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4.1 Introduction



Ubiquitous strings

string = sequence of characters

» universal data type for ... everything!

>

vVVvyVvyVvYVYyYyYy

natural language texts

programs (source code)

websites

XML documents

DNA sequences

bitstrings

. acomputer’s memory ~- ultimately any data is a string

~» many different tasks and algorithms



Ubiquitous strings

string = sequence of characters
» universal data type for ... everything!

» natural language texts
» programs (source code)
> websites
» XML documents
»> DNA sequences
> bitstrings

> ... acomputer’s memory ~- ultimately any data is a string

~» many different tasks and algorithms

» This unit: finding (exact) occurrences of a pattern text.
» Ctrl+F
> grep
» computer forensics (e. g. find signature of file on disk)

P virus scanner

» basis for many advanced applications



Notations

» alphabet X: finite set of allowed characters; o = |XZ| “a string over alphabet ©.”
P letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, .. .)
> “what you can type on a keyboard”, Unicode characters

» {0’ 1}/ nucleotides {A, C/ G’ T}, . .comprvehensive”standard character set
including emoji and all known symbols



Notations

» alphabet X: finite set of allowed characters; ¢ = |X| “a string over alphabet ©.”
P letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, .. .)
> “what you can type on a keyboard”, Unicode characters
» {0 1}. nucleotides {A C,G T}' . comprehensive standard character set

including emoji and all known symbols
> X' =X X---XXL: strings of length n € Ny (n-tuples)
> 2% =[J,s0X": setof all (finite) strings over X
> X =J,-1 X" setof all (finite) nonempty strings over X

> c X% the empty string  (same for all alphabets)



Notations

» alphabet X: finite set of allowed characters; o = |XZ| “a string over alphabet ©.”
P letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, .. .)
> “what you can type on a keyboard”, Unicode characters
> {0,1); nucleotides {4,C,G,T}; .. f e et

> X' =X X---XXL: strings of length n € Ny (n-tuples)

> 2% =[J,s0X": setof all (finite) strings over X

> X =J,-1 X" setof all (finite) nonempty strings over X

v

e e X% the empty string  (same for all alphabets)
_ SO . e G zero-based (like arrays)!

v

for S € 1", write S[i] (other sources: S;) for ith character (0 <i <n)

v

for S, T € X*, write ST = S - T for concatenation of S and T

v

for S € X", write S[i..j] or S; ; for the substring S[i] - S[i +1]---S[j] (0<i<j<n)
» 5[0..j]is a prefixof S; S[i..n — 1] is a suffix of S
> Sli..j) = S[i..]’; 1] (endpoint exclusive) ~» S = S[0..1n)



Clicker Question

True or false: X* = X" U {¢}

True False

pingo.upb.de/622222




Clicker Question

True or false: X* = X" U {¢}

True\/ Ealse

pingo.upb.de/622222




String matching — Definition

Search for a string (pattern) in a large body of text
»> Input:
» T e X": The text (haystack) being searched within
» P e X": The pattern (needle) being searched for; typically n > m

» Output:
» the first occurrence (match) of P in T min{i €[0.n—m):T[i..i+m)= P}

» or NO_MATCH if there isno such i (“P does not occur in T”)

» Variant: Find all occurrences of P in T.
~- Can do that iteratively (update T to T[i + 1..1n) after match at )

» Example:
» T =“Where is he?”
> Py ="he” ~ i=1
> P, =“who” ~» NO_MATCH

» string matching is implemented in Java in String.index0f



4.2 Brute Force



Abstract idea of algorithms

Pattern matching algorithms consist of guesses and checks:

> A guess is a position i such that P might start at T[7].
Possible guesses (initially) are 0 < i < n —m.

> A check of a guess is a pair (i, j) where we compare T[i + j] to P[j].
> Note: need all m checks to verify a single correct guess i,
but it may take (many) fewer checks to recognize an incorrect guess.

