
1 Machines & Models
27 January 2020

Sebastian Wild

version 2020-01-28 13:04

Outline

1 Machines & Models
1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh

What is an algorithm?
An algorithm is a sequence

think: recipe

of instructions.

More precisely:
1. mechanically executable

e. g. Java program

� no “common sense” needed
2. finite description ≠ finite computation!

3. solves a problem
𝑥 + 𝑦, not only 17 + 4

, i. e., a class of problem instances

typical example: bubblesort

not a specific program but underlying idea

1

What is a data structure?

A data structure is
1. a rule for encoding data

(in computer memory), plus
2. algorithms to work with it

(queries, updates, etc.)

typical example: binary search tree

2

1.1 Algorithm analysis

Good algorithms
Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

� fast running time
can be complicated in distributed systems

� moderate memory space usage

Algorithm analysis is a way to

� compare different algorithms,

� predict their performance in an application

3

Running time experiment
Why not simply run and time it?

� results only apply to
� single test machine
� tested inputs
� tested implementation
� . . .
≠ universal truths

� instead: consider and analyze algorithms on an abstract
survives Pentium 4

machine
� provable statements for model
� testable model hypotheses

� Need precise model of machine (costs), input data and algorithms.

4

Data Models
Algorithm analysis typically uses one of the following simple data models:
� worst-case performance:

consider the worst of all inputs as our cost metric

� best-case performance:
consider the best of all inputs as our cost metric

� average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size 𝑛.

� performance is only a function of 𝑛.

5

1.2 The RAM Model

Machine models
The machine model decides

� what algorithms are possible

� how they are described (= programming language)

� what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

6

Random Access Machines
Random access machine (RAM) more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures

by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

� unlimited memory MEM[0], MEM[1], MEM[2], . . .
� fixed number of registers 𝑅1 , . . . , 𝑅𝑟 (say 𝑟 = 100)

� every memory cell MEM[𝑖] and register 𝑅𝑖 stores a 𝑤-bit integer, i. e., a number in
[0..2𝑤 − 1]
𝑤 is the word width; typically 2𝑤 ≈ 𝑛

� Instructions:
� load & store: 𝑅𝑖 := MEM[𝑅𝑗] MEM[𝑅𝑗] := 𝑅𝑖
� operations on registers: 𝑅𝑘 := 𝑅𝑖 + 𝑅𝑗 (arithmetic is modulo 2𝑤 !)

also 𝑅𝑖 − 𝑅𝑗 , 𝑅𝑖 · 𝑅𝑗 , 𝑅𝑖 div 𝑅𝑗 , 𝑅𝑖 mod 𝑅𝑗
C-style operations (bitwise and/or/xor, left/right shift)

� conditional and unconditional jumps

� cost: number of executed instructions

� The RAM is the standard model for sequential

we will see further models later

computation.

7

Pseudocode
Typical simplifications for convenience:

� more abstract pseudocode
code that humans understand (easily)
to specify algorithms

� count dominant operations (e. g. array accesses) instead of all operations

In both cases: can go to full detail if needed.

8

1.3 Asymptotics & Big-Oh

Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
� abstracts from unnecessary detail

� simplifies analysis

� often necessary for sensible comparison

Asymptotics = approximation around ∞
Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛�log2(𝑛 + 1)� + 7𝑛 − 3�log2(𝑛 + 1)� + 120

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
·104

9

Why asymptotics?
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.
� abstracts from unnecessary detail

� simplifies analysis

� often necessary for sensible comparison

Asymptotics = approximation around ∞
Example: Consider a function 𝑓 (𝑛) given by
2𝑛2 − 3𝑛�log2(𝑛 + 1)� + 7𝑛 − 3�log2(𝑛 + 1)� + 120 ∼ 2𝒏2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2
·104

9

Asymptotic tools – Formal & definitive definition

� “Tilde Notation:” 𝑓 (𝑛) ∼ 𝑔(𝑛) iff
if, and only if

lim
𝑛→∞

𝑓 (𝑛)
𝑔(𝑛) = 1

„ 𝑓 and 𝑔 are asymptotically equivalent”

� “Big-Oh Notation:” 𝑓 (𝑛) ∈
also write ‘=’ instead

𝑂
�
𝑔(𝑛)� iff

����� 𝑓 (𝑛)𝑔(𝑛)

����� is bounded for 𝑛 ≥ 𝑛0

iff lim sup
need supremum since limit might not exist!

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� < ∞
Variants:

� 𝑓 (𝑛) = Ω

“Big-Omega”�
𝑔(𝑛)� iff 𝑔(𝑛) = 𝑂

�
𝑓 (𝑛)�

� 𝑓 (𝑛) = Θ

“Big-Theta”

�
𝑔(𝑛)� iff 𝑓 (𝑛) = 𝑂

�
𝑔(𝑛)� and 𝑓 (𝑛) = Ω

�
𝑔(𝑛)�

� “Little-Oh Notation:” 𝑓 (𝑛) = 𝑜
�
𝑔(𝑛)� iff lim

𝑛→∞

����� 𝑓 (𝑛)𝑔(𝑛)

