ALGORITHMICS\$APPLIED
APPLIEDALGORITHMICS\$
CS SAPPLIEDALGORITHMI
DALGORITHMICS\$APPLIE
EDALGORITHMICS\$APPLI
GORITHMICS\$APPLIEDAL
HMICS \$ APPLIEDALGORIT

Fundamental Data Structures

17 February 2021
Sebastian Wild

Outline

Fundamental Data Structures

2.1 Stacks \& Queues
2.2 Resizable Arrays
2.3 Priority Queues
2.4 Binary Search Trees
2.5 Ordered Symbol Tables
2.6 Balanced BSTs

2.1 Stacks \& Queues

Abstract Data Types

abstract data type (ADT)

- list of supported operations
- what should happen
- not: how to do it
- not: how to store data
\approx Java interface (with Javadoc comments)
data structures
- specify exactly how data is represented
- algorithms for operations
- has concrete costs (space and running time)
\approx Java class (non abstract)

Why separate?

- Can swap out implementations \rightsquigarrow "drop-in replacements")
\rightsquigarrow reusable code!
- (Often) better abstractions
- Prove generic lower bounds (\rightsquigarrow Unit 3)

Stacks

Stack ADT

- top()

Return the topmost item on the stack
Does not modify the stack.

- $\operatorname{push}(x)$

Add x onto the top of the stack.

- pop()

Remove the topmost item from the stack (and return it).

- isEmpty()

Returns true iff stack is empty.

- create()

Create and return an new empty stack.

Linked-list implementation for Stack

Invariants:

- maintain top pointer to topmost element
- each element points to the element below it (or null if bottommost)

Linked stacks:

- require $\Theta(n)$ space when n elements on stack
- All operations take $O(1)$ time

Array-based implementation for Stack

Can we avoid extra space for pointers?
\rightsquigarrow array-based implementation

Invariants:

- maintain array S of elements, from bottommost to topmost
- maintain index top of position of topmost element in S.

Array stacks:

- require fixed capacity C (known at creation time)!
- require $\Theta(C)$ space for a capacity of C elements
- all operations take $O(1)$ time

2.2 Resizable Arrays

Digression - Arrays as ADT

Arrays can also be seen as an ADT! ... but are commonly seen as specific data structure

Array operations:

- create(n) Java: A = new int[n];

Create a new array with n cells, with positions $0,1, \ldots, n-1$

- get (i) Java: A[i]

Return the content of cell i

- $\operatorname{set}(i, x) \quad$ Java: $\mathrm{A}[i]=x$; Set the content of cell i to x.
\rightsquigarrow Arrays have fixed size (supplied at creation).

Usually directly implemented by compiler + operating system / virtual machine.

Difference to others ADTs: Implementation usually fixed to "a contiguous chunk of memory".

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:

- maintain array S of elements, from bottommost to topmost
- maintain index top of position of topmost element in S
- maintain capacity $C=S$. length so that $\frac{1}{4} C \leq n \leq C$
\rightsquigarrow can always push more elements!
How to maintain the last invariant?
- before push

If $n=C$, allocate new array of size $2 n$, copy all elements.

- after pop

If $n<\frac{1}{4} C$, allocate new array of size $2 n$, copy all elements.
\rightsquigarrow "Resizing Arrays"
an implementation technique, not an ADT!

Amortized Analysis

- Any individual operation push / pop can be expensive!
$\Theta(n)$ time to copy all elements to new array.
- But: An one expensive operation of cost T means $\Omega(T)$ next operations are cheap!
distance to boundary
Formally: consider "credits/potential" $\Phi=\min \left\{n-\frac{1}{4} C, C-n\right\} \in[0,0.6 n]$
- amortized cost of an operation = actual cost (array accesses) - $4 \cdot$ change in Φ
- cheap push/pop: actual cost 1 array access, consumes ≤ 1 credits \rightsquigarrow amortized cost ≤ 5
- copying push: actual cost $2 n+1$ array accesses, creates $\frac{1}{2} n+1$ credits \rightsquigarrow amortized cost ≤ 5
- copying pop: actual cost $2 n+1$ array accesses, creates $\frac{1}{2} n-1$ credits \rightsquigarrow amortized cost 5
\rightsquigarrow sequence of m operations: total actual cost \leq total amortized cost + final credits

$$
\text { here: } \leq \quad 5 m \quad+4 \cdot 0.6 n=\Theta(m+n)
$$

Queues

Operations:

- enqueue (x)

Add x at the end of the queue.