» Cost measure: #character comparisons = #checks

~ cost <n-m (number of possible checks)



Brute-force method

1 procedure bruteForceSM(T[0..1), P[0..11)) > try all guesses i

2 fori :=0,...,n—m—1do

2 forj:=0,...,m—1do » check each guess (left to right);
4 if T[i + j] # P[j] then break inner loop stop early on mismatch

5 if j == m then return i

> essentially the implementation
6 return NO_MATCH

in Java!
O = =2 (:7 PR
T=a b b b a b a b b a b

»> Example: ololel e

T = abbbababbab ¢ ;

P =@bba

8 2

~~ 15 char cmps NS

(vsn -m = 44)

not too bad!




Brute-force method

1 procedure bruteForceSM(T[0..1), P[0..11))

2 fori :=0,...,n—m—1do

3 forj:=0,...,m—1do

4 if T[i + j] # P[j] then break inner loop
5 if j == m then return i

6 return NO_MATCH

try all guesses i

check each guess (left to right);
stop early on mismatch

essentially the implementation
in Java!

b b a
»> Example: blb|a
T = abbbababbab a
P = abba 2
a
~~ 15 char cmps a
(vsn -m = 44)
not too bad!




Brute-force method — Discussion

[b Brute-force method can be good enough
» typically works well for natural language text

» also for random strings

but: can be as bad as it gets!

a a a a a a a a

alalal|b
alajlal|b
alalalb
alalalb

alalal|b

alala

a|a

a

» Worst possible input: P = am1p,
T = g"

» Worst-case performance: (n —m +1)-m

~ for m < n/2 thatis ©(mn)



Brute-force method — Discussion

[b Brute-force method can be good enough
» typically works well for natural language text

» also for random strings

but: can be as bad as it gets!

a a a a a a a a a
alalal|b
alala]|b :
> Worst possible input: P = a”~1p,
alalal|b T =gt
alalal|b
» Worst-case performance: (n —m +1)-m
alafal|b
alala ~ for m < n/2 thatis ©(mn)
a a
a b

» Bad input: lots of self-similarity in T'!

~> can we exploit that?

» brute force does ‘obviously’ stupid repetitive comparisons ~» can we avoid that?



Roadmap

» Approach 1 (this week): Use preprocessing on the pattern P to eliminate guesses
(avoid ‘obvious’ redundant work)
» Deterministic finite automata (DFA)
» Knuth-Morris-Pratt algorithm
> Boyer-Moore algorithm
» Rabin-Karp algorithm

» Approach 2 (~ Unit 6): Do preprocessing on the text T
Can find matches in time independent of text size(!)

» inverted indices
> Suffix trees

» Suffix arrays



4.3 String Matching with Finite Automata



Clicker Question

Do you know what regular expressions, NFAs and DFAs are,
and how to convert between them?

Never heard of this; are these new emoji?

=) &)

Heard the terms, but don’t remember conversion
methods.

o
@

Had that in my undergrad course (memories fading a
bit).

O

Sure, I could do that blindfolded!

‘pingo.upb.de/622222




Theoretical Computer Science to the rescue!

» string matching = deciding whether T € X*-P - X*
» Y*.P.X*is reqular formal language
~» 3 deterministic finite automaton (DFA) to recognize * - P - ©*

~» can check for occurrence of P in |T| = n steps!

10



Theoretical Computer Science to the rescue!

» string matching = deciding whether T € X*-P - X*
» Y*.P.X*is reqular formal language
~» 3 deterministic finite automaton (DFA) to recognize * - P - ©*

~» can check for occurrence of P in |T| = n steps!

é@ Job done!
(RO
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Theoretical Computer Science to the rescue!
» string matching = deciding whether T € X*-P - X*

» Y*.P.X*is reqular formal language

w@deterministic finite automaton (DFA) to recognize * - P - ©*

~» can check for occurrence of P in |T| = n steps!

é@ Job done!
(RO

We are not quite done yet.

» (Problem 0: programmer might not know automata and formal languages . ..)

»> Problem 1: existence alone does not give an algorithm!

» Problem 2: automaton could be very big!

10



String matching with DFA

» Assume first, we already have a deterministic automaton
» How does string matching work?

