$$
\begin{aligned}
& \text { ALGORITHMICS } \mathrm{A} \text { APPLIED } \\
& \text { APPLIEDALGORITHMICS\$ } \\
& \text { CS \$ APPLIEDALGORITHMI } \\
& \text { D A L G ORITHMICS \$ APPLIE } \\
& \text { EDALGORITHMICS\$APPLI } \\
& \text { GORITHMICS\$APPLIEDAL } \\
& \text { HMICS \$ APPLIEDALGORIT } \\
& \text { ICS } \mathrm{C} \text { APPLIEDALGORITHM }
\end{aligned}
$$

Range-Minimum
Queries
27 April 2020
Sebastian Wild

Outline

9 Range-Minimum Queries

9.1 Introduction
9.2 RMQ, LCP, LCE, LCA - WTF?
9.3 Sparse Tables
9.4 Cartesian Trees
9.5 "Four Russians" Table

9.1 Introduction

Range-minimum queries (RMQ)

array/numbers don't change

- Given: Static array $A[0 . . n$) of numbers
- Goal: Find minimum in a range;
A known in advance and can be preprocessed

- Nitpicks:
- Report index of minimum, not its value
- Report leftmost position in case of ties

Rules of the Game

- comparison-based \rightsquigarrow values don't matter, only relative order
- Two main quantities of interest:

1. Preprocessing time: Running time $P(n)$ of the preprocessing step
2. Query time: Running time $Q(n)$ of one query (using precomputed data)

- Write " $\langle P(n), Q(n)\rangle$ time solution" for short

9.2 RMQ, LCP, LCE, LCA - WTF?

Recall Unit 6

Application 4: Longest Common Extensions

- We implicitly used a special case of a more general, versatile idea:

The longest common extension (LCE) data structure:

- Given: String T[0..n-1]
- Goal: Answer LCE queries, i. e.,
given positions i, j in T,
how far can we read the same text from there?
formally: $\operatorname{LCE}(i, j)=\max \{\ell: T[i . . i+\ell)=T[j . . j+\ell)\}$
\rightsquigarrow use suffix tree of T !
- In $\mathcal{T}: ~ \operatorname{LCE}(i, j)=\stackrel{\text { longest common prefix of } i \text { th and } j \text { th suffix }}{\operatorname{LCP}}\left(T_{i}, T_{j}\right) \rightsquigarrow$ same thing, different name!
$=$ string depth of lowest common ancester (LCA) of leaves i and j

- in short: $\operatorname{LCE}(i, j)=\operatorname{LCP}\left(T_{i}, T_{j}\right)=\operatorname{stringDepth}(\operatorname{LCA}(i, i j))$

Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

- Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case q
- Could store all LCAs in big table $\rightsquigarrow \Theta\left(n^{2}\right)$ space and preprocessing q

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is constant(!) time.

- a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice
\rightsquigarrow for now, use $O(1)$ LCA as black box.

\leadsto After linear preprocessing (time \& space), we can find LCEs in $O(1)$ time.

Finally: Longest common extensions

- In Unit 6: Left question open how to compute LCA in suffix trees
- But: Enhanced Suffix Array makes life easier!

$$
\operatorname{LCE}(i, j)=\operatorname{RMQ}_{\mathrm{LCP}}(R[i]+1, R[j])
$$

Inverse suffix array: going left \& right

- to understand the fastest algorithm, it is helpful to define the inverse suffix array
- $R[i]=r \Longleftrightarrow L[r]=i \quad L=$ leafarray
\Longleftrightarrow there are r suffixes that come before T_{i} in sorted order $\Longleftrightarrow T_{i}$ has (0-based) rank $r \rightsquigarrow$ call $R[0 . . n]$ the rank array

LCP array and internal nodes

\leadsto Leaf array $L[0 . . n]$ plus LCP array LCP $[1 . . n]$ encode full tree!

RMQ Implications for LCE

- Recall: Can compute (inverse) suffix array and LCP array in $O(n)$ time
$\rightsquigarrow \mathrm{A}\langle P(n), Q(n)\rangle$ time RMQ data structure implies a $\langle P(n), Q(n)\rangle$ time solution for longest-common extensions

9.3 Sparse Tables

Trivial Solutions

- Two easy solutions show extreme ends of scale:

1. Scan on demand

- no preprocessing at all
- answer $\mathrm{RMQ}(i, j)$ by scanning through $A[i . . j]$, keeping track of min
$\rightsquigarrow\langle O(1), O(n)\rangle$

2. Precompute all

- Precompute all answers in a big 2D array $M[0 . . n)[0 . . n)$
- queries simple: $\operatorname{RMQ}(i, j)=M[i][j]$
$\rightsquigarrow\left\langle O\left(n^{3}\right), O(1)\right\rangle$
- Preprocessing can reuse partial results $\rightsquigarrow\left\langle O\left(n^{2}\right), O(1)\right\rangle$

Sparse Table

- Idea: Like "precompute-all", but keep only some entries
- store $M[i][j]$ iff $\ell=j-i+1$ is 2^{k}.
$\rightsquigarrow \leq n \cdot \lg n$ entries
- How to answer queries?

- Preprocessing can be done in $O(n \log n)$ times
$\rightsquigarrow\langle O(n \log n), O(1)\rangle$ time solution!

9.4 Cartesian Trees

Range-maximum queries

- Range-max queries on array A :

$$
\begin{aligned}
\operatorname{rmq}_{A}(i, j) & =\underset{i \leq k \leq j}{\arg \max } A[k] \\
& =\text { index of max }
\end{aligned}
$$

- Task: Preprocess A, then answer RMQs fast ideally constant time!

Range-maximum queries

- Range- $\underline{\text { max }}$ queries on array A :

$$
\begin{aligned}
\mathrm{rmq}_{A}(i, j) & =\underset{i \leq k \leq j}{\arg \max } A[k] \\
& =\text { index of max }
\end{aligned}
$$

- Task: Preprocess A, then answer RMQs fast ideally constant time!
- Cartesian tree: (cf. treap) construct binary tree by sweeping line down
- $\mathrm{rmq}(i, j)=$ inorder of lowest common ancestor (LCA) of i th and j th node in inorder

Cartesian Tree - Example

Counting binary trees

- all RMQ answers are determined by Cartesian tree
- How many different Cartesian trees are there for $A[0 . . n)$?
- known result: Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$
- easy to see: $\leq 2^{2 n}$

9.5 "Four Russians" Table

Bootstrapping

- We know a $\langle O(n \log n), O(1)\rangle$ time solution
- If we use that for $m=\Theta(n / \log n)$ elements, $O(m \log m)=O(n)$!
- Break A into blocks of $b=\left\lceil\frac{1}{4} \lg n\right\rceil$ numbers
- Create array of block minima $B[0 . . m]$ for $m=\lceil n / b\rceil=O(n / \log n)$
\rightsquigarrow Use sparse tables for B.

Query decomposition

Precomputing intra-block queries

Discussion

- $\langle O(n), O(1)\rangle$ time solution for RMQ
$\rightsquigarrow\langle O(n), O(1)\rangle$ time solution for LCE in strings!

0 optimal preprocessing and query time!
a bit complicated
Research questions:

- Reduce the space usage
- Avoid access to A at query time

