

Outline

O Proof Techniques

- 0.1 Proof Templates
- 0.2 Mathematical Induction
- 0.3 Correctness Proofs

What is a *formal* proof?

A formal proof (in a logical system) is a sequence of statements such that each statement

- 1. is an *axiom* (of the logical system), or
- 2. follows from previous statements using the *inference rules* (of the logical system).

Among experts: Suffices to *convince a human* that a formal proof *exists*. But: Use formal logic as guidance against faulty reasoning. \rightarrow bulletproof

Notation:

- Statements: $A \equiv$ "it rains", $B \equiv$ "the street is wet".
- ▶ Negation: $\neg A$ "Not A."
- And/Or: $A \land B$ "A and B"; $A \lor B$ "A or B or both."
- Implication: $A \Rightarrow B$ "If A, then B."
- Equivalence: $A \Leftrightarrow B$ "A holds true *if and only if* ('*iff*') B holds true."

0.1 Proof Templates

Implications

To prove $A \Rightarrow B$, we can

- directly derive B from A direct proof
- ▶ prove $(\neg B) \Rightarrow (\neg A)$ indirect proof, proof by contraposition
- assume $A \land \neg B$ and derive a contradiction

proof by contradiction, reductio ad absurdum

► distinguish cases, i. e., separately prove $(A \land C) \Rightarrow B$ and $(A \land \neg C) \Rightarrow B$. proof by exhaustive case distinction

Equivalences

To prove $A \Leftrightarrow B$, we prove both implications $A \Rightarrow B$ and $B \Rightarrow A$ separately.

(Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set *S* contains a set *R*, i. e., $R \subseteq S$, we prove the implication $x \in R \Rightarrow x \in S$.

To prove that two sets *S* and *R* are equal, S = R, we prove both inclusions, $S \subseteq R$ and $R \subseteq S$ separately.

0.2 Mathematical Induction

Quantified Statements

Notation

- Statements with parameters: $A(x) \equiv$ "x is an even number."
- Existential quantifiers: $\exists x : A(x)$ "There exists some *x*, so that A(x)."

► Universal quantifiers: $\forall x : A(x)$ "For all *x* it holds that A(x)." Note: $\forall x : A(x)$ is equivalent to $\neg \exists x : \neg A(x)$

Quantifiers can be nested, e.g., ε - δ -criterion for limits:

 $\lim_{x\to\xi}f(x)=a\qquad :\Leftrightarrow\qquad \forall\varepsilon>0\; \exists\delta>0\;:\; \left(|x-\xi|<\delta\right)\Rightarrow \left|f(x)-a\right|<\varepsilon.$

To prove $\exists x : A(x)$, we simply list an example ξ such that $A(\xi)$ is true.

For-all statements

To prove $\forall x : A(x)$, we can

- derive A(x) for an "arbitrary but fixed value of x", or,
- for $x \in \mathbb{N}_0$, use *induction*, i. e.,
 - prove A(0), *induction basis*, and
 - ▶ prove $\forall n \in \mathbb{N}_0 : A(n) \Rightarrow A(n+1)$ inductive step

More general variants of induction:

- complete/strong induction inductive step shows $(A(0) \land \dots \land A(n)) \Rightarrow A(n+1)$
- structural/transfinite induction works on any *well-ordered* set, e.g., binary trees, graphs, Boolean formulas, strings, ... no infinite strictly decreasing chains

0.3 Correctness Proofs

Formal verification

- verification: prove that a program computes the correct result
- not our focus in COMP 526 but some techniques are useful for *reasoning* about algorithms

Here:

- **1.** Prove that loop or recursive call eventually *terminates*.
- 2. Prove that a *loop* computes the *correct* result.

Proving termination

To prove that a recursive procedure $proc(x_1, ..., x_m)$ eventually terminates, we

- ► define a *potential* $\Phi(x_1, ..., x_m) \in \mathbb{N}_0$ of the parameters (Note: $\Phi(x_1, ..., x_m) \ge 0$ by definition!)
- ▶ prove that every recursive call decreases the potential, i. e., any recursive call proc(y₁,..., y_m) inside proc(x₁,..., x_m) satisfies

 $\Phi(y_1,\ldots,y_m) < \Phi(x_1,\ldots,x_m)$

 \rightarrow proc($x_1, ..., x_m$) terminates because we can only strictly *decrease* the (integral!) potential a *finite* number of times from its initial value

Can use same idea for a loop: show that potential decreases in each iteration.
see tutorials for an example.

Loop invariants

Goal: Prove that a *post condition* holds after execution of a (terminating) loop.

- 1 // (A) before loop
- ² while cond do
- 3 // (B) before body
- 4 body
- 5 // (C) after body
- 6 end while
- 7 // (D) after loop

For that, we

- ► find a *loop invariant I* (that's the tough part!)
- prove that *I* holds at (A)
- prove that $I \wedge cond$ at (B) imply I at (C)
- prove that $I \land \neg cond$ imply the desired post condition at (D)

Note: *I* holds before, during, and after the loop execution, hence the name.

Loop invariant – Example

- loop condition: $cond \equiv i < n$
- ► post condition (after line 9): $curMax = \max_{k \in [0..n-1]} A[k]$
- ► loop invariant: $I \equiv curMax = \max_{k \in [0..i-1]} A[k] \land i \le n$

We have to proof:

(i) I holds at (A)

- (ii) $I \wedge cond$ at (B) \Rightarrow I at (C)
- (iii) $I \land \neg cond \Rightarrow post condition$

1	<pre>procedure arrayMax(A,n)</pre>
2	// input: array of n elements, $n \ge 1$
3	// output: the maximum element in $A[0n-1]$
4	curMax := A[0]; i = 1
5	// (A)
6	while $i < n$ do
7	// (B)
8	if $A[i] > curMax$
9	curMax := A[i]
10	i := i + 1
11	// (C)
12	end while
13	// (D)
14	return <i>curMax</i>