ALGORITHMICS\$APPLI ED APPLIEDALGORITHMICS $\$$ CS \$ A P P L I EDALGORITHMI DALGORITHMICS \$ APPLIE EDALGORITHMICS \$APPLI GORITHMICS \$APPLIEDAL HMICS ${ }^{\text {S APPLI EDALGORIT }}$

Parallel String Matching

 2 March 2020Sebastian Wild

Outline

5 Parallel String Matching

5.1 Elementary Tricks

5.2 Periodicity
5.3 String Matching by Duels

Parallelizing string matching

- We have seen a plethora of string matching methods
- But all efficient methods seem inherently sequential

Indeed, they became efficient only after building on knowledge from previous steps!
\rightsquigarrow This unit:

- How well can we parallelize string matching?
- What new ideas can help?

Here: string matching $=$ find all occurrences of P in T (more natural problem for parallel) always assume $m \leq n$

5.1 Elementary Tricks

Embarrassingly Parallel

- A problem is called "embarrassingly parallel"
if it can immediately be split into many, small subtasks
that can be solved completely independently of each other
- Typical example: sum of two large matrices (all entries independent)
\rightsquigarrow best case for parallel computation (simply assign each processor one subtask)
- Sorting is not embarrassingly parallel
- no obvious way to define many small (=efficiently solvable) subproblems
- but: some subtasks of our algorithms are, e. g., comparing all elements with pivot

Clicker Question

Is the string-matching problem "embarrassingly parallel"?

(A) Yes
(B) No
(C) Only for $n \gg m$
(D) Only for $n \approx m$

```
pingo.upb.de/622222
```


Elementary parallel string matching

Subproblems in string matching:

- string matching $=$ check all guesses $i=0, \ldots, n-m-1$
- checking one guess is a subtask!

Elementary parallel string matching

Subproblems in string matching:

- string matching $=$ check all guesses $i=0, \ldots, n-m-1$
- checking one guess is a subtask!

Approach 1:

- Check all guesses in parallel
\rightsquigarrow Time: $\Theta(m)$
\rightsquigarrow Work: $\Theta((n-m) m) \rightsquigarrow$ not great..

Elementary parallel string matching

Subproblems in string matching:

- string matching $=$ check all guesses $i=0, \ldots, n-m-1$
- checking one guess is a subtask!

Approach 1:

- Check all guesses in parallel
\rightsquigarrow Time: $\Theta(m)$
\rightsquigarrow Work: $\Theta((n-m) m) \rightsquigarrow$ not great..

Approach 2:

- Divide T into overlapping blocks of $2 m$ characters: $T[0 . .2 m), T[m . .3 m), T[2 m . .4 m), T[3 m . .5 m) .$.
- Find matches inside blocks in parallel, using efficient sequential method $\rightsquigarrow \Theta(2 m+m)=\Theta(m)$ each
\rightsquigarrow Time: $\Theta(m) \quad$ Work: $\Theta\left(\frac{n}{m} \cdot m\right)=\Theta(n)$

Clicker Question

Is the string-matching problem "embarrassingly parallel"?

(A) Yes
(B) No
(C) Only for $n \gg m$
(D) Only for $n \approx m$

```
pingo.upb.de/622222
```


Clicker Question

Is the string-matching problem "embarrassingly parallel"?

(A) Yes
(B)
(C) Only for $n \geqq m \quad$


```
pingo.upb.de/622222
```


Elementary parallel matching - Discussion

$\{$ very simple methods
0 could even run distributed with access to part of T
parallel speedup only for $m \ll n$

Goal:

- methods with better parallel time!
\rightsquigarrow higher speedup
\rightsquigarrow must genuinely parallelize the matching process! (and the preprocessing of the pattern)
\rightsquigarrow need new ideas

5.2 Periodicity

Periodicity of Strings

- $S=S[0 . . n-1]$ has period $p \quad$ iff $\quad \forall i \in[0 . . n-p): S[i]=S[i+p]$
- $p=0$ and any $p \geq n$ are trivial periods but these are not very interesting \ldots

Examples:

- $S=$ baaababaaab has period 6:

- $S=$ abaabaabaaba has period 3 :

Periodicity and KMP

Lemma 5.1 (Periodicity $=$ Longest Overlap)
$p \in[1 . . n]$ is the shortest period in $S=S[0 . . n-1]$
iff $S[0 . . n-p)$ is the longest prefix that is also a suffix of $S[p . . n)$.

