ALGORITHMICS WAPPLIED APPLIEDALGORITHMICS\$ CS \$ APPLIEDALGORITHMI DALGORITHMICS \$ APPLIE EDALGORITHMICS\$APPLI GORITHMICS\$APPLIEDAL HMICS \$ APPLIEDALGORIT

 Error-Correcting Codes

 Error-Correcting Codes

 20 April 2020

 20 April 2020
 Sebastian Wild

Outline

8 Error-Correcting Codes
8.1 Introduction
8.2 Lower Bounds
8.3 Hamming Codes

8.1 Introduction

Noisy Communication

- most forms of communication are "noisy"
- humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- How do humans cope with that?
- slow down and/or speak up
- ask to repeat if necessary
- But how is possible (for us)

to decode a message in the presence of noise \& errors?
Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!
\leadsto We can

1. detect errors "This sentence has aao pi dgsdho gioasghds."
2. correct (some) errors "Tiny errs ar corrrected automaticly." (sometimes too eagerly as in the Chinese Whispers / Telephone)

Noisy Channels

- computers: copper cables \& electromagnetic interference
- transmit a binary string
- but occasionally bits can "flip"
\rightsquigarrow want a robust code

- We can aim at

1. error detection
2. error correction
\rightsquigarrow can request a re-transmit
\rightsquigarrow avoid re-transmit for common types of errors

- This will require redundancy: sending more bits than plain message
\rightsquigarrow goal: robust code with lowest redundancy that's the opposite of compression!
8.2 Lower Bounds

Block codes

- model:
- want to send message $S \in\{0,1\}^{\star}$ (bitstream) across a (communication) channel
- any bit transmitted through the channel might flip (0 $\rightarrow 1$ resp. $1 \rightarrow 0$) no other errors occur (no bits lost, duplicated, inserted, etc.)
- instead of S, we send encoded bitstream $C \in\{0,1\}^{\star}$ sender encodes S to C, receiver decodes C to S (hopefully)
\rightsquigarrow what errors can be detected and/or corrected?
- all codes discussed here are block codes
- divide S into messages $m \in\{0,1\}^{k}$ of k bits each $\quad(k=$ message length $)$
- encode each message (separately) as $C(m) \in\{0,1\}^{n} \quad(n=$ block length, $n \geq k)$
\rightsquigarrow can analyze everything block-wise
- between 0 and n bits might be flipped
- how many flipped bits can we definitely detect?
- how many flipped bits can we correct without retransmit?
i. e. decoding m still possible

Code distance

$$
\swarrow^{m \neq m^{\prime}} \Longrightarrow C(m) \neq C\left(m^{\prime}\right)
$$

- each block code is an injective function $C:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$
- define $\mathcal{C}=$ set of all codewords $=C\left(\{0,1\}^{k}\right)$
$\rightsquigarrow \mathcal{C} \subseteq\{0,1\}^{n}$
$|\mathrm{C}|=2^{k}$ out of $2^{n} n$-bit strings are valid codewords
- decoding = finding closest valid codeword
- distance of code:
$d=$ minimal Hamming distance of any two codewords $=\min _{x, y \in \mathrm{C}} d_{H}(x, y)$

Implications for codes

1. need distance d to detect errors flipping up to $d-1$ bits
2. need distance d to correct errors flipping up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ bits

Lower Bounds

- Main advantage of concept of code distance: can prove lower bounds on block length
- Singleton bound: $\quad 2^{k} \leq 2^{n-(d-1)} \rightsquigarrow n \geq k+d-1$
- proof sketch: We have 2^{k} codeswords with distance d after deleting the first $d-1$ bits, all are still distinct but there are only $2^{n-(d-1)}$ such shorter bitstrings.
- Hamming bound: $2^{k} \leq \frac{2^{n}}{\sum_{f=0}^{\lfloor(d-1) / 2\rfloor}\binom{n}{f}}$
- proof idea: consider "balls" of bitstrings around codewords count bitstrings with Hamming-distance $\leq t=\lfloor(d-1) / 2\rfloor$ correcting t errors means all these balls are disjoint so $2^{k} \cdot$ ball size $\leq 2^{n}$
\rightsquigarrow We will come back to these.
8.3 Hamming Codes

Parity Bit

- simplest possible error-detecting code: add a parity bit

\rightsquigarrow code distance 2
- can detect any single-bit error (actually, any odd number of flipped bits)
- used in many hardware (communication) protocols
- PCI buses, serial buses
- caches
- early forms of main memory

Ω
very simple and cheap

4
cannot correct any errors

Error-correcting codes

- typical application: heavy-duty server RAM
- bits can randomly flip (e.g., by cosmic rays)
- individually very unlikely, but in always-on server with lots of RAM, it happens!
https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

- Yes! store every bit three times!
- upon read, do majority vote
- if only one bit flipped, the other two (correct) will still win
 triples the cost!

Can do it with 11% extra memory!

How to locate errors?

- Idea: Use several parity bits
- each covers a subset of bits
- clever subsets \rightsquigarrow violated/valid parity bit pattern narrows down error
\ flipped bit can be one of the parity bits!
- Consider $n=7$ bits B_{1}, \ldots, B_{7} with the following constraints:

Observe:

- No error (all 7 bits correct) $\rightsquigarrow C=C_{2} C_{1} C_{0}=000_{2}=0$
- What happens if (exactly) 1 bit, say B_{i} flips?
$C_{j}=1$ iff j th bit in binary representation of i is $1 \leadsto C$ encodes position of error!

4+3 Hamming Code

- How can we turn this into a code?

- B_{4}, B_{2} and B_{1} occur only in one constraint each \rightsquigarrow define them based on rest!
- $4+3$ Hamming Code - Encoding

1. Given: message $D_{3} D_{2} D_{1} D_{0}$ of length $k=4$
2. copy $D_{3} D_{2} D_{1} D_{0}$ to $B_{7} B_{6} B_{5} B_{3}$
3. compute $P_{2} P_{1} P_{0}=B_{4} B_{2} B_{1}$ so that $C=0$
4. send $D_{3} D_{2} D_{1} P_{2} D_{0} P_{1} P_{0}$

4+3 Hamming Code - Decoding

- 4+3 Hamming Code - Decoding

1. Given: block $B_{7} B_{6} B_{5} B_{4} B_{3} B_{2} B_{1}$ of length $n=7$
2. compute C (as above)
3. if $C=0$ no (detectable) error occurred
otherwise, flip B_{C} (the C th bit was twisted)
4. return 4-bit message $B_{7} B_{6} B_{5} B_{3}$

- Properties
- can correct any 1-bit error
- How about 2-bit errors?
- We can detect that something went wrong.
- But: above decoder mistakes it for a (different!) 1-bit error and "corrects" that

Hamming Codes - General recipe

- above construction can be generalized:
- Start with $n=2^{\ell}-1$ bits for $\ell \in \mathbb{N} \quad$ (we had $\ell=3$)
- use the ℓ bits whose index is a power of 2 as parity bits
- the other $n-\ell$ are data bits
- Choosing $\ell=7$ we can encode entire word of memory (64 bit) with 11% overhead (using only 64 out of the 120 possible data bits)

0
simple and efficient coding / decoding
0
fairly space-efficient