Example:
T = aabacaababacaa
P = ababaca

text: a a b a C a a b a b

state: | 0 ( I

11



String matching with DFA

» Assume first, we already have a deterministic automaton
» How does string matching work?

Example:
T = aabacaababacaa
P = ababaca

text: a a b a C a a b a b

state: | O [ 1 [ 1| 2|3 (0|1 ]1|2]3]4

11



String matching DFA — Intuition
Why does this work?

T = aabacaababacaa
P = ababaca

> Main insight: (e vieunt

State(g neans:

“we have seen P|0..q) until here

(but not any longerTareﬁx of P)”

‘text:‘ ‘a‘a‘b‘a‘c‘a‘a‘b‘a‘b a‘c‘a‘a‘
[state: [o [1 123 ]of1|1]2]3[4]5]6][7]7]
PH_’E
» If the next text character ¢ does not match, we know: +
(i) textseen so far ends with P[0...q) - ¢ T= L erong) )C
(ii) P[0...q) - ¢ isnot a prefix of P | !
(iii) without reading c, P[0..q) was the longest prefix of P that ends here. q’ < i

~» New longest matched prefix will be (weakly) shorter than g

~ All information about the text needed to determine it is contained in P[0...q) - ¢!

12



NFA instead of DFA?

It remains to construct the DFA.
b

b

a

C

a

» trivial part: ‘.& d @

(2)
2

©

(4)
&

(5)
&)

(o)
&)

Q

13



NFA instead of DFA?

It remains to construct the DFA.
b

x

» that actually is a nondeterministic finite automaton (NFA) for *P *

~> We could use the NFA directly for string matching:

> at any point in time, we are in a set of states

» accept when one of them is final state

Bxample:  zvovious versions of this example were missing states; this is the correct version:

[text | T a ] a b a J[c]a]alb ] a T b [ a [ c]J a ] a |
[state: [0 [ 0,1 [ 0,1 [ 0,2 [0,1,3 [0]01]01][02]013]024]01535]06 | 0LZ]017]

But maintaining a whole set makes this slow . ..

13



Computing DFA directly
You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has ewm blow up!
I guess I might as well use brute force ...

14



Computing DFA directly
You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has exponential state blow up!
I guess I might as well use brute force ...

\II

-O- Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:
4 A Y -
= Suppose we add character P[] to automato or P[0..j -1

pp (/] 0511 e

» add new state and matching transition ~- easy —
» for each c # P[j], we need 6(j,c) (transition from @ when reading c)

< ol

14



Computing DFA directly
You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has exponential state blow up!
I guess I might as well use brute force ...

l 4
\ o/
-O- Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:
4 N
= Suppose we add character P[f] to automaton A; 1 for P[0..j — 1] ehl
» add new state and matching transition ~- easy O~ PGS
» for each c # P[j], we need 6(j,c) (transition from @ when reading c) 5 j
» 6(j,c) = length of the longest prefix OM that is a suffix of w x l 53 29
= state of automaton after reading P_[lﬁ
< j ~ canuse known automaton A;_; for that! State g means:

“we have seen P|0..q) until here
(but not any longer prefix of P)”

)

~ can directly compute A; from A; ;!

[(S') seems to require simulating automata m - o times

14



Computing DFA efficiently
» KMP’s second insight: simulations in one step differ only in last symbol

~» simply maintain state x, the state after reading P[1..j — 1].
» copy its transitions

» update x by following transitions for P|;]

Demo: Algorithms videos of Sedgewick and Wayne

r N
Knuth-Morris-Pratt construction demo (in linear time)
Mismatch transition. For each state j and char c 1= pat.charAt(3), set
dfalc] (3] = dfalc][X]; then update X = dfalpat.charAt(7)](X]
3 s
c
A 1
8 4
c 0
Constructing the DFA for KMP substring search for A BABAC
A
/ J
* %
\_/ / =
U J

https://cuvids.io/app/video/194/watch



String matching with DFA - Discussion

» Time:
» Matching: # table lookups for DFA transitions
» building DFA: ©(m0) time (constant time per transition edge).