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)

$p \in[1 . . n]$ is the shortest period in $S=S[0 . . n-1]$
iff $S[0 . . n-p)$ is the longest prefix that is also a suffix of $S[p . . n)$.

$S[0 . . n-1]$ has minimal period $p \Longleftrightarrow$ fail $[n]=n-p$

Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)

If string $S=S[0 . . n-1]$ has periods p and q with $p+q \leq n$, then it has also period $\operatorname{gcd}(p, q)$.
greatest common divisor
Proof: see tutorials; hint: recall Euclid's algorithm

Periodic strings

- What does the smallest period p tell us about a string $S[0 . . n-1]$?
- Two distinct regimes:

1. S is periodic: $p \leq \frac{n}{2}$

More precisely: S is totally determined by a string $F=F[0 . . p-1]=S[0 . . p-1]$
S keeps repeating F until n characters are filled
$\rightsquigarrow \quad S$ is highly repetitive!
$\subset S=F^{k} F^{k}(0 . e)$
2. S is aperiodic (also non-periodic): $p>\frac{n}{2}$
S cannot be written as $S=F^{k} \cdot Y$ with $k \geq 2$ and Y a prefix of F

Clicker Question

Is $S=$ aaaaaaaaaaab a periodic string?
(A) Yes
(B) No
pingo.upb.de/622222

Clicker Question

Is $S=$ aaaaaaaaaaab a periodic string?
(A) Yes
(B) No $\sqrt{ }$
$\rightsquigarrow ~ " l o o k i n g ~ r e p e t i t i v e " ~ i s ~ n o t ~ e n o u g h ~ f o r ~ p e r i o d i c!~$

> pingo.upb.de/622222

5.3 String Matching by Duels

Periods and Matching

Witnesses for non-periodicity:

- Assume, $P[0 . . m-1]$ does not have period p

$\rightsquigarrow \exists$ witness against periodicity: position $\omega \in[0 . . m-p): P[\omega] \neq P[\omega+p]$

Periods and Matching

Witnesses for non-periodicity:

- Assume, $P[0 . . m-1]$ does not have period p
$\rightsquigarrow \exists$ witness against periodicity: position $\omega \in[0 . . m-p): P[\omega] \neq P[\omega+p]$

Dueling via witnesses:

- If $P[0 . . m-1]$ does not have period p, then
 at most one of positions i and $i+p$ can be (the starting position of) an occurrrence of P.

Proof: Cannot have $T[(i+p)+\omega]=P[\omega] \neq P[\omega+p]=T[i+(\omega+p)]$.

Periods and Matching

Witnesses for non-periodicity:

- Assume, $P[0 . . m-1]$ does not have period p
$\rightsquigarrow \exists$ witness against periodicity: position $\omega \in[0 . . m-p): P[\omega] \neq P[\omega+p]$

Dueling via witnesses:

- If $P[0 . . m-1]$ does not have period p, then at most one of positions i and $i+p$ can be (the starting position of) an occurrence of P.

Proof: Cannot have $T[(i+p)+\omega]=P[\omega] \neq P[\omega+p]=T[i+(\omega+p)]$.

- Duel between guess i and $i+p$: compare text character overlapped with witness ω

$$
\begin{array}{r}
\text { only, one can survive the duel }=\text { be a potcutial beginning } \\
\text { of } a \text { match }
\end{array}
$$

String Matching by Duels - Sequential

Algorithm:

1. Set $\mu:=\left\lfloor\frac{m}{2}\right\rfloor$
2. Compute witnesses $\omega[1 . . \mu]$ against periodicity for all $p \leq \frac{m}{2}$.
3. For each block of μ consecutive indices $[0 . . \mu),[\mu . .2 \mu),[2 \mu . .3 \mu), \ldots$ run $\mu-1$ duels to eliminate all but one guesses in the block
4. check remaining $\left\lceil\frac{n}{\mu}\right\rceil=O(n / m)$ guesses naively

$\omega[i]$

String Matching by Duels - Sequential

Assume that pattern P is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set $\mu:=\left\lfloor\frac{m}{2}\right\rfloor$
2. Compute witnesses $\omega[1 . . \mu]$ against periodicity for all $p \leq \frac{m}{2}$.
3. For each block of μ consecutive indices $[0 . . \mu),[\mu . .2 \mu),[2 \mu .3 \mu), \ldots$ run $\mu-1$ duels to eliminate all but one guesses in the block
4. check remaining $\left\lceil\frac{n}{\mu}\right\rceil=O(n / m)$ guesses naively
\rightsquigarrow another worst-case $O(n+m)$ string matching method!

