M

) QA H [H]
)M NS H <
1HOID A A
HHBPAA RO
L EHA<IHD
O 8 Wite ol A0S 7SS
<O A<
A HUNO A O
)N M0 - <[]
00 < H =64+
1HUAQAZ TN
b i d e ol SR @ NP
YD <CHBEHRHQ,
IFPFAdHE S <
1 [A MO TR
IEHQAOUERHW
OA<<V I1HDO
U AR < -
LA N<CANO =
R ONaliiRoRes

|

Parallel

String Matching

2 March 2020

Sebastian Wild

version 2020-03-03 14:48

Outline

5 Parallel String Matching

5.1 Elementary Tricks
5.2 Periodicity
5.3 String Matching by Duels

Parallelizing string matching

»> We have seen a plethora of string matching methods

» But all efficient methods seem inherently sequential

Indeed, they became efficient only after building on knowledge from previous steps!

Sounds like the opposite of parallel!

~> This unit:
» How well can we parallelize string matching?

»> What new ideas can help?

Here: string matching = find all occurrences of P in T
always assume m < n

(more natural problem for parallel)

5.1 Elementary Tricks

Embarrassingly Parallel

» A problem is called “embarrassingly parallel”
if it can immediately be split into many, small subtasks
that can be solved completely independently of each other

> Typical example: sum of two large matrices (all entries independent)

~~ best case for parallel computation (simply assign each processor one subtask)

» Sorting is not embarrassingly parallel

» no obvious way to define many small (=efficiently solvable) subproblems

» but: some subtasks of our algorithms are, e. g., comparing all elements with pivot
—

Clicker Question

4)

Is the string-matching problem “embarrassingly parallel”?

Yes

No

Only for n > m
(o

@ Only for n = m

‘pingo.upb.de/622222

Elementary parallel string matching
Subproblems in string matching:
» string matching = check all guessesi =0,...,n—m —1

» checking one guess is a subtask!

Elementary parallel string matching
Subproblems in string matching:
» string matching = check all guessesi =0,...,n—m —1
» checking one guess is a subtask!
Approach 1:

» Check all guesses in parallel
~ Time: ©(m)
~+ Work: ©((n —m)m) ~» notgreat...

Elementary parallel string matching
Subproblems in string matching:
» string matching = check all guessesi =0,...,n—m —1
» checking one guess is a subtask!
Approach 1:

» Check all guesses in parallel
~ Time: ©(m)
~+ Work: ©((n —m)m) ~» notgreat...

Approach 2:

» Divide T into overlapping blocks of 21 characters:
T[0..2m), T[m..3m), T|2m..Am), T[3m..5m). ..

» Find matches inside blocks in parallel, using efficient sequential method
~ OQ2m + m) = ©(m) each

~ Time: O(m) Work: O(Z£ -m) = O(n)

m

Clicker Question

4)

Is the string-matching problem “embarrassingly parallel”?

Yes

No

Only for n > m
(o

@ Only for n = m

‘pingo.upb.de/622222

Clicker Question

4)

Is the string-matching problem “embarrassingly parallel”?

Yes

Ne
Onlyfornzm\/
@ Orb—ferr——is

‘pingo.upb.de/622222

Elementary parallel matching — Discussion

[& very simple methods

[b could even run distributed with access to part of T'

E@ parallel speedup only for m < n

Goal:
» methods with better parallel time! ~ higher speedup
~» must genuinely parallelize the matching process! (and the preprocessing of the pattern)

~ need new ideas

5.2 Periodicity

Periodicity of Strings
» S =5[0..n —1] has period p iff Vi e [0.n —p):S[i]=S[i+p]
» p =0and any p > n are trivial periods

Examples:
» S = baaababaaab has period 6:

Sbaaaba.baaab
2 [T T T T
P= S|lb a a a b a b a a a b

» S = abaabaabaaba has period 3:

Sla b a a b a a b a a b a

p:35abaabaabaaba

but these are not very interesting . ..

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)
p € [1..n] is the shortest period in S = S[0..n — 1]
iff S[0..n — p) is the longest prefix that is also a suffix of S[p..n).

Periodicity and KMP
Lemma 5.1 (Periodicity = Longest Overlap)

p € [1..n] is the shortest period in S = S[0..n — 1]
iff S[0..n — p) is the longest prefix that is also a suffix of S[p..n).

5[0..n — 1] has minimal period p &= fail[n] =n —p

512:345675
Sla b a a b a a b a a b a

Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)
If string S = S[0..n — 1] has periods p and g withp + g < n,
then it has also period gcd(p,).

greatest common divisor

P?‘OOf.‘ see tutorials; hint: recall Euclid’s algorithm

Periodic strings

» What does the smallest period p tell us about a string S[0..nn — 1]?

» Two distinct regimes:

|
1. Sisperiodic: p < % e |
More precisely: S is totally determined by a string F = F[0..p — 1] = S[0..p — 1]
S keeps repeating F until 7 characters are filled

L. k —
~» S is highly repetitive! S=F" R0.9

2. S is aperiodic (also non-periodic): p > 3
S cannot be written as S = F¥ - Y with k > 2 and Y a prefix of F

10

Clicker Question

Is S = aaaaaaaaaaab a periodic string?

Yes
No

pingo.upb.de/622222

11

Clicker Question
[- a b
&) { N~ - A& = b

{
“0\[x V)ezv(aé op S

Is S = aaaaaaaaaaab a periodic string?

