1 4
1R HMI H T
)HN=ZH Jd<+
1HOID AL O
I HBP A
TS HA<CHT
oI Mita ol S C SN
1O Q-
A HUNO AL
)N A0 = <[
YOO <CH =65+
I1HUOAQAZ T 0.
(=AM ITFROC
Y <THBHH(
IFAAdHM@T S -
1HMO A MO T
IEHAOUERT
A Od<<UO IHT
R ONa R el
(LA N<TAQO:
YO AMU L

_| |

Proof Techniques

10 February 2021

Sebastian Wild

version 2021-03-02 09:57 H

Outline

O Proof Techniques

0.1 Proof Templates
0.2 Mathematical Induction

0.3 Correctness Proofs

What is a formal proof?

A formal proof (in alogical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), O

2. follows from previous statements using the inference rules (of the logical system).

. . 9
Among experts: Suffices to convince a human that a formal proof exists. % _@

But: Use formal logic as guidance against faulty reasoning. ~ bulletproof < é! A |>\

Notation:

» Statements: A = “itrains”, B = “the street is wet”.

» Negation: —A “Not A.”

» And/Or: AAB “A and B”; AVB “A or B or both.”
» Implication: A = B “If A, then B.”

» Equivalence: A © B “A holds true if and only if (‘iff’) B holds true.”

0.1 Proof Templates

Implications

To prove A = B, we can
» directly derive B from A direct proof
» prove (—B) = (-A) indirect proof, proof by contraposition
» assume A A —B and derive a contradiction proof by contradiction, reductio ad absurdum

» distinguish cases, i. e., separately prove
(AANC)= Band (AA-C)= B. proof by exhaustive case distinction

Equivalences

To prove A & B,
we prove both implications A = B and B = A separately.

(Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set S contains a set R,i.e, R C S,
we prove the implication x € R = x € S.

To prove that two sets S and R are equal, S = R,
we prove both inclusions, S € R and R C S separately.

0.2 Mathematical Induction

Quantified Statements

Notation

» Statements with parameters: A(x) = “xis an even number.”
> Existential quantifiers: Jx : A(x) “There exists some x, so that A(x).”
» Universal quantifiers: Vx : A(x) “For all x it holds that A(x).”

Note: Vx : A(x) is equivalent to —3x : = A(x)

Quantifiers can be nested, e. g., e-0-criterion for limits:

lim f(x) = a & Ve>035>0: ([x—&[<0) = [f(x)—a| <e.
x—¢

To prove Jx : A(x), we simply list an example & such that A(¢) is true.

For-all statements

To prove Vx : A(x), we can
» derive A(x) for an “arbitrary but fixed value of x”, or,
» for x € Ny, use induction, i.e.,

» prove A(0), induction basis, and

» prove Vi € Ny : A(n) = A(n + 1) inductive step

More general variants of induction:

» complete/strong induction
inductive step shows (A(0) A --- A A(n)) = A(n + 1)

» structural/transfinite induction

works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, .. .

no infinite strictly decreasing chains

0.3 Correctness Proofs

Formal verification

» verification: prove that a program computes the correct result
~+ not our focus in COMP 526

but some techniques are useful for reasoning about algorithms

Here:

1. Prove that loop or recursive call eventually terminates.

2. Prove that a loop computes the correct result.

Proving termination
To prove that a recursive procedure proc(xy, ..., x,;) eventually terminates, we

» define a potential (x1, ... x,) € Ny of the parameters
(Note: @(x1, ...x,) = 0 by definition!)
» prove that every recursive call decreases the potential, i. e.,

any recursive call proc(y1, ..., y,) inside proc(xy, . .., x,,) satisfies

q)(ylr ooo /ym) < q)(xll s /xﬂl)

~ proc(xy,...,X,) terminates because
we can only strictly decrease the (integral!) potential a finite number of times from its
initial value

» Can use same idea for a loop: show that potential decreases in each iteration.

~» see tutorials for an example.

Loop invariants

Goal: Prove that a post condition holds after execution of a (terminating) loop.

1 // (A) before loop For that, we

> while cond do . . .

3 // (B) before body » find a loop invariant | (that's the tough part!)
4 body » prove that [holds at (A)

5 // (C) after body

6 end while » prove that I A cond at (B) imply I at (C)

7 // (D) after loop

» prove that I A —cond imply the desired post condition at (D)

Note: I holds before, during, and after the loop execution, hence the name.

Loop invariant — Example

» loop condition: cond = i <n
» post condition (after line 9):
curMax = max Alk]
ke[0..n-1]
» loop invariant:
I = curMax = max Alk] A i<n
ke[0..i-1]
We have to proof:
(i) I holds at (A)
(i) I Acondat(B) = Iat(C)

(iii) I A mcond = post condition

1
2
3
4
5
6
7
8
9

10
11
12
13
14

procedure arrayMax(A,n)
// input: array of n elements, n > 1
// output: the maximum element in A[0..n — 1]
curMax := A[0]; i =1
//(A)
while i < n do
//(B)
if Ali] > curMax
curMax = Ali]
i=1i+1
//(C)
end while
// (D)

return curMax

10

	Proof Techniques
	 What is a formal proof?
	Proof Templates
	 Implications
	 Equivalences
	 Set Inclusion and Equality

	Mathematical Induction
	 Quantified Statements
	 For-all statements

	Correctness Proofs
	 Formal verification
	 Proving termination
	 Loop invariants
	 Loop invariant – Example

