LIVERPOOL

Tutorial 2 for
 COMP 526 - Applied Algorithmics, Winter 2020

Problem 1 (Decreasing function and amortization method)

Consider again the Mod function from last time:

```
procedure Mod(n,k)
// Input: positive integers n,k.
// Output: value of n mod k}\mathrm{ .
t:=n
while t\geqk
    t:=(t-k)
end while
return t
```

a) Apply the decreasing potential method to prove that the function $\operatorname{Mod}(n, k)$ always terminates.
b) Try to establish the time complexity of this procedure.

Problem 2 (Telescoping recurrence and mathematical induction)

Given a complexity function $T(n)$ recursively defined as

$$
T(n)= \begin{cases}3, & \text { for } n=0 \tag{1}\\ T(n-1)+4, & \text { for } n \geq 1\end{cases}
$$

Find a closed form (without recursive reference) for $T(n)$ by iterating (inserting the recursive definition) until you can make an educated guess.

Then prove the correctness of your guess by mathematical induction.

