—

) QA H [H]
)N = H <
1HOD A Q@
HHBPAA RO
L EHA<IHD
O 8 Wite ol A0S 7SS
<O A<
A HUNO A O
)N M0 - <[]
YO0 < H =65 H
1HUAQAZ TN
b i d e ol SR @ NP
YD <CHBEHRHQ,
IFPFAdHE S <
1 [QMO TR
IEHQAOUERHW
OA<<V I1HDO
U AR < -
LA N<CANO =
R ONaliiRoRes

e |

27 January 2020

Machines & Models

Sebastian Wild

version 2020-01-28 13:04

Outline

1 Machines & Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions.

think: recipe

. e.g. Java program
More precisely:

1. mechanically executable
~~ no “common sense” needed

/f

"%
ullullm—“&\\é

2. finite description # finite computation!

3. solves a problem, i.e., a class of problem instances

X +y,notonly 17 + 4

typical example: bubblesort

not a specific program but underlying idea

What is a data structure?

A data structure is

1. arule for encoding data
(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree

I _ﬂ" o & EE
m\ 1 R\ RO

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

can be complicated in distributed systems

» fast running time

» moderate memory space usage

Algorithm analysis is a way to

» compare different algorithms,

» predict their performance in an application

Running time experiment

Why not simply run and time it?

» results only apply to
» single fest machine
> tested inputs
> tested implementation

> ...

*

universal truths

» instead: consider and analyze algorithms on an abstract machine
~ provable statements for model ‘J TR A

~ testable model hypotheses

~~ Need precise model of machine (costs), input data and algorithms.
nput dat ElFerinTs,

Data Models

Algorithm analysis typically uses one of the following simple data models:

> worst-case performance: pessins he
consider the worst of all inputs as our cost metric

> best-case performance:
consider the best of all inputs as our cost metric

> average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n. |

~» performance is only a function of 7.

1.2 The RAM Model

Machine models
The machine model decides
» what algorithms are possible
» how they are described (= programming language)

» what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

Random Access Machines

Random access machine (RAM) s el) off Gt s R B) Bt s
by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

» unlimited memory MEM[0], MEM[1], MEM[2], . . .
» fixed number of registers Ry, ..., R, (say r = 100)

» every memory cell MEM[/] and register R; stores a w-bit integer, i. e., a number in
[0.27 — 1]

_w is the word width; typicall@ MEW 1@

» Instructions:
» load & store: R; := MEM[RJ MEM[R;] := R;
> operations on registers: Ry := R; + R; (arithmetic is modulo 2°1)
- alsoRi—R/-, Rl‘-R/', Rl‘ diVRj, R,‘ mod R/
C-style operations (bitwise and/or/xor, left/right shift)

[~

H
) A
13500

» conditional and unconditional jumps

» cost: number of executed instructions

we will see further models later

~» The RAM is the standard model for sequential computation. ——__

Pseudocode

Typical simplifications for convenience:

» more abstract pseudocode to specify algorithms
code that humans understand (easily)

» count dominant operations (e.g. array accesses) instead of all operations

In both cases: can go to full detail if needed.

1.3 Asymptotics & Big-Oh

Why asymptotics?

Algorithm analysis focuses on (e limiting behavior for infinitely) large inputs.

» abstracts from unnecessary detail "
» simplifies analysis

> often necessary for sensible comparison

[Asymptoﬁcs = approximation around oo] g

Example: Consider a function f (1) given by
2n% - 3n [log,(n +1)] +7n — 3|log,(n + 1)] + 120

104

0 10 20 30 40 50 60 70 80 90 100

Why asymptotics?

Algorithm analysis focuses on (e limiting behavior for infinitely) large inputs.

» abstracts from unnecessary detail "

» simplifies analysis

> often necessary for sensible comparison

[Asymptoﬁcs = approximation around oo]

Example: Consider a function f (1) given by

3nlog,(n +1)| +7n —3|log,(n +1)] + 120 5~ 2n%

0 10 20 30 40 50 60 70 80 90 100

Asymptotic tools — Formal & definitive definition

» “Tilde Notation:”

»> “Big-Oh Notation:”

» “Little-Oh Notation:”

if, and only if

f(n) ~ g(n) 31ff lim == = 1

,f and g are asymptotically equivalent”

< o0

also write ‘=" instead
J | O
f(n) € O{g(n)) iff o) is bounded for n > ng
need supremum since limit might not exist!
iff lim\sup]Ln) < o
n—oo | 8(1)

