

Machines & Models

27 January 2020

Sebastian Wild

Outline

Machines & Models

- 1.1 Algorithm analysis
- 1.2 The RAM Model
- 1.3 Asymptotics & Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions.

think: recipe

More precisely:

e.g. Java program

- 1. mechanically executable
 - → no "common sense" needed
- **2.** finite description ≠ finite computation!
- 3. solves a problem, i. e., a class of problem instances

x + y, not only 17 + 4

typical example: bubblesort

not a specific program but underlying idea

What is a data structure?

A data structure is

- a rule for encoding data (in computer memory), plus
- **2.** algorithms to work with it (queries, updates, etc.)

typical example: binary search tree

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

- ► fast running *time*
- ▶ moderate memory *space* usage

Algorithm analysis is a way to

- compare different algorithms,
- predict their performance in an application

Running time experiment

Why not simply run and time it?

- results only apply to
 - ▶ single *test* machine
 - tested inputs
 - ► tested implementation
 - ▶ ...
 - ≠ universal truths

- ▶ instead: consider and analyze algorithms on an abstract machine
 - → provable statements for model
- survives Pentium 4

- \leadsto testable model hypotheses
- Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

- worst-case performance:
 consider the worst of all inputs as our cost metric
- best-case performance:
 consider the best of all inputs as our cost metric
- average-case performance: consider the average/expectation of a *random* input as our cost metric

Usually, we apply the above for *inputs of same size* n.

 \rightarrow performance is only a **function of** n.

Machine models

The machine model decides

- what algorithms are possible
- ▶ how they are described (= programming language)
- ▶ what an execution *costs*

Goal: Machine model should be detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Random Access Machines

Random access machine (RAM)

more detail in §2.2 of Sequential and Parallel Algorithms and Data Structures by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

- ▶ unlimited *memory* MEM[0], MEM[1], MEM[2], . . .
- fixed number of registers R_1, \ldots, R_r (say r = 100)
- every memory cell MEM[i] and register R_i stores a w-bit integer, i. e., a number in $[0..2^w 1]$

w is the word width; typically $2^w \approx n$

MEM 1

- ► Instructions:
 - ▶ load & store: $R_i := MEM[R_j]$ $MEM[R_j] := R_i$
 - operations on registers: $R_k := R_i + R_j$ (arithmetic is modulo 2^w !)

 also $R_i R_j$, $R_i \cdot R_j$, R_i div R_j , R_i mod R_j C-style operations (bitwise and/or/xor, left/right shift)
 - ► conditional and unconditional jumps
- cost: number of executed instructions

, we will see further models later

→ The RAM is the standard model for sequential computation.

Pseudocode

Typical simplifications for convenience:

- ► more abstract *pseudocode* to specify algorithms code that humans understand (easily)
- ▶ count dominant operations (e.g. array accesses) instead of all operations

In both cases: can go to full detail if needed.

1.3 Asymptotics & Big-Oh

Why asymptotics?

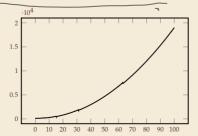
Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- ▶ often necessary for sensible comparison

Asymptotics = approximation around ∞

Example: Consider a function f(n) given by

$$2n^2 - 3n\lfloor \log_2(n+1) \rfloor + 7n - 3\lfloor \log_2(n+1) \rfloor + 120$$



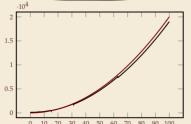
Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- ▶ often necessary for sensible comparison

Asymptotics = approximation around
$$\infty$$

Example: Consider a function f(n) given by $2n^2 - 3n \lfloor \log_2(n+1) \rfloor + 7n - 3 \lfloor \log_2(n+1) \rfloor + 120$



Asymptotic tools – Formal & definitive definition

► "Tilde Notation:"
$$f(n) \sim g(n)$$
 iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

", f and g are asymptotically equivalent"

■ "Big-Oh Notation:"
$$f(n) \in O(g(n))$$
 iff $\left| \frac{f(n)}{g(n)} \right|$ is bounded for $n \ge n_0$

need supremum since limit might not exist
$$\inf \lim \sup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$$

