

Outline

2 Fundamental Data Structures

- 2.1 Stacks & Queues
- 2.2 Resizable Arrays
- 2.3 Priority Queues
- 2.4 Binary Search Trees
- 2.5 Ordered Symbol Tables
- 2.6 Balanced BSTs

2.1 Stacks & Queues

Abstract Data Types

abstract data type (ADT)

- list of supported operations
- what should happen
- not: how to do it
- not: how to store data
- ≈ Java interface (with Javadoc comments)

data structures

- specify exactly how data is represented
- algorithms for operations
- has concrete costs (space and running time)
- ≈ Java class (non abstract)

Why separate?

Can swap out implementations ~> "drop-in replacements")
 reusable code!

VS.

- ► (Often) better abstractions
- ▶ Prove generic lower bounds (→ Unit 3)

Stacks

Stack ADT

top()

Return the topmost item on the stack Does not modify the stack.

- push(x)Add x onto the top of the stack.
- pop() Remove the topmost item from the stack (and return it).
- isEmpty()
 Returns true iff stack is empty.
- create()

Create and return an new empty stack.

Linked-list implementation for Stack

Invariants:

- maintain top pointer to topmost element
- each element points to the element below it (or null if bottommost)

Linked stacks:

- require $\Theta(n)$ space when *n* elements on stack
- ► All operations take *O*(1) time

Array-based implementation for Stack

Can we avoid extra space for pointers?

 \rightsquigarrow array-based implementation

Invariants:

- maintain array S of elements, from bottommost to topmost
- maintain index top of position of topmost element in S.

What to do if stack is full upon pop?

Array stacks:

- require *fixed capacity* C (known at creation time)!
- require $\Theta(C)$ space for a capacity of *C* elements
- ▶ all operations take *O*(1) time

2.2 Resizable Arrays

Digression – Arrays as ADT

Arrays can also be seen as an ADT! ... but are commonly seen as specific data structure

Array operations:

- ► create(n) Java: A = new int[n]; Create a new array with n cells, with positions 0, 1, ..., n - 1
- get(i) Java: A[i]
 Return the content of cell i
- set(i,x) Java: A[i] = x; Set the content of cell i to x.
- $\rightsquigarrow\,$ Arrays have fixed size (supplied at creation).

Usually directly implemented by compiler + operating system / virtual machine.

Difference to others ADTs: *Implementation usually fixed* to "a contiguous chunk of memory".

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:

- maintain array S of elements, from bottommost to topmost
- maintain index top of position of topmost element in S
- maintain capacity C = S.length so that $\frac{1}{4}C \le n \le C$
- \rightsquigarrow can always push more elements!

How to maintain the last invariant?

before push

If n = C, allocate new array of size 2n, copy all elements.

► after pop

If $n < \frac{1}{4}C$, allocate new array of size 2n, copy all elements.

→ "Resizing Arrays"

an implementation technique, not an ADT!

Amortized Analysis

- ► Any individual operation push / pop can be expensive! Θ(n) time to copy all elements to new array.
- **But:** An one expensive operation of cost *T* means $\Omega(T)$ next operations are cheap!

distance to boundary

Formally: consider "credits/potential" $\Phi = \min\{n - \frac{1}{4}C, C - n\} \in [0, 0.6n]$

- amortized cost of an operation = actual cost (array accesses) $-4 \cdot$ change in Φ
 - ▶ cheap push/pop: actual cost 1 array access, consumes \leq 1 credits $\rightarrow \rightarrow$ amortized cost \leq 5
 - ▶ copying push: actual cost 2n + 1 array accesses, creates $\frac{1}{2}n + 1$ credits $\rightarrow \rightarrow$ amortized cost ≤ 5
 - copying pop: actual cost 2n + 1 array accesses, creates $\frac{1}{2}n 1$ credits \rightarrow amortized cost 5
- \sim sequence of *m* operations: total actual cost \leq total amortized cost + final credits

here: $\leq 5m + 4 \cdot 0.6n = \Theta(m+n)$

Queues

Operations:

- enqueue(x)Add x at the end of the queue.
- dequeue()

Remove item at the front of the queue and return it.

