
Department of Computer Science
Sebastian Wild

Date: 2020-02-26
Version: 2020-02-18 13:27

Tutorial 3 for
COMP526 –Applied Algorithmics, Winter 2020

Problem 1 (Finding the first k elements)

Design an algorithm for the following problem:

Given array A[0..n − 1] of n (pairwise distinct) elements and a number k ∈
{0, . . . , n − 1}, rearrange the elements so that the first k positions contain
the k smallest elements in sorted order.

Formally, after the execution we require

A[0] ≤ A[1] ≤ · · · ≤ A[k−2] ≤ A[k−1] and ∀i ∈ {k, . . . , n−1} : A[k−1] ≤ A[i].

to hold. The elements can be any objects; only assume a total order of the elements
(given via a suitably overloaded operator <).

A full solution must have running time in O(n + k log n) and use O(1) extra space.
Correct algorithms violating one or both requirements are a valuable intermediate step.

Bonus: Can you give an algorithm with running time in O(n + k log k)?

Problem 2 (Sorting with Stacks)

In this exercise, we consider sorting in a specific streaming model: You are given n
(pairwise distinct) elements as an input stream I, from which you can obtain the elements
one at a time, and you are supposed to put your output into an output stream O, again
one at a time. You cannot otherwise gain access or modify I and O. You can imagine
the streams as two queues, where I allows only the dequeue operation and O allows only
enqueue. The total number n elements in the input is known to you up front.

Apart from the source and sink queues I and O (and potentially a constant amount
of local variables), your only means of storing elements is one stack S. Note that this
means that at any point in time, you can only do the following operations: Take an
element from I or from the top of S; put the element into O or onto S.



Tutorial 3 COMP526 –Applied Algorithmics

1 3 7 8 6 5 9 2 4 . . .
IO

S

Remark: Comparisons are only possible between the element currently at the top of S
and the element currently at the front of I. Hence between any two (non-redundant)
comparisons we must have a move “I → S” or “S → O”.

a) Prove that in the above model, it is not always possible to produce a sorted output
stream, i. e., for some permutations of the n elements in I, we cannot insert the
elements into O in ascending order.

You may assume a “large enough n” for the purpose of this proof.

b) Now assume O is used as input for a second round, i.e., O and I are connected
and form one large queue.

We assume for simplicity that we always finish one round of moving the n items
through the stack before starting the next round, i. e., before we are allowed to
take an element the second time out of I, we must have put all other elements
into O first. That means, elements cannot lap each other and any execution has a
well-defined number of rounds k.

Design a sorting algorithm for this model, i. e., a program that outputs a sequence
of moves “I → S” or “S → O”. These operations are the only means of rearranging
the data, but your algorithm may take any amount of time and space for computing
the next move and can compare the elements S.top() and I.front() for free.

Analyze how many rounds your algorithm needs in the worst case for sorting
an input of n (distinct) elements. For full credit, your algorithm must achieve
k ∈ O(log n).

Hint: You may take inspiration from sorting with tape drives:
https://en.wikipedia.org/wiki/Merge_sort#Use_with_tape_drives.

Bonus (hard): Find an algorithm with k ≤ dlog2 ne.

c) Prove a nontrivial lower bound on k valid for any sorting method in the model.

2 / 2

https://en.wikipedia.org/wiki/Merge_sort#Use_with_tape_drives

	Problem 1 (Finding the first k elements)
	Problem 2 (Sorting with Stacks)