Variants:

iants: "Big-Omega"
$$f(n) = \Omega(g(n)) \quad \text{iff} \quad g(n) = O(f(n))$$

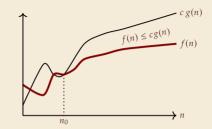
$$f(n) = \Theta(g(n)) \quad \text{iff} \quad f(n) = O(g(n)) \quad \text{and} \quad f(n) = \Omega(g(n))$$
"Big-Theta"

"Little-Oh Notation:" f(n) = o(g(n)) iff $\lim_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| = 0$

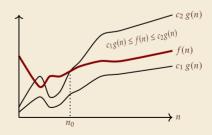
$$f(n) = \omega(g(n))$$
 if $\lim = \infty$

Asymptotic tools – Intuition

► f(n) = O(g(n)): f(n) is **at most** g(n) up to constant factors and for sufficiently large n



► $f(n) = \Theta(g(n))$: f(n) is **equal to** g(n) up to constant factors and for sufficiently large n



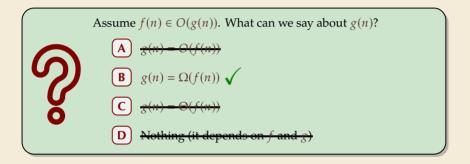
Plots can be misleading!

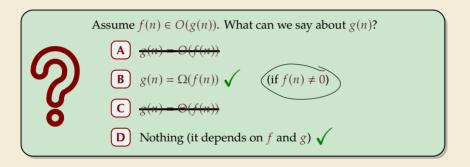
Example \square

Assume $f(n) \in O(g(n))$. What can we say about g(n)?

$$\mathbf{B} \quad g(n) = \Omega(f(n))$$

 $lue{D}$ Nothing (it depends on f and g)





Asymptotics – Example 1

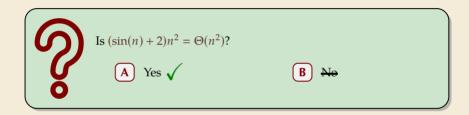
Basic examples:

Use wolframalpha to compute/check limits.

Is
$$(\sin(n) + 2)n^2 = \Theta(n^2)$$
?

A) Yes

3 No



Asymptotics – Frequently used facts

- ► Rules:
 - $ightharpoonup c \cdot f(n) = \Theta(f(n))$ for constant $c \neq 0$
 - $ightharpoonup \Theta(f+g) = \Theta(\max\{f,g\})$ largest summand determines order of growth
- ► Frequently used orders of growth:
 - ▶ logarithmic $\Theta(\log n)$ Note: a, b > 0 constants $\rightarrow \Theta(\log_n(n)) = \Theta(\log_n(n))$
 - ▶ linear $\Theta(n)$
 - ▶ linearithmic $\Theta(n \log n)$
 - quadratic $\Theta(n^2)$
 - **b** polynomial $O(n^c)$ for constant c
 - exponential $O(c^n)$ for constant c Note: a > b > 0 constants $\rightarrow b^n = o(a^n)$

Asymptotics – Example 2

```
Square-and-multiply algorithm for computing x^m with m \in \mathbb{N}

Inputs:

m = m \text{ as binary number (array of bits)}

m = m \text{ bits in } m \quad m = m \text{ leg}(m+1) = m \text{ leg
```

- ightharpoonup Cost: C = # multiplications
- ► C = n (line 4) + #one-bits binary representation of m (line 5) m = 5 m < C < 2n

101,

We showed $\underline{n \le C(n) \le 2n}$; what is the most precise asymptotic approximation for C(n) that we can make?

Write e.g. $O(n^2)$ for $O(n^2)$ or Theta(sqrt(n)) for $\Theta(\sqrt{n})$.

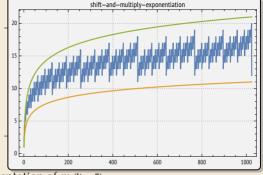
Asymptotics – Example 2

Square-and-multiply algorithm for computing x^m with $m \in \mathbb{N}$

Inputs:

- ► *m* as binary number (array of bits)
- \triangleright n = #bits in m
- ► *x* a floating-point number

- ightharpoonup Cost: C = # multiplications
- ightharpoonup C = n (line 4) + #one-bits binary representation of m (line 5)



Note: Often, you can pretend ⊖ is "like ~ with an unknown constant" but in this case, no such constant exists!