Implementations similar to stacks.

Bags

What do Stack and Queue have in common?

They are special cases of a **Bag**!

Operations:

- insert(x)
 Add x to the items in the bag.
- delAny()

Remove any one item from the bag and return it. (Not specified which; any choice is fine.)

roughly similar to Java's Collection

Sometimes it is useful to state that order is irrelevant \rightsquigarrow Bag Implementation of Bag usually just a Stack or a Queue

2.3 Priority Queues

Priority Queue ADT – min-oriented version

Now: elements in the bag have different *priorities*.

(Max-oriented) Priority Queue (MaxPQ):

- construct(A)
 Construct from from elements in array A.
- insert(x, p) Insert item x with priority p into PQ.
- ▶ max()

Return item with largest priority. (Does not modify the PQ.)

delMax()

Remove the item with largest priority and return it.

- changeKey(x, p')
 Update x's priority to p'.
 Sometimes restricted to *increasing* priority.
- ▶ isEmpty()

Fundamental building block in many applications.

PQ implementations

Elementary implementations

- ▶ unordered list $\rightsquigarrow \Theta(1)$ insert, but $\Theta(n)$ delMax
- ▶ sorted list $\rightarrow \Theta(1)$ delMax, but $\Theta(n)$ insert

Can we get something between these extremes? Like a "slightly sorted" list?

Yes! Binary heaps.

Binary heap example

Why heap-shaped trees?

Why complete binary tree shape?

- ▶ only one possible tree shape → keep it simple!
- complete binary trees have minimal height among all binary trees
- simple formulas for moving from a node to parent or children:
 For a node at index k in A
 - parent at $\lfloor k/2 \rfloor$
 - ▶ left child at 2*k*
 - Fight child at 2k + 1

Why heap ordered?

- ► Maximum must be at root! ~~ max() is trivial!
- But: Sorted only along paths of the tree; leaves lots of leeway for fast inserts

how? ... stay tuned

Insert

Delete Max

Heap construction

Analysis

Height of binary heaps:

- *height* of a tree: #edges on longest root-to-leaf path
- depth/level of a node: #edges from root ~~ root has depth 0
- ► How many nodes on first *k full* levels?

$$\sum_{\ell=0}^{k} 2^{\ell} = 2^{k+1} - 1$$

→ Height of binary heap: $h = \min k \text{ s.t. } 2^{k+1} - 1 \ge n = \lfloor \lg(n) \rfloor$

Analysis:

- ▶ insert: new element "swims" up $\rightarrow \leq h$ steps (h cmps)
- ▶ delMax: last element "sinks" down $\rightarrow = h$ steps (2h cmps)
- construct from n elements:

 $\cos t = \cos t \text{ of letting } each node \text{ in heap sink!} \\ \leq 1 \cdot h + 2 \cdot (h - 1) + 4 \cdot (h - 2) + \dots + 2^{\ell} \cdot (h - \ell) + \dots + 2^{h - 1} \cdot 1 + 2^h \cdot 0 \\ = \sum_{\ell=0}^{h} 2^{\ell} (h - \ell) = \sum_{i=0}^{h} \frac{2^h}{2^i} i = 2^h \sum_{i=0}^{h} \frac{i}{2^i} \leq 2 \cdot 2^h \leq 4n$

Binary heap summary

Operation	Running Time
construct(A[1n])	O(n)
max()	<i>O</i> (1)
<pre>insert(x,p)</pre>	$O(\log n)$
delMax()	$O(\log n)$
changeKey(x , p')	$O(\log n)$
isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)

2.4 Binary Search Trees

Symbol table ADT

,Java: java.util.Map<K,V>

Symbol table / Dictionary / Map / Associative array / key-value store:

- put(k,v) Python dict: d[k] = v Put key-value pair (k, v) into table
- get(k) Python dict: d[k]
 Return value associated with key k
- delete(k)
 Remove key k (any associated value) form table
- contains(k)
 Returns whether the table has a value for key k
- isEmpty(), size()
- create()

Most fundamental building block in computer science. (Every programming library has a symbol table implementation.)