Analysis:

1. $O(1)$ "like KMP"
2. $O(m) \rightsquigarrow$ later
3. $O\left(\frac{n}{m}\right)$ blocks
$O(m)$ duels each to al
4. $O\left(\frac{n}{m}\right)$,
$\leq m$ comps each $\theta(m)$ time total

String Matching by Duels - Parallel

Assume that pattern P is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set $\mu:=\left\lfloor\frac{m}{2}\right\rfloor$
2. Compute witnesses $\omega[1 . . \mu]$ against periodicity for all $p \leq \frac{m}{2}$.
3. For each block of μ consecutive indices $[0 . . \mu),[\mu . .2 \mu),[2 \mu . .3 \mu), \ldots$ run $\mu-1$ duels to eliminate all but one guesses in the block
4. check remaining $\left\lceil\frac{n}{\mu}\right\rceil=O(n / m)$ guesses naively

String Matching by Duels - Parallel

Algorithm:

1. Set $\mu:=\left\lfloor\frac{m}{2}\right\rfloor$
2. Compute witnesses $\omega[1 . . \mu]$ against periodicity for all $p \leq \frac{m}{2}$.
3. For each block of μ consecutive indices $[0 . . \mu),[\mu . .2 \mu),[2 \mu . .3 \mu), \ldots$ run $\mu-1$ duels to eliminate all but one guesses in the block
4. check remaining $\left\lceil\frac{n}{\mu}\right\rceil=O(n / m)$ guesses naively

Tournament of duals:

- each dual eliminates one guess
\rightsquigarrow declare other guess winner
- conceptually like prefix sum!

How to parallelize:

1. -
2. $O\left(\log ^{2}(m)\right) \rightsquigarrow$ later
3. blocks in parallel (indep.), $\bar{\theta}(\not) \mathrm{g} m)$ tournament of $\lceil\lg \mu\rceil$ rounds
4. check in parallel
collect result (like prefix sum)

String Matching by Duels - Parallel

Assume that pattern P is aperiodic. (can deal with periodic case separately; details omitted)

Algorithm:

1. Set $\mu:=\left\lfloor\frac{m}{2}\right\rfloor$
2. Compute witnesses $\omega[1 . . \mu]$ against periodicity for all $p \leq \frac{m}{2}$.
3. For each block of μ consecutive indices $[0 . . \mu),[\mu . .2 \mu),[2 \mu . .3 \mu), \ldots$ run $\mu-1$ duels to eliminate all but one guesses in the block
4. check remaining $\left\lceil\frac{n}{\mu}\right\rceil=O(n / m)$ guesses naively

How to parallelize:

1. -
2. $O\left(\log ^{2}(m)\right) \rightsquigarrow$ later
3. blocks in parallel (indep.), tournament of $\lceil\lg \mu\rceil$ rounds
4. check in parallel collect result (like prefix sum)

Tournament of duals:

- each dual eliminates one guess
\rightsquigarrow declare other guess winner
- conceptually like prefix sum!

$$
\text { ismore } 2
$$

\rightsquigarrow Matching part can be done in $O(\log m)$ parallel time and $O(n)$ work!

Computing witnesses

It remains to find the witnesses $\omega[1 . . \mu]$.

sequentially:

- an elementary procedure is similar in spirit to KMP failure array
- can be computed in $\Theta(m)$ time

parallel:

- much more complicated \rightsquigarrow beyond scope of the module
- first $O\left(\log ^{2}(m)\right)$ time on CREW-RAM
- later $O(\log m)$ time and $O(m)$ work using pseudoperiod method

Parallel Matching - State of the art

- $O(\log m)$ time \& work-efficient parallel string matching
- this is optimal for CREW-PRAM
- on CRCW-PRAM: matching part even in $O(1)$ time(!)

1 but preprocessing requires $\Theta(\log \log m)$ time

