Tutorial 1 for COMP 526 - Applied Algorithmics, Winter 2020

Problem 1 (Orders of magnitude)

Order the following functions with respect to their asymptotic order of magnitude (i.e., their Θ-class).

$$
n, \sqrt{n}, n^{1.5}, n^{2}, n \lg n, n \lg \lg n, n \lg ^{2} n, n \lg \left(n^{2}\right), \frac{2}{n}, 2^{n}, 2^{n / 2}, 37, n^{3}, n^{2} \lg n
$$

Problem 2 (Loop invariants)

There are two integral ${ }^{1}$ parts of integer division: the quotient and the remainder. For two integers $n, k>0$ the quotient (or result) of the integer division " n div k " is defined as the largest integer m with $m \cdot k \leq n$. The remainder of the division is defined as $r=n-m \cdot k$. Note that $0 \leq r<k$. The value r is also known as the result of modulo operation, written " $r=n \bmod k$ ".

Example: $10 \operatorname{div} 3=3$ and $10 \bmod 3=1$,
$13 \operatorname{div} 5=2$ and $13 \bmod 5=3$.
Apply the invariant method to prove the correctness of the following function $\operatorname{Mod}(n, k)$, which is supposed to compute $n \bmod k$, where n and k are two positive integer input parameters of the function.

```
procedure Mod(n,k)
// Input: positive integers n,k
// Output: value of }n\operatorname{mod}k\mathrm{ .
t:=n
while }t\geq
    t:=(t-k)
end while
return t
```

[^0]
[^0]: ${ }^{1}$ pun intended

