M

) QA H [H]
)M NS H <
1HOID A A
HHBPAA RO
L EHA<IHD
O 8 Wite ol A0S 7SS
<O A<
A HUNO A O
)N M0 - <[]
00 < H =64+
1HUAQAZ TN
b i d e ol SR @ NP
YD <CHBEHRHQ,
IFPFAdHE S <
1 [A MO IR
IEHQAOUERHW
OA<<V I1HDO
U AR < -
LA N<CANO =
R ONaliiRoRes

|

21 April 2020

Error-Correcting Codes

Sebastian Wild

version 2020-04-21 14:46

Outline

8 Error-Correcting Codes

8.1 Introduction
8.2 Lower Bounds

8.3 Hamming Codes

8.1 Introduction

Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

s N

» How do humans cope with that?
» slow down and/or speak up

> ask to repeat if necessary

Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

s N

» How do humans cope with that?
» slow down and/or speak up

> ask to repeat if necessary

» But how is possible (for us)
to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

oisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

s N

» How do humans cope with that?
» slow down and/or speak up

> ask to repeat if necessary

» But how is possible (for us) =)
to decode a message in the presence of noise & errors?

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it!

~ We can
1. detect errors “This sentence has aao pi dgsdho gioasghds.”
2. correct (some) errors “Tiny errs ar corrrected automaticly.”

(sometimes too eagerly as in the Chinese Whispers / Telephone)

UGH, PEOPLE ARE MAD AT ME AGAIN
BECAUSE THEY DONT READ CAREFULLY.

]
IMBEING PERFECTLY CLEAR.
IT'S NOT My FRULT IF EVERYONE
MISINTERPRETS WHAT L SAY.
WOW, SOUNDS LIKE YOURE
GREAT AT COMMUNICATING,
AN ACTVITY THAT FAMOUSLY
INVOLVES JUST ONE PERSON.

S~
=

Noisy Channels

> computers: copper cables &
electromagnetic interference

> transmit a binary string

> but occasionally bits can “flip”

~ want a robust code

'oi& Areaw
SQ_V\(LJ\(‘—’;/\'] C\’\O.\/\(/L,Q I(‘—> e cespnT

O (ool — -
J

Noisy Channels

> computers: copper cables &
electromagnetic interference

> transmit a binary string
» but occasionally bits can “flip”

~ want a robust code

» We can aim at

1. error detection ~» can request a re-transmit

2. error correction ~» avoid re-transmit for common types of errors

Noisy Channels

> computers: copper cables &
electromagnetic interference

> transmit a binary string
» but occasionally bits can “flip”

~ want a robust code

» We can aim at
1. error detection ~» can request a re-transmit
2. error correction ~» avoid re-transmit for common types of errors

» This will require redundancy: sending more bits than plain message

~ goal: robust code with lowest redundancy that's the opposite of compression!

Clicker Question

What do you think, how many extra bits (percentage of message)
do we need to detect a single bit error?
(Answer 100 if you think we have to double the message length.)

o

pingo.upb.de/622222

Clicker Question

What do you think, how many extra bits (percentage of message)
do we need to correct a single bit error?
(Answer 100 if you think we have to double the message length.)

o

pingo.upb.de/622222

8.2 Lower Bounds

Block codes

» model:

> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (6 — 1 resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~~ what errors can be detected and/or corrected?

Sendey recsloe s

B e IR o oy Qg e B

Block codes

» model:
> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (6 — 1 resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~~ what errors can be detected and/or corrected?
> all codes discussed here are block codes
» divide S into messages m € {0, 1} of k bits each (k = message length)
» encode each message (separately) as C(m) € {0, 1}" (n = block length, n > k)

~+ can analyze everything block-wise

Block codes

» model:
> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (6 — 1 resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~~ what errors can be detected and/or corrected?
» all codes discussed here are block codes
> divide S into messages m € {0, 1}¥ of k bits each @\f message length)
» encode each message (separately) as C(m) € {0, 1}" @: block length, n > k)

~+ can analyze everything block-wise

. n -k
> between 0 and 7 bits might be flipped ‘“V?d code . = WMJ ane i
»> how many flipped bits can we definitely detect?
» how many flipped bits can we correct without retransmit?

i.e. decoding m still possible

Code distance

m#m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}¥ — {0,1}"

Code distance

m#m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}¥ — {0,1}"

N L’
> define C = set of all codewords = C({6,1}¥) = {ye{@fﬂ : Ixefo3" Cé&zV{

~ € c{0,1}" [|€| = 2K out of 2" n-bit strings are valid Codewords]

» decoding = finding closest valid codeword

recive ©lods C 4 6 - eccar lras OCCUI\I\Q4

map S avoy AN AH (C(WD(C>

™ < ZOLlSk

Code distance

m#m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}¥ — {0,1}"

> define @ = set of all codewords = C({0, 1}*)

~ € c{0,1}" [|€ | = 2% out of 2" n-bit strings are valid Codewords]