����� = 0

𝑓 (𝑛) = 𝜔
�
𝑔(𝑛)� if lim = ∞

10

Asymptotic tools – Intuition

� 𝑓 (𝑛) = 𝑂(𝑔(𝑛)): 𝑓 (𝑛) is at most 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐 𝑔(𝑛)

𝑓 (𝑛)

𝑛0

𝑓 (𝑛) ≤ 𝑐𝑔(𝑛)

𝑛

� 𝑓 (𝑛) = Θ(𝑔(𝑛)): 𝑓 (𝑛) is equal to 𝑔(𝑛)
up to constant factors and
for sufficiently large 𝑛

𝑐2 𝑔(𝑛)

𝑐1 𝑔(𝑛)
𝑓 (𝑛)

𝑛0

𝑐1𝑔(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐2𝑔(𝑛)

𝑛

Plots can be misleading! Example

11

Clicker Question

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂(𝑓 (𝑛))

B 𝑔(𝑛) = Ω(𝑓 (𝑛))

C 𝑔(𝑛) = Θ(𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)

pingo.upb.de/622222
12

Clicker Question

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂(𝑓 (𝑛))

B 𝑔(𝑛) = Ω(𝑓 (𝑛))�
C 𝑔(𝑛) = Θ(𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)

pingo.upb.de/622222
12

Clicker Question

Assume 𝑓 (𝑛) ∈ 𝑂(𝑔(𝑛)). What can we say about 𝑔(𝑛)?
A 𝑔(𝑛) = 𝑂(𝑓 (𝑛))

B 𝑔(𝑛) = Ω(𝑓 (𝑛)) (if 𝑓 (𝑛) ≠ 0)�
C 𝑔(𝑛) = Θ(𝑓 (𝑛))

D Nothing (it depends on 𝑓 and 𝑔)�

pingo.upb.de/622222
12

Asymptotics – Example 1
Basic examples:

� 20𝑛3 + 10𝑛 ln(𝑛) + 5 ∼ 20𝑛3 = Θ(𝑛3)
� 3 lg(𝑛2) + lg(lg(𝑛)) = Θ(log 𝑛)
� 10100 = 𝑂(1)

Use wolframalpha to compute/check limits.
13

Clicker Question

Is (sin(𝑛) + 2)𝑛2 = Θ(𝑛2)?

A Yes B No

pingo.upb.de/622222
14

Clicker Question

Is (sin(𝑛) + 2)𝑛2 = Θ(𝑛2)?

A Yes� B No

pingo.upb.de/622222
14

Asymptotics – Frequently used facts
� Rules:

� 𝑐 · 𝑓 (𝑛) = Θ(𝑓 (𝑛)) for constant 𝑐 ≠ 0
� Θ(𝑓 + 𝑔) = Θ(max{ 𝑓 , 𝑔}) largest summand determines order of growth

� Frequently used orders of growth:
� logarithmic Θ(log 𝑛) Note: 𝑎 , 𝑏 > 0 constants � Θ(log𝑎 (𝑛)) = Θ(log𝑏 (𝑛))
� linear Θ(𝑛)
� linearithmic Θ(𝑛 log 𝑛)
� quadratic Θ(𝑛2)
� polynomial 𝑂(𝑛𝑐) for constant 𝑐
� exponential 𝑂(𝑐𝑛) for constant 𝑐 Note: 𝑎 > 𝑏 > 0 constants � 𝑏𝑛 = 𝑜(𝑎𝑛)

15

Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
� 𝑚 as binary number (array of bits)
� 𝑛 = #bits in 𝑚

� 𝑥 a floating-point number

1 double pow(double base, boolean[] exponentBits) {
2 double res = 1;
3 for (boolean bit : exponentBits) {
4 res ∗= res;
5 if (bit) res ∗= base;
6 }
7 return res;
8 }

� Cost: 𝐶 = # multiplications
� 𝐶 = 𝑛 (line 4) + #one-bits binary representation of 𝑚 (line 5)

� 𝑛 ≤ 𝐶 ≤ 2𝑛

16

Clicker Question

We showed 𝑛 ≤ 𝐶(𝑛) ≤ 2𝑛; what is the most precise
asymptotic approximation for 𝐶(𝑛) that we can make?

Write e. g. O(n^2) for 𝑂(𝑛2) or Theta(sqrt(n)) for Θ(√𝑛).

pingo.upb.de/622222
17

Asymptotics – Example 2
Square-and-multiply algorithm
for computing 𝑥𝑚 with 𝑚 ∈ ℕ

Inputs:
� 𝑚 as binary number (array of bits)
� 𝑛 = #bits in 𝑚

� 𝑥 a floating-point number

1 double pow(double base, boolean[] exponentBits) {
2 double res = 1;
3 for (boolean bit : exponentBits) {
4 res ∗= res;
5 if (bit) res ∗= base;
6 }
7 return res;
8 }

� Cost: 𝐶 = # multiplications
� 𝐶 = 𝑛 (line 4) + #one-bits binary representation of 𝑚 (line 5)

� 𝑛 ≤ 𝐶 ≤ 2𝑛
� 𝐶 = Θ(𝑛) = Θ(log𝑚)

Note: Often, you can pretend Θ is “like ∼ with an unknown constant”
but in this case, no such constant exists!

0 200 400 600 800 1000

0

5

10

15

20

shift-and-multiply-exponentiation

18