Variants: “Big-Omega”

/

> f(n)=Qlg(n) iff g(n)=0(f(n)
> fin)=O(s(m) i fln)=O(g(m) and fn) = Og0n)
“Big-Theta”

: o
Aa=elgia) i T e

f(n) = w(g(n)) if lim = oo

10

Asymptotic tools — Intuition

> f(n)=0(g(n)): f(n)isatmost g(n)
up to constant factors and
for sufficiently large n

> f(n)=0(g(n): f(n)is equal to g(n)
up to constant factors and
for sufficiently large n

A [Plots can be misleading!]

\
> N

no

agl

n) < fw =08

c28(n)
(n)

no

11

Clicker Question

4 Assume f(n) € O(g(n)). What can we say about g(1)?
g(n) = O(f(n))
g(n) = Q(f ()
o g(n) = O(f(n)
L (D) Nothing (it depends on f and g)

‘pingo.upb.de/622222

12

Clicker Question

4 Assume f (1) € O(g(n)). What can we say about g(1)?
e
g(n) = Q(F(n) ¢
o e
s
L (D) Nothing-it-depends-on—iand-=)

‘pingo.upb.de/622222

12

Clicker Question

4 Assume f(n) € O(g(n)). What can we say about g(1)?
SRR e
gm) = O(f@m) " (Gt fm) %0)
o) rauzanacavayyl
L (D) Nothing (it depends on f and g) v/

‘pingo.upb.de/622222’

12

Asymptotics — Example 1

Basic examples: conw l0pnLun +5
> 20n3+L0n4n(n)+5';O20n3 = O(nd) Q‘Alrd) 20 V\3
> 31g(n?) + lg(lg(n)) = O(logn) _ A ke DE o
> 101 = O(1) - WK/ nwo L0 200
—> o

% fale?d + 0o l&s(u))
= 6 €<>Ci/\> ¥ fs(ﬂg(&))
Q‘j) = ﬁo‘bz

/QVL = QQ‘D@

pa—

Use wolframalpha to compute/check limits.

13

Clicker Question

Is (sin(n) + 2)n% = O(n?)?

Yes No

pingo.upb.de/622222

14

Clicker Question

Is (sin(n) + 2)n% = O(n?)?

Yes\/ Ne

pingo.upb.de/622222

14

Asymptotics — Frequently used facts

» Rules:

>
>

c- f(n) = O(f(n)) for constant ¢ # 0
O(f +g) = O(max{f,g}) largest summand determines order of growth

» Frequently used orders of growth:

>

vV VvV vy Vvyy

logarithmic ©(logn) Note: a,b > 0 constants ~ ©(log, (1)) = ©(log, (1))
linear ©(n)

linearithmic ©(n logn)

quadratic O(n?)

polynomial O(n°) for constant ¢

exponential O(c") for constant ¢ Note: @ > b > 0 constants ~» b" = o(a")

15

Asymptotics — Example 2

Square-and-multiply algorithm

for computing x™ with m € N 1 double pow(double base, boolean[] exponentBits) {
I) 2 double res = 1;
TP 3 for (boolean bit : exponentBits) {

» m as binary number (array of bits) res *= res; 1

> 1 = #bits in m = r% o+ | /L) (O%Vﬂ if (bit) res *=base; 1

. . }
» x a floating-point number / ; T
KA SN 8 }
» Cost: C = #multiplications
» C = n (line 4) + #one-bits binary representation of 1 (line 5) m=S

~n<C<2n o]
z

Clicker Question

We showed 1 < C(n) < 2n; what is the recise
asymptotic approximation for C(n) that we can make?

Write e.g. 0(n"2) for O(n?) or Theta(sqrt(n)) for ©(v/n).

pingo.upb.de/622222

17

Asymptotics — Example 2

Square-and-multiply algorithm {»r
for computing " with m € N
Inputs:
» m as binary number (array of bits)
> 1 = #bits in m

> x a floating-point number

{1

|

[

shift—and—multiply—exponentiation
T T

» Cost: C =#multiplications .

L
200

L L
400 600

L
800

=
1000
J

» C = n (line 4) + #one-bits binary representation of 171 (line 5)

~n<C<2n

Note: Often, you can pretend © is “like ~ with an unknown constant”

but in this case, no such constant exists!

18

