
5 Parallel
String Matching

2 March 2020

Sebastian Wild

version 2020-03-03 14:48

Outline

5 Parallel String Matching
5.1 Elementary Tricks
5.2 Periodicity
5.3 String Matching by Duels

Parallelizing string matching
� We have seen a plethora of string matching methods

� But all efficient methods seem inherently sequential
Indeed, they became efficient only after building on knowledge from previous

Sounds like the opposite of parallel!

steps!

� This unit:
� How well can we parallelize string matching?
� What new ideas can help?

Here: string matching = find all occurrences of 𝑃 in 𝑇 (more natural problem for parallel)
always assume 𝑚 ≤ 𝑛

1

5.1 Elementary Tricks

Embarrassingly Parallel
� A problem is called “embarrassingly parallel”

if it can immediately be split into many, small subtasks
that can be solved completely independently of each other

� Typical example: sum of two large matrices (all entries independent)

� best case for parallel computation (simply assign each processor one subtask)

� Sorting is not embarrassingly parallel
� no obvious way to define many small (=efficiently solvable) subproblems
� but: some subtasks of our algorithms are, e. g., comparing all elements with pivot

2

Clicker Question

Is the string-matching problem “embarrassingly parallel”?

A Yes

B No

C Only for 𝑛 � 𝑚

D Only for 𝑛 ≈ 𝑚

pingo.upb.de/622222
3

Elementary parallel string matching
Subproblems in string matching:

� string matching = check all guesses 𝑖 = 0, . . . , 𝑛 − 𝑚 − 1
� checking one guess is a subtask!

4

Elementary parallel string matching
Subproblems in string matching:

� string matching = check all guesses 𝑖 = 0, . . . , 𝑛 − 𝑚 − 1
� checking one guess is a subtask!

Approach 1:

� Check all guesses in parallel

� Time: Θ(𝑚)
� Work: Θ((𝑛 − 𝑚)𝑚) � not great . . .

4

Elementary parallel string matching
Subproblems in string matching:

� string matching = check all guesses 𝑖 = 0, . . . , 𝑛 − 𝑚 − 1
� checking one guess is a subtask!

Approach 1:

� Check all guesses in parallel

� Time: Θ(𝑚)
� Work: Θ((𝑛 − 𝑚)𝑚) � not great . . .

Approach 2:

� Divide 𝑇 into overlapping blocks of 2𝑚 characters:
𝑇[0..2𝑚), 𝑇[𝑚..3𝑚), 𝑇[2𝑚..4𝑚), 𝑇[3𝑚..5𝑚). . .

� Find matches inside blocks in parallel, using efficient sequential method
� Θ(2𝑚 + 𝑚) = Θ(𝑚) each

� Time: Θ(𝑚) Work: Θ(𝑛𝑚 · 𝑚) = Θ(𝑛)
4

Clicker Question

Is the string-matching problem “embarrassingly parallel”?

A Yes

B No

C Only for 𝑛 � 𝑚

D Only for 𝑛 ≈ 𝑚

pingo.upb.de/622222
5

Clicker Question

Is the string-matching problem “embarrassingly parallel”?

A Yes

B No

C Only for 𝑛 � 𝑚�
D Only for 𝑛 ≈ 𝑚

pingo.upb.de/622222
5

Elementary parallel matching – Discussion
very simple methods

could even run distributed with access to part of 𝑇

parallel speedup only for 𝑚 � 𝑛

Goal:

� methods with better parallel time! � higher speedup

� must genuinely parallelize the matching process! (and the preprocessing of the pattern)

� need new ideas

6

5.2 Periodicity

Periodicity of Strings
� 𝑆 = 𝑆[0..𝑛 − 1] has period 𝑝 iff ∀𝑖 ∈ [0..𝑛 − 𝑝) : 𝑆[𝑖] = 𝑆[𝑖 + 𝑝]
� 𝑝 = 0 and any 𝑝 ≥ 𝑛 are trivial periods but these are not very interesting . . .

