Date: 2020-02-05 Version: 2020-02-06 23:48

Tutorial 1 for COMP 526 – Applied Algorithmics, Winter 2020

Problem 1 (Orders of magnitude)

Order the following functions with respect to their asymptotic order of magnitude (i.e., their Θ -class).

$$n, \sqrt{n}, n^{1.5}, n^2, n \lg n, n \lg \lg n, n \lg^2 n, n \lg(n^2), \frac{2}{n}, 2^n, 2^{n/2}, 37, n^3, n^2 \lg n.$$

Problem 2 (Loop invariants)

There are two integral¹ parts of integer division: the quotient and the remainder. For two integers n, k > 0 the quotient (or result) of the integer division "n div k" is defined as the largest integer m with $m \cdot k \leq n$. The remainder of the division is defined as $r = n - m \cdot k$. Note that $0 \leq r < k$. The value r is also known as the result of modulo operation, written " $r = n \mod k$ ".

Example: $10 \operatorname{div} 3 = 3 \operatorname{and} 10 \operatorname{mod} 3 = 1$, $13 \operatorname{div} 5 = 2 \operatorname{and} 13 \operatorname{mod} 5 = 3$.

Apply the *invariant method* to prove the correctness of the following function Mod(n, k), which is supposed to compute $n \mod k$, where n and k are two positive integer input parameters of the function.

procedure Mod(n, k)1 // Input: positive integers n, k. $\mathbf{2}$ // Output: value of $n \mod k$. 3 $t \mathrel{\mathop:}= n$ 4while $t \ge k$ $\mathbf{5}$ t := (t - k)6 end while 7 return t8

¹pun intended