(A) ¥es
No\/

~+ “looking repetitive” is not enough for periodic!

pingo.upb.de/622222

11

5.3 String Matching by Duels

Periods and Matching]

(
Witnesses for non-periodicity: kwi”“[
<' =
» Assume, P[0..m — 1] does not have period p G

~~ Fwitness against periodicity: position w € [0..m —p) : Plw] # Plw + p]

12

Periods and Matching

Witnesses for non-periodicity:

» Assume, P[0..m — 1] does not have period p
~~ Fwitness against periodicity: position w € [0..m —p) : Plw] # Plw + p]

Dueling via witnesses: g {ap e

» If P[0..m — 1] does not have period p, then e L
at most one of positions i and i + p can be (the starting position of) an occtirrence of P.

Proof: Cannot have T[(i + p) + @] = P[w] # Plw +p] = T[i + (0w + p)].

12

Periods and Matching

Witnesses for non-periodicity:

» Assume, P[0..m — 1] does not have period p
~~ Fwitness against periodicity: position w € [0..m —p) : Plw] # Plw + p]

Dueling via witnesses:

» If P[0..m — 1] does not have period p, then
at most one of positions i and i + p can be (the starting position of) an occurrence of P.

Proof: Cannot have T[(i + p) + @] = P[w] # Plw +p] = T[i + (0w + p)].
B

» Duel between guess i and i + p: -5
compare text character overlapped with witness @ l ‘ '\

(SKA_Q(/ ore cam cotvive e Q{J/\QQ = lbe o {;Q(@A(AJ @cs:'wm”wﬁ
DE & L/"C\é(c'

12

String Matching by Duels sorallesl gariod of P 3 ¥

[Assume that pattern P is aperiodic.] (can deal with periodic case separately; details omitted)
Algorithm:
< + ew fuass asdi%s (rc’)({ { (r’m D)

1. Sety:= %] oLl e

2. Compute witnesses w[1..u] against periodicity for all p < 7.

3. For each block of p consecutive indices [0..x), [p..21), [2p..31), ... o el \f%

run i — 1 duels to eliminate all but one guesses in the block (_”/-) ©
/[——/\—_‘
4. check remaining [%] = O(n/m) guesses naively T e parod
wC S

13

String Matching by Duels — Sequential

[Assume that pattern P is aperiodic.] (can deal with periodic case separately; details omitted)

Algorithm:
1. Sety:= %]
2. Compute witnesses w[1..u] against periodicity for all p < 7.

3. For each block of u consecutive indices [0..x), [p..21), [2p..31), . . .
run i — 1 duels to eliminate all but one guesses in the block

4. check remaining [%] = O(n/m) guesses naively

~» another worst-case O(n + m) string matching method!

Analysis:

1,
2.
3.

0(1) “foke kMP'
/
O(m) ~- later

O(Z£) blocks (]

m

O(m) duels each bo ol
oG,

m
< m cmps each

Ol Rue hokd

13

String Matching by Duels — Parallel

[Assume that pattern P is aperiodic.] (can deal with periodic case separately; details omitted)
Algorithm:
1. Sety := %]
2. Compute witnesses w|[1..u] against periodicity for all p < 7.
3. For each block of i consecutive indices [0..x), [p..20), [2u..3u), . ..
run ;i — 1 duels to eliminate all but one guesses in the block
4.

check remaining |"ﬁ'| = O(n/m) guesses naively

14

String Matching by Duels — Parallel - | = Plol

[Assume that pattern P is aperiodic.] (can deal with periodic case separately; details omitted)wi TET 0_: F
Algorithm: How to parallelize:

1. Sety := | %] 1. —

2. Compute witnesses w|[1..u] against periodicity for all p < %. 2. O(log?(m)) ~ later

3. For each block of 1 consecutive indices [0..1), [11.21), [211.34), ... 3. blocks in parallel (indepy, 0(%s)

run i — 1 duels to eliminate all but one guesses in the block tournament of [lg 1] rounds

4. check remaining [%] = O(n/m) guesses naively 4. checkin parallel (¢ QOS
collect result (like prefix sum)

Tournament of duals:
» each dual eliminates one guess
~+ declare other guess winner R4 i ’ S

» conceptually like prefix sum!

14

String Matching by Duels — Parallel

[Assume that pattern Pis uperz'odic.] (can deal with periodic case separately; details omitted)
Algorithm: How to parallelize:
1. Sety := | %] 1. —
2. Compute witnesses w|[1..u] against periodicity for all p < %. 2. O(log?(m)) ~ later
3. For each block of i consecutive indices [0..), [p..20), [21..3u), ... 3. blocks in parallel (indep.),
run i — 1 duels to eliminate all but one guesses in the block tournament of [lg 1] rounds
4. check remaining [%] = O(n/m) guesses naively 4. check in parallel
collect result (like prefix sum)
PR 4
Tournament of duals: ¥
toa / % “\:_, .
» each dual eliminates one guess P 7!’ o Z’

~+ declare other guess winner $
» conceptually like prefix sum! @{ \. ‘ % ./ \. @{ %
Suaw 2
~> Matching p;rt can be done in O(log m) parallel time and O(n) work!
14

Computing witnesses

It remains to find the witnesses w[1..u].

sequentially:
> an elementary procedure is similar in spirit to KMP failure array
» can be computed in @(m) time

parallel:

» much more complicated ~» beyond scope of the module
> first O(log?(1n)) time on CREW-RAM
» later O(log m) time and O () work using pseudoperiod method

15

Parallel Matching — State of the art

» O(log m) time & work-efficient parallel string matching
» this is optimal for CREW-PRAM
S Ra

» on CRCW-PRAM: matching part even in O(1) time(!)
but preprocessing requires ©(log log 1) time

16