Examples:
� 𝑆 = baaababaaab has period 6:

𝑝 = 6

𝑆 b a a a b a b a a a b

𝑆 b a a a b a b a a a b
= = = = =

� 𝑆 = abaabaabaaba has period 3:

𝑝 = 3

𝑆 a b a a b a a b a a b a

𝑆 a b a a b a a b a a b a

= = = = = = = = =

7

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)
𝑝 ∈ [1..𝑛] is the shortest period in 𝑆 = 𝑆[0..𝑛 − 1]
iff 𝑆[0..𝑛 − 𝑝) is the longest prefix that is also a suffix of 𝑆[𝑝..𝑛). �

8

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)
𝑝 ∈ [1..𝑛] is the shortest period in 𝑆 = 𝑆[0..𝑛 − 1]
iff 𝑆[0..𝑛 − 𝑝) is the longest prefix that is also a suffix of 𝑆[𝑝..𝑛). �

𝑆[0..𝑛 − 1] has minimal period 𝑝 ⇐⇒ fail[𝑛] = 𝑛 − 𝑝

𝑝 = 3

fail[𝑛] = 9

𝑆 a b a a b a a b a a b a

𝑆 a b a a b a a b a a b a

= = = = = = = = =

0 1 2 3 4 5 6 7 8 9 10 11

8

Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)
If string 𝑆 = 𝑆[0..𝑛 − 1] has periods 𝑝 and 𝑞 with 𝑝 + 𝑞 ≤ 𝑛,
then it has also period gcd

greatest common divisor

(𝑝 , 𝑞). �

Proof: see tutorials; hint: recall Euclid’s algorithm

9

Periodic strings
� What does the smallest period 𝑝 tell us about a string 𝑆[0..𝑛 − 1]?
� Two distinct regimes:

1. 𝑆 is periodic: 𝑝 ≤ 𝑛
2

More precisely: 𝑆 is totally determined by a string 𝐹 = 𝐹[0..𝑝 − 1] = 𝑆[0..𝑝 − 1]
𝑆 keeps repeating 𝐹 until 𝑛 characters are filled

� 𝑆 is highly repetitive!

2. 𝑆 is aperiodic (also non-periodic): 𝑝 > 𝑛
2

𝑆 cannot be written as 𝑆 = 𝐹𝑘 · 𝑌 with 𝑘 ≥ 2 and 𝑌 a prefix of 𝐹

10

Clicker Question

Is 𝑆 = aaaaaaaaaaab a periodic string?

A Yes

B No

pingo.upb.de/622222
11

Clicker Question

Is 𝑆 = aaaaaaaaaaab a periodic string?

A Yes

B No�
� “looking repetitive” is not enough for periodic!

pingo.upb.de/622222
11

5.3 String Matching by Duels

Periods and Matching
Witnesses for non-periodicity:
� Assume, 𝑃[0..𝑚 − 1] does not have period 𝑝

� ∃ witness against periodicity: position 𝜔 ∈ [0..𝑚 − 𝑝) : 𝑃[𝜔] ≠ 𝑃[𝜔 + 𝑝]

12

Periods and Matching
Witnesses for non-periodicity:
� Assume, 𝑃[0..𝑚 − 1] does not have period 𝑝

� ∃ witness against periodicity: position 𝜔 ∈ [0..𝑚 − 𝑝) : 𝑃[𝜔] ≠ 𝑃[𝜔 + 𝑝]

Dueling via witnesses:
� If 𝑃[0..𝑚 − 1] does not have period 𝑝, then

at most one of positions 𝑖 and 𝑖 + 𝑝 can be (the starting position of) an occurrence of 𝑃.

Proof: Cannot have 𝑇[(𝑖 + 𝑝) + 𝜔] = 𝑃[𝜔] ≠ 𝑃[𝜔 + 𝑝] = 𝑇[𝑖 + (𝜔 + 𝑝)].

12

Periods and Matching
Witnesses for non-periodicity:
� Assume, 𝑃[0..𝑚 − 1] does not have period 𝑝

� ∃ witness against periodicity: position 𝜔 ∈ [0..𝑚 − 𝑝) : 𝑃[𝜔] ≠ 𝑃[𝜔 + 𝑝]

Dueling via witnesses:
� If 𝑃[0..𝑚 − 1] does not have period 𝑝, then

at most one of positions 𝑖 and 𝑖 + 𝑝 can be (the starting position of) an occurrence of 𝑃.

Proof: Cannot have 𝑇[(𝑖 + 𝑝) + 𝜔] = 𝑃[𝜔] ≠ 𝑃[𝜔 + 𝑝] = 𝑇[𝑖 + (𝜔 + 𝑝)].

� Duel between guess 𝑖 and 𝑖 + 𝑝:
compare text character overlapped with witness 𝜔

12

String Matching by Duels – Sequential
Assume that pattern 𝑃 is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set 𝜇 := �𝑚2 �
2. Compute witnesses 𝜔[1..𝜇] against periodicity for all 𝑝 ≤ 𝑚

2 .