- dequeue()

Remove item at the front of the queue and return it.

Implementations similar to stacks.

Bags

What do Stack and Queue have in common?

They are special cases of a Bag!

Operations:

- insert (x)

Add x to the items in the bag.

- delAny()

Remove any one item from the bag and return it. (Not specified which; any choice is fine.)

- roughly similar to Java's Collection

Sometimes it is useful to state that order is irrelevant \rightsquigarrow Bag
Implementation of Bag usually just a Stack or a Queue

2.3 Priority Queues

Priority Queue ADT - min-oriented version

Now: elements in the bag have different priorities.
(Max-oriented) Priority Queue (MaxPQ):

- construct (A)

Construct from from elements in array A.

- insert (x, p) Insert item x with priority p into PQ.
- max()

Return item with largest priority. (Does not modify the PQ.)

- delMax()

Remove the item with largest priority and return it.

- changeKey (x, p^{\prime})

Update x^{\prime} s priority to p^{\prime}.
Sometimes restricted to increasing priority.

- isEmpty ()

Fundamental building block in many applications.

PQ implementations

Elementary implementations

- unordered list $\rightsquigarrow \Theta(1)$ insert, but $\Theta(n)$ delMax
- sorted list $\rightsquigarrow \Theta(1)$ delMax, but $\Theta(n)$ insert

Can we get something between these extremes? Like a "slightly sorted" list?

Yes! Binary heaps.

Array view
Heap $=$ array A with
$\forall i \in[n]: A[\lfloor i / 2\rfloor] \geq A[i]$

Tree view

Binary heap example

Why heap-shaped trees?

Why complete binary tree shape?

- only one possible tree shape \rightsquigarrow keep it simple!
- complete binary trees have minimal height among all binary trees
- simple formulas for moving from a node to parent or children:

For a node at index k in A

- parent at $\lfloor k / 2\rfloor$
- left child at $2 k$
- right child at $2 k+1$

Why heap ordered?

- Maximum must be at root! $\rightsquigarrow \max ()$ is trivial!
- But: Sorted only along paths of the tree; leaves lots of leeway for fast inserts

Insert

Delete Max

Heap construction

Analysis

Height of binary heaps:

- height of a tree: \# edges on longest root-to-leaf path
- depth/level of a node: \# edges from root \rightsquigarrow root has depth 0
- How many nodes on first k full levels?

$$
\sum_{\ell=0}^{k} 2^{\ell}=2^{k+1}-1
$$

\rightsquigarrow Height of binary heap: $h=\min k$ s.t. $2^{k+1}-1 \geq n=\lfloor\lg (n)\rfloor$

Analysis:

- insert: new element "swims" up $\rightsquigarrow \leq h$ steps ($h \mathrm{cmps}$)
- delMax: last element "sinks" down $\rightsquigarrow \leq h$ steps ($2 h \mathrm{cmps}$)
- construct from n elements: cost $=$ cost of letting each node in heap sink!

$$
\begin{aligned}
& \leq 1 \cdot h+2 \cdot(h-1)+4 \cdot(h-2)+\cdots+2^{\ell} \cdot(h-\ell)+\cdots+2^{h-1} \cdot 1+2^{h} \cdot 0 \\
& =\sum_{\ell=0}^{h} 2^{\ell}(h-\ell)=\sum_{i=0}^{h} \frac{2^{h}}{2^{i}} i=2^{h} \sum_{i=0}^{h} \frac{i}{2^{i}} \leq 2 \cdot 2^{h} \leq 4 n
\end{aligned}
$$

Binary heap summary

Operation	Running Time
construct $(A[1 . . n])$	$O(n)$
max($)$	$O(1)$
insert (x, p)	$O(\log n)$
delMax($O(\log n)$
changeKey $\left(x, p^{\prime}\right)$	$O(\log n)$
isEmpty ()	$O(1)$
size()	$O(1)$

2.4 Binary Search Trees

Symbol table ADT

Symbol table / Dictionary / Map / Associative array / key-value store:

- put $(k, v) \quad$ Python dict: $\mathrm{d}[k]=v$

Put key-value pair (k, v) into table

- get $(k) \quad$ Python dict: $\mathrm{d}[k]$

Return value associated with key k

- delete(k)

Remove key k (any associated value) form table

- contains(k)

Returns whether the table has a value for key k

- isEmpty(), size()
- create()

Most fundamental building block in computer science.
(Every programming library has a symbol table implementation.)