~» ©(mo + n) time for string matching.

» Space:

» O(mo) space for transition matrix.

[{b fast matching time  actually: hard to beat!

[b total time asymptotically optimal for small alphabet  (for 6 = O(1/m))

@ substantial space overhead, in particular for large alphabets

16



4.4 The Knuth-Morris-Pratt algorithm



Failure Links

» Recall: String matching with is DFA fast,
but needs table of m X /g/transitions.
» in fast DFA construction, we used that all simulations differ only by last symbol

~» KMP’s third insight: do this last step of simulation from state x during matching!
... but how?

17



Failure Links

» Recall: String matching with is DFA fast,
but needs table of m X ¢ transitions.

» in fast DFA construction, we used that all simulations differ only by last symbol

~» KMP’s third insight: do this last step of simulation from state x during matching!
... but how?

»> Answer: Use a new type of transition, the failure links
e inel
» Use this transition (only) if no other one fits.

» X does not consume a character. ~- might follow several failure links

N0

X-a

~» Computations are deterministic ~ (but automaton is not a real DFA.)

17



Failure link automaton — Example

Example: T = abababaaaca, P = ababaca

18



Failure link automaton — Example B Rutvre Gl conbrelioe

Example: T = abababaaaca, P = ababaca %fquo}L oo OTL.. D - bobac ..

T: b a b a b a a b a b
P:lal|b a b a X to state 3
(a) | (b) | (a) b a X to state 1

a b|la|b

g: [1]2] 3 [ 4] 5 [34]5]31,01]2][3][4]

(after reading this character)

18



Clicker Question

What is the worst-case time to process one character in a failure-
link automaton for P[0..11)?

(1) e(m)
(o] O(log m) (D) em?

pingo.upb.de/622222

19



Clicker Question v < "

5@@@@@ =Ne

What is the worst-case time to process one character in a failure-
link automaton for P[0..11)?

(A) e (c) em) v
(o (B) @dogwsy (D) e

pingo.upb.de/622222

19



The Knuth-Morris-Pratt Algorithm

1 procedure KMP(T[0..n — 1], P[0..m — 1])

»> onl d singl il £
2 fail[0..m] := failureLinks(P) only need single array fail for

failure links

3 i := 0// current position in T

4 q := 0// current state of KMP automaton » (procedure failureLinks later)
5 while i < n do

6 if T[i] == P[q] then

7 i=i+1l, qg:=q+1

8 if g == m then

9 return i — g // occurrence found
10 else //i.e. T[i] # P|q]

11 if q > 1 then

12 q = fail[q] // follow one x

13 else

14 i=i+1

15 end while

16 return NO_MATCH

20



The Knuth-Morris-Pratt Algorithm

1 procedure KMP(T[0..n — 1], P[0..m — 1])

2 fail[0..m] := failureLinks(P)

3 i := 0// current position in T

4 q := 0 // current state of KMP automaton
5 while i < n do

6 if T[i] == P[q] then

7 i=i+1l, qg:=q+1

8 if g == m then

9 return i — g // occurrence found
10 else //i.e. T[i] # P|q]

11 if q > 1 then

12 q = fail[q] // follow one x

13 else

14 i=i+1

15 end while

16 return NO_MATCH

» only need single array fail for
failure links

» (procedure failureLinks later)

Analysis:  (matching part)
» always have fail[j] < jforj>1

~» in each iteration
» either advance position in text
(i=i+1)
» or shift pattern forward
(guess i — j)
» each can happen at most 7 times

~+ < 2n symbol comparisons!