3. For each block of 𝜇 consecutive indices [0..𝜇), [𝜇..2𝜇), [2𝜇..3𝜇), . . .
run 𝜇 − 1 duels to eliminate all but one guesses in the block

4. check remaining � 𝑛𝜇 � = 𝑂(𝑛/𝑚) guesses naively

13

String Matching by Duels – Sequential
Assume that pattern 𝑃 is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set 𝜇 := �𝑚2 �
2. Compute witnesses 𝜔[1..𝜇] against periodicity for all 𝑝 ≤ 𝑚

2 .

3. For each block of 𝜇 consecutive indices [0..𝜇), [𝜇..2𝜇), [2𝜇..3𝜇), . . .
run 𝜇 − 1 duels to eliminate all but one guesses in the block

4. check remaining � 𝑛𝜇 � = 𝑂(𝑛/𝑚) guesses naively

Analysis:

1. 𝑂(1)
2. 𝑂(𝑚)� later

3. 𝑂(𝑛𝑚) blocks
𝑂(𝑚) duels each

4. 𝑂(𝑛𝑚),
≤ 𝑚 cmps each

� another worst-case 𝑂(𝑛 + 𝑚) string matching method!

13

String Matching by Duels – Parallel
Assume that pattern 𝑃 is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set 𝜇 := �𝑚2 �
2. Compute witnesses 𝜔[1..𝜇] against periodicity for all 𝑝 ≤ 𝑚

2 .

3. For each block of 𝜇 consecutive indices [0..𝜇), [𝜇..2𝜇), [2𝜇..3𝜇), . . .
run 𝜇 − 1 duels to eliminate all but one guesses in the block

4. check remaining � 𝑛𝜇 � = 𝑂(𝑛/𝑚) guesses naively

14

String Matching by Duels – Parallel
Assume that pattern 𝑃 is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set 𝜇 := �𝑚2 �
2. Compute witnesses 𝜔[1..𝜇] against periodicity for all 𝑝 ≤ 𝑚

2 .

3. For each block of 𝜇 consecutive indices [0..𝜇), [𝜇..2𝜇), [2𝜇..3𝜇), . . .
run 𝜇 − 1 duels to eliminate all but one guesses in the block

4. check remaining � 𝑛𝜇 � = 𝑂(𝑛/𝑚) guesses naively

How to parallelize:

1. —

2. 𝑂(log2(𝑚))� later

3. blocks in parallel (indep.),
tournament of �lg𝜇� rounds

4. check in parallel
collect result (like prefix sum)

Tournament of duals:
� each dual eliminates one guess

� declare other guess winner
� conceptually like prefix sum! 0 1 2 3 4 5 6 7

14

String Matching by Duels – Parallel
Assume that pattern 𝑃 is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set 𝜇 := �𝑚2 �
2. Compute witnesses 𝜔[1..𝜇] against periodicity for all 𝑝 ≤ 𝑚

2 .

3. For each block of 𝜇 consecutive indices [0..𝜇), [𝜇..2𝜇), [2𝜇..3𝜇), . . .
run 𝜇 − 1 duels to eliminate all but one guesses in the block

4. check remaining � 𝑛𝜇 � = 𝑂(𝑛/𝑚) guesses naively

How to parallelize:

1. —

2. 𝑂(log2(𝑚))� later

3. blocks in parallel (indep.),
tournament of �lg𝜇� rounds

4. check in parallel
collect result (like prefix sum)

Tournament of duals:
� each dual eliminates one guess

� declare other guess winner
� conceptually like prefix sum! 0 1 2 3 4 5 6 7

� Matching part can be done in 𝑂(log𝑚) parallel time and 𝑂(𝑛) work!
14

Computing witnesses
It remains to find the witnesses 𝜔[1..𝜇].

sequentially:

� an elementary procedure is similar in spirit to KMP failure array

� can be computed in Θ(𝑚) time

parallel:
� much more complicated � beyond scope of the module

� first 𝑂(log2(𝑚)) time on CREW-RAM
� later 𝑂(log𝑚) time and 𝑂(𝑚) work using pseudoperiod method

15

Parallel Matching – State of the art
� 𝑂(log𝑚) time & work-efficient parallel string matching

� this is optimal for CREW-PRAM

� on CRCW-PRAM: matching part even in 𝑂(1) time(!)
but preprocessing requires Θ(log log𝑚) time

16

