

version 2021-03-02 13:57 H

Outline

3 Efficient Sorting

- 3.1 Mergesort
- 3.2 Quicksort
- 3.3 Comparison-Based Lower Bound
- 3.4 Integer Sorting
- 3.5 Parallel computation
- 3.6 Parallel primitives
- 3.7 Parallel sorting

Why study sorting?

- fundamental problem of computer science that is still not solved
- building brick of many more advanced algorithms
 - for preprocessing
 - as subroutine
- playground of manageable complexity to practice algorithmic techniques

Algorithm with optimal #comparisons in worst case?

Here:

- "classic" fast sorting method
- parallel sorting

Part I *The Basics*

Rules of the game

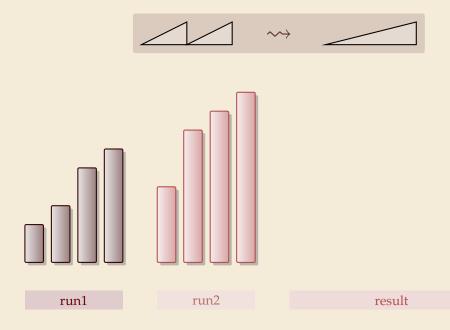
Given:

- array A[0..n-1] of *n* objects
- ▶ a total order relation ≤ among A[0], ..., A[n 1] (a comparison function)
- ► **Goal:** rearrange (=permute) elements within *A*, so that *A* is *sorted*, i. e., $A[0] \le A[1] \le \cdots \le A[n-1]$

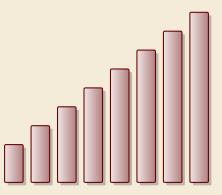
 for now: A stored in main memory (*internal sorting*) single processor (*sequential sorting*)

3.1 Mergesort

Merging sorted lists



Merging sorted lists



run1

run2

result

Mergesort

procedure mergesort(A[l..r])

- $_{2}$ n := r l + 1
- $_3$ if $n \ge 1$ return
- $_{4} \quad m := l + \left| \frac{n}{2} \right|$
- 5 mergesort(A[l..m-1])
- 6 mergesort(A[m..r])
- ⁷ merge(A[l..m-1], A[m..r], buf)

Analysis: count "element visits" (read and/or write)

s copy buf to A[l..r]

0

C(n)

- recursive procedure; divide & conquer
- merging needs
 - temporary storage for result of same size as merged runs
 - to read and write each element twice (once for merging, once for copying back)

same for best and worst case!

$$C(2^{k}) = \begin{cases} 0 & k \le 0 \\ 2 \cdot C(2^{k-1}) + 2 \cdot 2^{k} & k \ge 1 \end{cases} = 2 \cdot 2^{k} + 2^{2} \cdot 2^{k-1} + 2^{3} \cdot 2^{k-2} + \dots + 2^{k} \cdot 2^{1} = 2k \cdot 2^{k} \\ C(n) = 2n \lg(n) = \Theta(n \log n) \end{cases}$$

 $n \leq 1$

Mergesort – Discussion

 \square optimal time complexity of $\Theta(n \log n)$ in the worst case

stable sorting method i.e., retains relative order of equal-key items

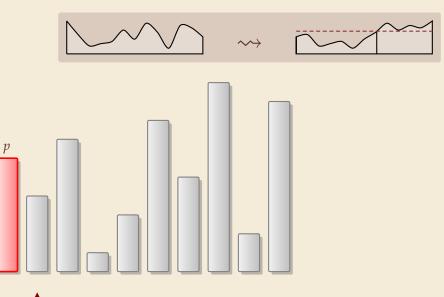
memory access is sequential (scans over arrays)