» decoding = finding closest valid codeword

» distance of code:
d = minimal Hamming distance of any two codewords = mir(l du(x,y)
x,yeC

Code distance

m#m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}¥ — {0,1}"

> define C = set of all codewords = C({®, 1}5)

~ Cc{0,1}" [|€| = 2K out of 2" n-bit strings are valid Codewords]

» decoding = finding closest valid codeword

» distance of code:
d = minimal Hamming distance of any two codewords = mir(l du(x,y)
x,yeC

-

vald - valiq

Implications for codes PO S S = £ VAN
¢ ¢ C
1. need distance d to detect errors flipping up to d — 1 bits L % ‘

=d
) dé+l = > |
2. need distance d to correct errors flipping up to L%J bits

(!
T

t

Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length

Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length

> Singleton bound: 2F <2~V <« p>k+d-1

> proof sketch: We have 2k codeswords with distance d
after deleting the first d — 1 bits, all are still distinct
but there are only 2" ~(¢=1) such shorter bitstrings.

Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length

> Singleton bound: 2F <2~V <« p>k+d-1

> proof sketch: We have 2k codeswords with distance d d
after deleting the first d — 1 bits, all are still distinct 2
but there are only 2" ~(¢=1) such shorter bitstrings.

211
d-1)/2
ZS)
» proof idea: consider “balls” of bitstrings around codewords
count bitstrings with Hamming-distance < t = | (d —1)/2
correcting t errors means all these balls are disjoint
so 2k - ball size < 2"

» Hamming bound: 2 <

L= . \‘tolor

Olotot
Ot (ato @

O ool

~ We will come back to these.

8.3 Hamming Codes

Parity Bit

» simplest possible error-detecting code: ~ add a parity bit

[011011110]0
—_—— B {0 if number of ones is even

= B 8 8§ &8 &8 &8 § ¢ 1 if number of ones is odd
(vededereieieieien =0

XOR

Parity Bit
» simplest possible error-detecting code: ~ add a parity bit

[011011110]0
—_—— B {O if number of ones is even

1 if number of ones is odd

elelelolelele®ldl =0
XOR

~ code distance2 — cannd covrect vyt

> can detect any single-bit error (actually, any odd number of flipped bits)

» used in many hardware (communication) protocols
» PCI buses, serial buses
» caches

» early forms of main memory

Parity Bit

» simplest possible error-detecting code: ~ add a parity bit

[011011110]0
—_—— B {O if number of ones is even

1 if number of ones is odd

elelelolelele®ldl =0

XOR
~» code distance 2
> can detect any single-bit error (actually, any odd number of flipped bits)

» used in many hardware (communication) protocols
» PCI buses, serial buses
» caches

» early forms of main memory
|ﬁ) very simple and cheap

l@ cannot correct any errors

Clicker Question

What do you think, how many extra bits (percentage of message)
do we need to detect a single bit error?
(Answer 100 if you think we have to double the message length.)

o

kel
K

one Qx#ra S ¢

pingo.upb.de/622222

Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM
» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

10

Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM
» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

267 7

2 Can we correct a bit error without knowing where it occurred? How?

10

Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM
» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

267 7

2 Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!
» upon read, do majority vote

» if only one bit flipped, the other two (correct) will still win

10

Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM
» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

267 7

2 Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times! [2 00%
» upon read, do majority vote i

» if only one bit flipped, the other two (correct) will still win
[@ triples the cost!

Y You want WHAT!?!

10

Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM

» bits can randomly flip (e g., by cosmic rays)

» individually very unlikely,

but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

267 7

2 Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!
» upon read, do majority vote
» if only one bit flipped, the other two (correct) will still win
[@ triples the cost!

Y You want WHAT!?!

<> ¢ instead of 200% (!)
SI/@ Can do it with 11% extra memory!
-]

10

How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits

» clever subsets ~- violated/valid parity bit pattern narrows down error

11

How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

11

How to locate errors?

> Idea: Use several parity bits

» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error

A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:
Cy B4 ® B5 @ Bg @ By
Cq By & B3 ® Bs @ By,
Co = Bi®B;®Bs® B

—_ 1

|
(1] [I [
111, 110, 101, 100, 011, > 1,
bQsck By Bs Bs By Bz By B B eediwerd @

By B CaCily

¢

11

How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits

» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cy = B4 ® Bs @ Bg @ By

| | | C1 = B, ® B3z ® B @ By

Co = Bi®B;®Bs® B

(1l [ISR [Lo ’
111, 110, 101, 100, 011, 010, 1

By Bg Bs By }i By By

Observe: —Bs Co=0 C.=l (o=

» No error (all 7 bits correct) ~~ C = CpC1Co =000, =0, \/
» What happens if (exactly) 1 bit, say B; flips?

o

o O

11

How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits

» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, . .

G
|] -
C
(1 [I ['
111, 110, 101, 100, 011, 010, 001,
By Bg Bs By % By B
1gg Cn =0

Observe:

)

C

¢

., By with the following constraints:

B4 ® B5 ® By ® By
B, & B3 & B¢ & By
B1 & B3z ® Bs @ By

oil,

=l o=

» No error (all 7 bits correct) ~~ C = CpC1Co =000, =0, \/
» What happens if (exactly) 1 bit, say B; flips?