= OC1) diee v c[/nawmc{tw oU avcwogg

20



Computing failure links

» failure links point to error state x (from DFA construction)

~+ run same algorithm, but store fail[]] := x instead of copying all transitions

1 procedure failureLinks(P[0..m — 1])

2 fail[0] := 0

3 x:=0

4 forj:=1,...,m—-1do

5 fail[f] :== x

6 // update failure state using failure links:
7 while P[x] # P[j]

5 if x == 0 then

9 x = —1; break stasdobey TLA 0w PSS
10 else

n x := fail[x]

12 end while

13 x:=x+1

14 end for




Computing failure links
» failure links point to error state x (from DFA construction)

~+ run same algorithm, but store fail[]] := x instead of copying all transitions

1 procedure failureLinks(P[0..m — 1])

2 fail[0] := 0
3 x:=0
Analysis:
4 forj:=1,...,m—-1do nalysts
. faillj] = x » m iterations of for loop
’ // ﬁpld a;eﬁz jlt;r;s{%te s » while loop always decrements x
7 while
8 if x == 0 then » x is incremented only once per
9 x := —1; break iteration of for loop
10 else .
. x = faillx] ~ < m iterations of while loop in total
2 end while ~» < 2m symbol comparisons
13 x:=x+1

14 end for

21



Knuth-Morris-Pratt — Discussion

» Time:
» < 2n+2m = O(n + m) character comparisons
» clearly must at least read both T and P

~+ KMP has optimal worst-case complexity!

» Space:
» ©(m) space for failure links

[ﬁ total time asymptotically optimal  (for any alphabet size)

[& reasonable extra space

22



Clicker Question

Ve

~
What are the main advantages of the KMP string matching (using

the failure-link automaton) over string matching with DFAs?
Check all that apply.

faster preprocessing on pattern

faster matching in text

fewer character comparisons

@ uses less space

@ makes running time independent of o

I don’t have to do automata theory

‘pingo.upb.de/622222

23



Clicker Question

Ve

~
What are the main advantages of the KMP string matching (using

the failure-link automaton) over string matching with DFAs?
Check all that apply.

faster preprocessing on pattern \/
fastermatehinsintext
fewer-character-comparicons

@ uses less space \/

@ makes running time independent of o \/

-I-éeﬂ&-ha*ie—te—ée—a-&tema-ta—t-heepy

‘pingo.upb.de/622222’

23



The KMP prefix function

» It turns out that the failure links are useful beyond KMP

» a slight variation is more widely used: (for historic reasons) ~
the (KMP) prefix function F : [1..m — 1] — [0..m — 1] @

F[j] is the length of th(e_)longest prefix ofP[O@ ﬁ
PLO 3

that is a suffix of P[1.(]

» Can show: fail[j] = F[j — 1] for j > 1, and hence |

fail[j] = length of the |« "™ R LG
longest prefix of P[0..j)
that is a suffix ofP[}..]').

24



4.5 Beyond Optimal? The Boyer-Moore Algorithm



Motivation

» KMP is an optimal algorithm, isn’t it? What else could we hope for?
opumaals P

25



Motivation

» KMP is an optimal algorithm, isn't it? What else could we hope for?

» KMP is “only” optimal in the worst-case (and up to constant factors)

» how many comparisons do we need for the following instance?
T = aaaaaaaaaaaaaaaa, P = xxxxx

» there are no matches

» we can certify the correctness of that output with only 4 comparisons:

|

T a a a a a a a a a a I a a a

~+ We did not even read most text characters!



Boyer-Moore Algorithm

» Let’s check guesses from right to left!

» If we are lucky, we can eliminate several shifts in one shot!

26



Boyer-Moore Algorithm

» Let’s check guesses from right to left! t o & o G
£

U o Le [

(O T ININ

DAY

» If we are lucky, we can eliminate several shifts in one shot!

A must avoid (excessive) redundant checks, e. g., for T = a”, P = ba"~! J

~» New rules:
» Bad character jumps: Upon mismatch at T[i] = c:
» If P does not contain c, shift P entirely past !
» Otherwise, shift P to align the last occurrence of c in P with T[i].
» Good suffix jumps:
Upon a mismatch, shift so that the already matched suffix of P aligns with a
previous occurrence of that suffix (or part of it) in P.
(Details follow; ideas similar to KMP failure links)

~ two possible shifts (next guesses); use larger jump.