\square requires $\Theta(n)$ extra space

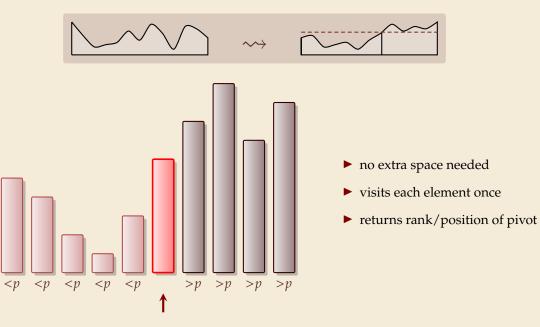
there are in-place merging methods, but they are substantially more complicated and not (widely) used

3.2 Quicksort

Partitioning around a pivot



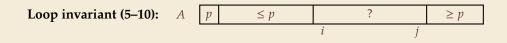
Partitioning around a pivot



Partitioning – Detailed code

Beware: details easy to get wrong; use this code!

¹ **procedure** partition(*A*, *b*) // input: array A[0..n-1], position of pivot $b \in [0..n-1]$ 2 swap(A[0], A[b])3 $i := 0, \quad j := n$ 4 while true do 5 **do** i := i + 1 while i < n and A[i] < A[0]6 **do** j := j - 1 while $j \ge 1$ and A[j] > A[0]7 if $i \ge j$ then break (goto 8) 8 else swap(A[i], A[j])9 end while 10 swap(*A*[0], *A*[*j*]) 11 return j 12



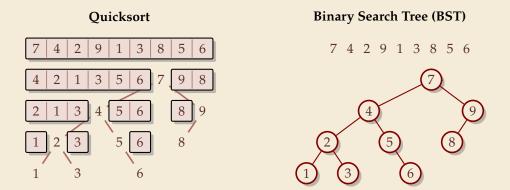
Quicksort

¹ **procedure** quicksort(*A*[*l*..*r*])

- ² if $l \ge r$ then return
- b := choosePivot(A[l..r])
- $_{4}$ j := partition(A[l..r], b)
- ⁵ quicksort(A[l..j-1])
- ⁶ quicksort(A[j + 1..r])

- ▶ recursive procedure; *divide & conquer*
- choice of pivot can be
 - ▶ fixed position → dangerous!
 - random
 - more sophisticated, e.g., median of 3

Quicksort & Binary Search Trees



recursion tree of quicksort = binary search tree from successive insertion

- comparisons in quicksort = comparisons to built BST
- comparisons in quicksort \approx comparisons to search each element in BST

Quicksort – Worst Case

- Problem: BSTs can degenerate
- Cost to search for k is k 1

$$\longrightarrow$$
 Total cost $\sum_{k=1}^{n} (k-1) = \frac{n(n-1)}{2} \sim \frac{1}{2}n^2$

 \rightarrow quicksort worst-case running time is in $\Theta(n^2)$

terribly slow!

But, we can fix this:

Randomized quicksort:

- choose a *random pivot* in each step
- $\rightsquigarrow\,$ same as randomly *shuffling* input before sorting

Randomized Quicksort – Analysis

- C(n) = element visits (as for mergesort)
- \rightsquigarrow quicksort needs $\sim 2 \ln(2) \cdot n \lg n \approx 1.39n \lg n$ in expectation
- also: very unlikely to be much worse: e.g., one can prove: Pr[cost > 10n lg n] = O(n^{-2.5}) distribution of costs is "concentrated around mean"
- ▶ intuition: have to be *constantly* unlucky with pivot choice

Quicksort – Discussion

fastest general-purpose method

- $\Theta(n \log n)$ average case
- works *in-place* (no extra space required)

memory access is sequential (scans over arrays)

 $\bigcirc \Theta(n^2)$ worst case (although extremely unlikely)

not a *stable* sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

3.3 Comparison-Based Lower Bound

Lower Bounds

- Lower bound: mathematical proof that *no algorithm* can do better.
 - very powerful concept: bulletproof *impossibility* result
 - \approx conservation of energy in physics
 - (unique?) feature of computer science: for many problems, solutions are known that (asymptotically) achieve the lower bound
 ~ can speak of "optimal algorithms"
- ▶ To prove a statement about *all algorithms*, we must precisely define what that is!
- already know one option: the word-RAM model
- ► Here: use a simpler, more restricted model.