Cj =1 iff jthbitin binary representation of i is 1]

o

o O

11

How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cy = B4®Bs®Bs @By = 0
|
Ci = Bb®B3®Bs®By =0
|
(E ({({ (Co = Bi®B3®Bs®By =0
111, 110, 101, 100, 011, 010, 1,

By Be Bs By B3 By Bq

Observe:
» No error (all 7 bits correct) ~~ C = CpC1Co =000, =0, \/
» What happens if (exactly) 1 bit, say B; flips?

Cj =1 iff jthbitin binary representation of i is 1] ~» C encodes position of error!

4+3 Hamming Code

» How can we turn this into a code?

(((

(Tl (Ir (
111, 110, 101, 100, 011, 010, 001,
B7 Bg B5 B4 B3 BZ Bl

B4 @& Bs & Bg & By
B, & B3 & Bg & By
B1 & B3 & B; & By

[N N

12

4+3 Hamming Code

» How can we turn this into a code?

€

C1

(I((j v - C
1
B

B4 @& Bs & Bg & By
B, & B3 & Bg & By
B1 @ B3 ® B5 ® By

o=l ={l==
[eNeNo}

\

2 12
> By

» B4, By and B; occur only in one constraint each ~» define them based on rest!

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4

12

4+3 Hamming Code

» How can we turn this into a code?

€
C
“ r — o
Tl ([[
111, 110, 101, 100, 011, 01
B, B¢ Bs By B3 By B

B4 @& Bs & Bg & By
B, & B3 & Bg & By
B1 @ B3 ® B5 ® By

o=l ={l==
[eNeNo}

D; Dy D Dy

» B4, B> and B; occur only in one constraint each ~» define them based on rest!

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
2. copy D3D>D1Dg to ByB¢BsB3

12

4+3 Hamming Code

» How can we turn this into a code?

C2=B4€BB5@B(,€BB7%O
(((Cq =B2®B3$B6$B7$0
({ | 7 T | 7 Co = Bi®B3®Bs® By =0

111, 110, 101, 100, 011, 01
B7 B6 B5 B4 B3 BZ Bl

\ \\\\ \\ \\%
= P, = D3® D, & D,
3

¢ 9 Py = D3@ D, ® Dy
Ds D Dy P, Dy P Py Py D3 @ D1 & Dy

» B4, B> and B; occur only in one constraint each ~» define them based on rest!

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
2. copy D3D>D1Dg to ByB¢BsB3
3. compute PpP1Py = B4BB1 so that C =0

4+3 Hamming Code

» How can we turn this into a code?

€

C

h r — o
11 ([1 [
111, 110, 101, 100, 011, 010, 001,
B, Bs Bs By Bs By B
(S NSTSE N

- \ﬁ ﬁ 1)

(&) @ P

¥ ¥ ¥ 1

Ds D Dy P, Dy P Py Py

» B4, B> and B; occur only in one constraint each ~~

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
2. copy D3D>D1Dg to ByB¢BsB3
3. compute PpP1Py = B4BB1 so that C =0
4. send D3DyD1P,DyP1 Py

C =100, =4
D=0110
=B4€BB5€BB(,€BB7%O
ZBz@B3®B6$B7$0
= B1®Bs®B5®B; =0
=D3G§D2€9D] QO® 1® |
= D3& D, ® Dy O @ O
= D3® D; @ Dy O@\@ O

define them based on rest!

D=0110

11001

12

4+3 Hamming Code — Decoding

> 4 +3 Hamming Code — Decoding

1,
28
3.

Given: block ByBBsB4B3B) By of length n =7
———
compute C (as above)

if C = 0 no (detectable) error occurred
otherwise, flip B¢ (the Cth bit was twisted)

return 4-bit message ByBgB5B3

13

4+3 Hamming Code — Decoding

> 4 +3 Hamming Code — Decoding
1. Given: block ByBsBsB4B3ByBg of length n =7
2. compute C (as above)

3. if C = 0 no (detectable) error occurred
otherwise, flip B¢ (the Cth bit was twisted)

4. return 4-bit message ByBgB5B3

»> Pro ertles
> can correct any 1 b1t error

» How about 2-bit errors?

» We can detect that something went wrong.
» But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

13

Hamming Codes — General recipe

> construction can be generalized:
» Start with n = 2! — 1 bits for £ € N (we had ¢ = 3)
> use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits

14

Hamming Codes — General recipe

> construction can be generalized:
» Start with n = 2! — 1 bits for £ € N (we had ¢ = 3)
> use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

14

Hamming Codes — General recipe

> construction can be generalized:

» Start with n = 2! — 1 bits for £ € N (we had ¢ = 3)
> use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

[ﬁ simple and efficient coding / decoding
[& fairly space-efficient

14