Q acq

26



Boyer-Moore Algorithm — Code

1 procedure boyerMoore(T[0..n — 1], P[0..m — 1])

2 A := computeLastOccurrences(P)

3 y := computeGoodSuffixes(P)

4 i := 0// current guess

5 whilei <n-m

6 j = m —1//next position in P to check
7 while j > 0 A P[j] ==T[i + j] do

8 ] = ] -1

9 if j == —1 then

10 return i

1 else

2 i = i+max{j - A[T[i +f]], y[jI}

13 return NO MATCH

> A and y explained below

» shift forward is larger of two
heuristics

» shift is always positive (see
below)

27



Bad character examples

P = a

o™ o

28



Bad character examples

P = a

28



Bad character examples
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Bad character examples
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Bad character examples
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Bad character examples

28



Bad character examples

~ 6 characters not looked at

28



Bad character examples

~ 6 characters not looked at

P = m o o (®
T=boyeémoore

28



Bad character examples

~ 6 characters not looked at

(r) &

28



Bad character examples

~ 6 characters not looked at

(r)

(m)

28



Bad character examples

~ 6 characters not looked at

(r)

(m)

28



Bad character examples

~ 6 characters not looked at

P = m o r e

T = b y e m o
e
(r) | e

(m) [ o

~» 4 characters not looked at

28



Last-Occurrence Function

» Preprocess pattern P and alphabet ©

» last-occurrence function A[c] defined as
» the largest index i such that P[i] = c or

» —1 if no such index exists

29



Last-Occurrence Function

» Preprocess pattern P and alphabet ©

» last-occurrence function A[c] defined as
» the largest index i such that P[i] = c or

» —1 if no such index exists

» Example: P = moore

@ m o r e allothers

Ale] 0 2 3 4 -1

» A easily computed in O(m + |X]) time.

» store as array A[0..0 —1].

P = m e

T = b e r m
e
(r) | e

i=0,j=4 Tli+jl=r, A[r]=3

~ shiftby j— A[T[i +j]] = 1

29



Good suffix examples

1. P =sells,shells

s h e i 1 a

u

S

e

30



Good suffix examples

1. P =sells, shells

s h e i 1 a s e

u




Good suffix examples

1. P =sells,shells

s h e i 1 a , s e 1 1 s
h| e 1 1 s
(e) | (L) | (L) | (s)

30



Good suffix examples

1. P =sells,shells

s h e i 1 a , s e 1 1 s
h| e 1 1 s
(e) | (L) [ (1) | (s)
2. P = odetofood
i 1 i k e f o o d f r o
o [(f1o dll

30



Good suffix examples

1. P =sells,shells

s h

e 1i

1

e 1

(e) | (1)

(s)

(o)

30



Good suffix examples

1. P =sells,shells

s e 1 1 S
h e 1 1 S
(e) | (L) [ (L) | (s)

s h e i 1 a

u

2. P = odetofood

i 1 i k e f o o d f r o m m e x 1 c o

(0) | (d)

matched suffix

» Crucial ingredient: longest suffix of P[j+1..m—1] that occurs earlier in P.

» 2 cases (as illustrated above)
1. complete suffix occurs in P ~» characters left of suffix are not known to match

2. part of suffix occurs at beginning of P
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Good suffix jumps

» Precompute good suffix jumps y[0..m — 1]:
» For 0 < j < m, y[j] stores shift if search failed at P[]
» At this point, had T[i+j+1..i+m—1] = P[j+1..m—1], but T[i] # P[j]

il



Good suffix jumps

» Precompute good suffix jumps y[0..m — 1]:
» For 0 < j < m, y[j] stores shift if search failed at P[]
» At this point, had T[i+j+1..i+m—1] = P[j+1..m—1], but T[i] # P[j]
~ y[j] is the shift m — 1 — ¢ for the largest { such that

» P[j+1...m-1]is a suffix of P[0...¢] and P[j] # P[¢{—m+j+1]

N 1 I I I I I O
LT T T T T T IxTelololol T T T T T 11

_OR-
> P[0...¢]is asuffix of P[j+1,...,m-1]