The Comparison Model

▶ In the *comparison model* data can only be accessed in two ways:

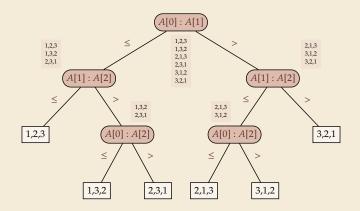
- comparing two elements
- moving elements around (e.g. copying, swapping)
- Cost: number of these operations.

That's good! /Keeps algorithms general!

- This makes very few assumptions on the kind of objects we are sorting.
- Mergesort and Quicksort work in the comparison model.
- → Every comparison-based sorting algorithm corresponds to a *decision tree*.
 - ▶ only model comparisons → ignore data movement
 - nodes = comparisons the algorithm does
 - ▶ next comparisons can depend on outcomes →→ different subtrees
 - child links = outcomes of comparison
 - leaf = unique initial input permutation compatible with comparison outcomes

Comparison Lower Bound

Example: Comparison tree for a sorting method for *A*[0..2]:



- Execution = follow a path in comparison tree.
- \rightarrow height of comparison tree = worst-case # comparisons
- comparison trees are binary trees

 $\rightsquigarrow \ell \text{ leaves } \rightsquigarrow \text{ height} \geq \lceil \lg(\ell) \rceil$

 comparison trees for sorting method must have $\geq n!$ leaves

 \rightsquigarrow height $\geq \lg(n!) \sim n \lg n$ more precisely: $\lg(n!) = n \lg n - \lg(e)n + O(\log n)$

- Mergesort achieves ~ $n \lg n$ comparisons ~ asymptotically comparison-optimal!
- Open (theory) problem: Sorting algorithm with $n \lg n \lg(e)n + o(n)$ comparisons? ≈ 1.4427

3.4 Integer Sorting

How to beat a lower bound

• Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?

• Not necessarily; only in the *comparison model*!

 \rightsquigarrow Lower bounds show where to *change* the model!

Here: sort n integers

- ▶ can do *a* lot with integers: add them up, compute averages, ... (full power of word-RAM)
- $\rightsquigarrow~$ we are **not** working in the comparison model
- → *above lower bound does not apply!*
- but: a priori unclear how much arithmetic helps for sorting ...

Counting sort

Important parameter: size/range of numbers

▶ numbers in range $[0..U) = \{0, ..., U - 1\}$ typically $U = 2^b \iff b$ -bit binary numbers

• We can sort *n* integers in $\Theta(n + U)$ time and $\Theta(U)$ space when $b \le w$:

Counting sort

¹ **procedure** countingSort(A[0..n-1]) // A contains integers in range [0..U]. 2 C[0..U-1] := new integer array, initialized to 0 3 // Count occurrences 4 for i := 0, ..., n - 15 C[A[i]] := C[A[i]] + 16 i := 0 // Produce sorted list7 for k := 0, ..., U - 18 **for** i := 1, ..., C[k]9 A[i] := k; i := i + 110

count how often each *possible* value occurs

word size

- produce sorted result directly from counts
- circumvents lower bound by using integers as array index / pointer offset

 \rightsquigarrow Can sort *n* integers in range [0..*U*) with U = O(n) in time and space $\Theta(n)$.

Integer Sorting – State of the art

• O(n) time sorting also possible for numbers in range $U = O(n^c)$ for constant *c*.

• *radix sort* with radix 2^w

Algorithm theory

- suppose $U = 2^w$, but *w* can be an arbitrary function of *n*
- ▶ how fast can we sort *n* such *w*-bit integers on a *w*-bit word-RAM?
 - ▶ for *w* = *O*(log *n*): linear time (*radix/counting sort*)
 - for $w = \Omega(\log^{2+\varepsilon} n)$: linear time (*signature sort*)
 - ► for *w* in between: can do $O(n\sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!

* * *

▶ for the rest of this unit: back to the comparisons model!

