\$a }}$ lfa\$alfeatsualfa lfalfa\$alfueatsua $s_{\text {L }} a l f a l f a \$ a l f f_{L} e a t$ ts ${ }_{\text {u }}$ alfalfa\$alfyea

BWT - Implementation \& Properties

Compute BWT efficiently:

- cyclic shifts $S \widehat{=}$ suffixes of S
- BWT is essentially suffix sorting!
- $B[i]=S[L[i]-1] \quad(L=$ suffix array! $)$ (if $L[i]=0, B[i]=\$$)
\rightsquigarrow Can compute B in $O(n)$ time

Why does BWT help?

- sorting groups characters by what follows
- Example: lf always preceded by a
$\rightsquigarrow B$ has local clusters of characters
- that makes MTF effective

$\downarrow L[r]$
\$alfueatsualfalfa 16 цalfalfa\$alf_eats 8 ueatsualfalfa\$alf 3
a\$alfueatsualfalf 15
alfueatsualfalfa\$ 0
alfa\$alf,eats,alf 12
alfalfa\$alffeats 9
ats ${ }_{4}$ alfalfa\$alfe 5
eats alfalfa\$alf 4
f_{4} eats ${ }^{\text {alfalfalfal }}$ 2
fa\$alfueatsualfal 14
falfa\$alf_eatsual 11
lfueatsualfalfa\$a 1
lfa\$alfeats alfa 13
lfalfa\$alf,eats, a 10
$s_{u} a l f a l f a \$ a l f f_{L} e a t$ 7
6

- repeated substring in $S \leadsto$ runs of character in B
- picked up by RLE

Inverse BWT

- Great, can compute BWT efficiently and it helps compression. But how can we decode it?

- "Magic" solution:

1. Create array $D[0 . . n]$ of pairs: $D[r]=(B[r], r)$.
2. Sort D stably with respect to first entry.
3. Use D as linked list with (char, next entry)

Example:

$B=\operatorname{ard} \$ r c a a a a b b$
$S=$ abracadabra\$

D	sorted D
	char next
($\mathrm{a}, 0)$	0 (\$, 3)
1 (r, 1)	1 (a, 0)
2 (d, 2)	$2(\mathrm{a}, 6)$
3 (\$, 3)	3 (a, 7)
4 (r, 4)	4 (a, 8)
5 (c, 5)	5 (a, 9)
6 ($\mathrm{a}, 6)$	$6(\mathrm{~b}, 10)$
7 ($\mathrm{a}, 7)$	7 (b, 11)
$8(\mathrm{a}, 8)$	8 (c, 5)
$9(\mathrm{a}, 9)$	$9(d, 2)$
10 (b, 10)	10 (r, 1)
11 (b, 11)	11 (r, 4)

not even obvious that it is at all invertible!

Inverse BWT - The magic revealed

- Inverse BWT very easy to compute:
- only sort individual characters in B (not suffixes)
$\rightsquigarrow O(n)$ with counting sort
- but why does this work!?
- decode char by char
- can find unique \$ starting row
- to get next char, we need
(i) char in first column of current row
(ii) find row with that char's copy in BWT
\rightsquigarrow then we can walk through and decode
- for (i): first column = characters of B in sorted order
- for (ii): relative order of same character same!
- i th a in BWT $\rightarrow i$ th a in first column
\rightsquigarrow stably sorting $(B[r], r)$ by first entry enough
get next char, we need

BWT - Discussion

- Running time: $\Theta(n)$
- encoding uses suffix sorting
- decoding only needs counting sort
\rightsquigarrow decoding much simpler \& faster (but same Θ-class)

4
typically slower than other methods

Qneed access to entire text (or apply to blocks independently)

BWT-MTF-RLE-Huffman pipeline tends to have best compression

Summary of Compression Methods

Huffman Variable-width, single-character (optimal in this case)
RLE Variable-width, multiple-character encoding
LZW Adaptive, fixed-width, multiple-character encoding
Augments dictionary with repeated substrings
MTF Adaptive, transforms to smaller integers
should be followed by variable-width integer encoding
BWT Block compression method, should be followed by MTF