N
LT T T T T [ Jejeal T T T T T T T 11

il



Good suffix jumps

» Precompute good suffix jumps y[0..m — 1]:
» For 0 < j < m, y[j] stores shift if search failed at P[]
» At this point, had T[i+j+1..i+m—1] = P[j+1..m—1], but T[i] # P[j]
~ y[j] is the shift m — 1 — ¢ for the largest { such that
» P[j+1...m-1]is a suffix of P[0...¢] and P[j] # P[¢{—m+j+1]

I N N 0 A I O

LT T T T T T IxTelojolol T T T T 11

_OR-
> P[0...¢]is asuffix of P[j+1,...,m-1]

0 T

LT T T T T [ Jejal T T T T T T 11

» Computable (similar to KMP failure function) in @ () time. b

» Note: You do not need to know how to find the values y|j] for the exam,
but you should be able to find the next guess on examples.
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Boyer-Moore algorithm — Discussion

[& Worst-case running time € O(n + m + |X|) if P does not occur in T.
(follows from not at all obvious analysis!)

E(;) As given, worst-case running time ©(1nm) if we want to report all occurrences

» To avoid that, have to keep track of implied matches.
(tricky because they can be in the “middle” of P)

<#P» Note: KMP reports all matches in O(n + n) without modifications!

[{b On typical English text, Boyer Moore probes only approx. 25% of the characters in T'!
~- Faster than KMP on English text.

[ﬁ requires moderate extra space O(m + o)

82



Clicker Question

-

~
How does Boyer-Moore (BM) compare to Knuth-Morris-Pratt (KMP)?

Check all correct statements. They refer to the number of symbol
comparisons, ignoring preprocessing.

BP < KMP for all inputs
BP < KMP for some inputs

KMP < BM for all inputs

@ KMP < BM for some inputs

@ BM < KMP if there are no matches

‘pingo.upb.de/622222
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Clicker Question

-

~
How does Boyer-Moore (BM) compare to Knuth-Morris-Pratt (KMP)?

Check all correct statements. They refer to the number of symbol
comparisons, ignoring preprocessing.

BRc kMR foratinpits
BP < KMP for some inputs v/
KPR BM-for-al-inputs
(D) KMP < BM for some inputs /"

@ BM < KMP if there are no matches \/

‘pingo.upb.de/622222’
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4.6 The Rabin-Karp Algorithm



Space — The final frontier

» Knuth-Morris-Pratt has great worst case and real-time guarantees
» Boyer-Moore has great typical behavior

»> What else to hope for?
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Space — The final frontier

» Knuth-Morris-Pratt has great worst case and real-time guarantees
» Boyer-Moore has great typical behavior

»> What else to hope for?

» All require Q(m) extra space;
can be substantial for large patterns!

» Can we avoid that?

34



Rabin-Karp Fingerprint Algorithm - Idea

Idea: use hashing (but without explicit hash tables)

> Precompute & store only hash of pattern
» Compute hash for each guess

» If hashes agree, check characterwise

35



Rabin-Karp Fingerprint Algorithm — Idea

Idea: use hashing (but without explicit hash tables)

Example: (treat (sub)stri decimal b
> Precompute & store only hash of pattern P (treat (sub)strings as decimal numbers)

P=59265
» Compute hash for each guess T=3141592653589793238
» If hashes agree, check characterwise Hash function: h(x) = x mod 97

~ h(P) = 95.
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Rabin-Karp Fingerprint Algorithm — Idea

Idea: use hashing  (but without explicit hash tables)

> Precompute & store only hash of pattern
» Compute hash for each guess

» If hashes agree, check characterwise

31415 9 2 6 5 3
h(31415) = 84

h(14159) = 94
h(41592) = 76
7(15926) = 18
1(59262) = 95

Example:
P =59265
T =3141592653589793238

Hash function: /1(x) = x mod 97
~ h(P) = 95.