Symbol tables vs mathematical functions

- similar interface
- but: mathematical functions are *static* (never change their mapping) (Different mapping is a *different* function)
- symbol table = *dynamic* mapping
 Function may change over time

Elementary implementations

Unordered (linked) list:

- 🖒 Fast put
- $\Theta(n)$ time for get
 - \rightsquigarrow Too slow to be useful

Sorted *linked* list:

- \mathbf{v} $\Theta(n)$ time for put
- $\Theta(n)$ time for get
- $\rightsquigarrow\,$ Too slow to be useful
- \rightsquigarrow Sorted order does not help us at all?!

Binary search

It does help . . . if we have a sorted array!

Example: search for 69

Binary search:

- halve remaining list in each step
- $\implies \leq \lfloor \lg n \rfloor + 1 \text{ cmps}$ in the worst case

Binary search trees

Binary search trees (BSTs) \approx dynamic sorted array

- binary tree
 - Each node has left and right child
 - Either can be empty (null)
- Keys satisfy *search-tree property*

all keys in left subtree \leq root key \leq all keys in right subtree

BST example & find

BST insert

Example: Insert 88

BST delete

- ► Easy case: remove leaf, e.g., 11 --- replace by null
- ▶ Medium case: remove unary, e.g., 69 ---> replace by unique child
- ► Hard case: remove binary, e. g., 85 \rightsquigarrow swap with predecessor, recurse

Analysis

BST summary

Operation	Running Time
construct(A[1n])	O(nh)
put(k,v)	O(h)
get(k)	O(h)
delete(k)	O(h)
contains(<i>k</i>)	O(h)
isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)

2.5 Ordered Symbol Tables

Ordered symbol tables

min(),max()

Return the smallest resp. largest key in the ST

- ► floor(x), $\lfloor x \rfloor = \mathbb{Z}.floor(x)$ Return largest key k in ST with $k \le x$.
- ceiling(x) Return smallest key k in ST with $k \ge x$.
- rank(x)
 Return the number of keys k in ST k < x.</pre>
- Select(i) Return the *i*th smallest key in ST (zero-based, i. e., *i* ∈ [0..*n*))

With select, we can simulate access as in a truly dynamic array!. (Might not need any keys at all then!)

Augmented BSTs

Rank

Select

2.6 Balanced BSTs

Balanced BSTs

Balanced binary search trees:

- ▶ imposes shape invariant that guarantees *O*(log *n*) height
- adds rules to restore invariant after updates
- many examples known
 - AVL trees (height-balanced trees)
 - ► red-black trees
 - weight-balanced trees (BB[α] trees)
 - ▶ ...

Other options:

I'd love to talk more about all of these . . . (Maybe another time)

- amortization: splay trees, scapegoat trees
- **randomization:** randomized BSTs, treaps, skip lists

BSTs vs. Heaps

Balanced binary search tree

Operation	Running Time
construct(A[1n])	$O(n \log n)$
put(k,v)	$O(\log n)$
get(k)	$O(\log n)$
delete(k)	$O(\log n)$
contains(<i>k</i>)	$O(\log n)$
isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)
<pre>min() / max()</pre>	$O(\log n) \rightsquigarrow O(1)$
floor(<i>x</i>)	$O(\log n)$
ceiling(x)	$O(\log n)$
rank(x)	$O(\log n)$
<pre>select(i)</pre>	$O(\log n)$

Operation	Running Time
construct(A[1n])	O(n)
insert(x,p)	$O(\log n) O(1)$
delMax()	$O(\log n)$
changeKey(x , p')	$O(\log n) O(1)$
max()	O(1)
isEmpty()	<i>O</i> (1)
size()	<i>O</i> (1)

- apart from faster construct, BSTs always as good as binary heaps
- MaxPQ abstraction still helpful
- and faster heaps exist!