Symbol tables vs mathematical functions

- similar interface
- but: mathematical functions are static (never change their mapping)
(Different mapping is a different function)
- symbol table = dynamic mapping

Function may change over time

Elementary implementations

Unordered (linked) list:

Fast put
q $\Theta(n)$ time for get
\rightsquigarrow Too slow to be useful

Sorted linked list:

$\mathcal{\sim} \Theta(n)$ time for put
访 Θ time for get
\rightsquigarrow Too slow to be useful
\rightsquigarrow Sorted order does not help us at all?!

Binary search

It does help . . . if we have a sorted array!

Example: search for 69

Binary search:

- halve remaining list in each step
$\rightsquigarrow \leq\lfloor\lg n\rfloor+1 \mathrm{cmps}$ in the worst case
needs random access

Binary search trees

Binary search trees (BSTs) \approx dynamic sorted array

- binary tree
- Each node has left and right child
- Either can be empty (null)
- Keys satisfy search-tree property

[^0]BST example \& find

BST insert

Example: Insert 88

BST delete

- Easy case: remove leaf, e.g., $11 \rightsquigarrow$ replace by null
- Medium case: remove unary, e.g., $69 \rightsquigarrow$ replace by unique child
- Hard case: remove binary, e.g., $85 \rightsquigarrow$ swap with predecessor, recurse

Analysis

BST summary

Operation	Running Time
construct $(A[1 . . n])$	$O(n h)$
put (k, v)	$O(h)$
get (k)	$O(h)$
$\operatorname{delete}(k)$	$O(h)$
contains (k)	$O(h)$
isEmpty ()	$O(1)$
size()	$O(1)$

2.5 Ordered Symbol Tables

Ordered symbol tables

- min(), max()

Return the smallest resp. largest key in the ST

- floor (x), $\lfloor x\rfloor=\mathbb{Z} . f l o o r(x)$

Return largest key k in ST with $k \leq x$.

- ceiling(x)

Return smallest key k in ST with $k \geq x$.

- rank (x)

Return the number of keys k in ST $k<x$.

- select(i)

Return the i th smallest key in ST (zero-based, i. e., $i \in[0 . . n)$)

With select, we can simulate access as in a truly dynamic array!.
(Might not need any keys at all then!)

Augmented BSTs

Rank

Select

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 12 | 17 | 28 | 35 | 55 | 57 | 63 | 69 | 77 | 79 | 80 | 82 | 85 | 88 | 97 |

2.6 Balanced BSTs

Balanced BSTs

Balanced binary search trees:

- imposes shape invariant that guarantees $O(\log n)$ height
- adds rules to restore invariant after updates
- many examples known
- AVL trees (height-balanced trees)
- red-black trees
- weight-balanced trees ($\mathrm{BB}[\alpha]$ trees)
- ...

Other options:
(Maybe another time)

- amortization: splay trees, scapegoat trees
- randomization: randomized BSTs, treaps, skip lists

BSTs vs. Heaps

Balanced binary search tree

Operation	Running Time
$\operatorname{construct}(A[1 . . n])$	$O(n \log n)$
put (k, v)	$O(\log n)$
get (k)	$O(\log n)$
delete (k)	$O(\log n)$
contains (k)	$O(\log n)$
isEmpty ()	$O(1)$
size ()	$O(1)$
$\min () / \max ()$	$O(\log n) \rightsquigarrow O(1)$
floor (x)	$O(\log n)$
ceiling (x)	$O(\log n)$
rank (x)	$O(\log n)$
$\operatorname{select}(i)$	$O(\log n)$

Operation	Running Time
construct $(A[1 . . n])$	$O(n)$
insert (x, p)	$\frac{O(\log n)}{} O(1)$
delMax($)$	$O(\log n)$
changeKey $\left(x, p^{\prime}\right)$	$\frac{O(\log n)}{} O(1)$
max($)$	$O(1)$
isEmpty ($)$	$O(1)$
size()	$O(1)$

[^0]: all keys in left subtree \leq root key \leq all keys in right subtree