(treat (sub)strings as decimal numbers)

5 8 9 7 9 3 2 3 8
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Rabin-Karp Fingerprint Algorithm — First Attempt

1 procedure rabinKarpSimplistic(T[0..nn — 1], P[0..m — 1])

2 M := suitable prime number

3 hp := computeHash(P[0..m —1)], M)

4 fori :=0,...,n—mdo

5 hr = computeHash(T'[i..i + m — 1], M)

6 if hT == hp then

7 if T[i..i + m — 1] == P // m comparisons
8 then return i

9 return NO MATCH

» never misses a match since /(S1) # h(S2) implies S1 # 52\/
» h(T[k..k+m—1]) depends on m characters ~» naive computation takes @(r1) time

~» Running time is @(mn) for search miss ... can we improve this?
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Rabin-Karp Fingerprint Algorithm — Fast Rehash

» Crucial insight: We can update hashes in constant time.

» Use previous hash to compute next hash
for above hash function!

» O(1) time per hash, except first one
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Rabin-Karp Fingerprint Algorithm — Fast Rehash

» Crucial insight: We can update hashes in constant time.

» Use previous hash to compute next hash
for above hash function!

» O(1) time per hash, except first one

Example:
» Pre-compute: 10000 mod 97 =9

» Previous hash: 41592 mod 97 =76
» Next hash: 15926 mod 97 = ??
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Rabin-Karp Fingerprint Algorithm — Fast Rehash

» Crucial insight: We can update hashes in constant time.

» Use previous hash to compute next hash

» O(1) time per hash, except first one

Example:
» Pre-compute: 10000 mod 97 =9

» Previous hash: 41592 mod 97 =76
» Next hash: 15926 mod 97 = ??

Observation:

15926 mod 97 = (41592 — (4-10000))-10 + 6
(76 -(49 ))-10+6

406 mod 97 = 18

for above hash function!

mod 97
mod 97
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Rabin-Karp Fingerprint Algorithm — Code
» use a convenient radix R > ¢ (R = 10 in our examples; R = 2X is faster)
» Choose modulus M at random to be huge prime (randomization against worst-case inputs)

» all numbers remain < 2R?> ~» O(1) time arithmetic on word-RAM

1 procedure rabinKarp(T[0..n — 1], P[0..m — 1], R)
2 M := suitable prime number

3 hp := computeHash(P[0..m — 1)], M)

4 hr = computeHash(T[0..m — 1], M)

5 s := R™ 1 mod M

6 fori :=0,...,n—mdo

7 if iy == hp then

8 ifT[i..i+m—-1] =P

9 return i

10 if i < n —m then

1 hr = ((hT —T[i] -s)-R+T[i+m]) mod M <=—

12 return NO_MATCH
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Rabin-Karp — Discussion

[ﬁ Expected running time is O(m + n)

®(mn) worst-case;
but this is very unlikely

[ﬁ Extends to 2D patterns and other generalizations

[b Only constant extra space!  —

39



Clicker Question

-

Suppose we apply only the hashing part of Rabin-Karp (drop the\

check if T[i..i + m) = P, and only return 7). Check all correct
statements about the resulting algorithm.

A | The algorithm can miss occurrences of P in T (false
negatives).

The algorithm can report positions that are not
occurrences (false positives).

The running time is @(nm) in the worst case.

The running time is @(n + m) in the worst case.

IO

The running time is @ (1) in the worst case.

‘pingo.upb.de/622222
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Clicker Question

-

Suppose we apply only the hashing part of Rabin-Karp (drop the\

check if T[i..i + m) = P, and only return 7). Check all correct
statements about the resulting algorithm.

$] 1 il . (D ;EE]
Regatives):

The algorithm can report positions that are not
occurrences (false positives).

¥] . . i@ it .

@ The running time is @(n + m) in the worst case. \/

@¥] . . i@ in '

‘pingo.upb.de/622222’
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String Matching Conclusion

Brute-  pra kmp BM RK Suffix

Force trees*

Prt‘zﬁlr:“' —  OomlZ) O(m) O(m+o0) O(m) O(n)
S:i?;zh Onm) ) ) (oftecr)1 (l:])/le.?tter) (g((;e:t:i)) Om)
f;‘;i —  Om|Z) O(m) O(m+o) o(1) O(n)

* (see Unit 6)
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