Part II

Sorting with of many processors

3.5 Parallel computation

Types of parallel computation

£££ can't buy you more time ... but more computers! → Challenge: Algorithms for *parallel* computation.

There are two main forms of parallelism:

- **1.** shared-memory parallel computer \leftarrow focus of today
 - *p* processing elements (PEs, processors) working in parallel
 - single big memory, accessible from every PE
 - communication via shared memory
 - ▶ think: a big server, 128 CPU cores, terabyte of main memory

2. distributed computing

- ▶ *p* PEs working in parallel
- each PE has private memory
- communication by sending messages via a network
- think: a cluster of individual machines

PRAM – Parallel RAM

extension of the RAM model (recall Unit 1)

- the *p* PEs are identified by ids $0, \ldots, p-1$
 - like w (the word size), p is a parameter of the model that can grow with n
 - $p = \Theta(n)$ is not unusual maaany processors!
- the PEs all independently run a RAM-style program (they can use their id there)
- each PE has its own registers, but MEM is shared among all PEs
- computation runs in synchronous steps: in each time step, every PE executes one instruction

PRAM – Conflict management

Problem: What if several PEs simultaneously overwrite a memory cell?

- EREW-PRAM (exclusive read, exclusive write) any parallel access to same memory cell is forbidden (cr
 - (crash if happens)
- CREW-PRAM (concurrent read, exclusive write) parallel write access to same memory cell is *forbidden*, but reading is fine
- CRCW-PRAM (concurrent read, concurrent write) concurrent access is allowed, need a rule for write conflicts:
 - common CRCW-PRAM: all concurrent writes to same cell must write same value
 - arbitrary CRCW-PRAM: some unspecified concurrent write wins
 - ► (more exist . . .)

no single model is always adequate, but our default is CREW

PRAM – Execution costs

Cost metrics in PRAMs

- **space:** total amount of accessed memory
- time: number of steps till all PEs finish assuming sufficiently many PEs! sometimes called *depth* or *span*
- work: total #instructions executed on all PEs

Holy grail of PRAM algorithms:

- minimal time
- work (asymptotically) no worse than running time of best sequential algorithm
 "work-efficient" algorithm: work in same Θ-class as best sequential

The number of processors

Hold on, my computer does not have $\Theta(n)$ processors! Why should I care for span and work!?

Theorem 3.1 (Brent's Theorem:)

If an algorithm has span *T* and work *W* (for an arbitrarily large number of processors), it can be run on a PRAM with *p* PEs in time $O(T + \frac{W}{p})$ (and using O(W) work).

Proof: schedule parallel steps in round-robin fashion on the *p* PEs.

 $\rightsquigarrow\,$ span and work give guideline for any number of processors

3.6 Parallel primitives

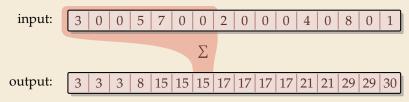
Prefix sums

Before we come to parallel sorting, we study some useful building blocks.

Prefix-sum problem (also: cumulative sums, running totals)

- Given: array A[0..n-1] of numbers
- ► Goal: compute all prefix sums A[0] + · · · + A[i] for i = 0, . . . , n 1 may be done "in-place", i. e., by overwriting A

Example:



Prefix sums – Sequential

- sequential solution does n 1 additions
- but: cannot parallelize them!
 data dependencies!
- \rightsquigarrow need a different approach
- Let's try a simpler problem first.

Excursion: Sum

- Given: array A[0..n-1] of numbers
- ► Goal: compute A[0] + A[1] + · · · + A[n 1] (solved by prefix sums)

Any algorithm *must* do n - 1 binary additions

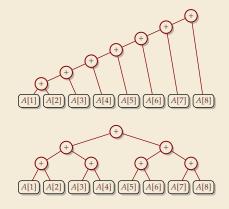
 \rightarrow Depth of tree = parallel time!

¹ **procedure** prefixSum(A[0..n - 1])

for
$$i := 1, ..., n - 1$$
 do

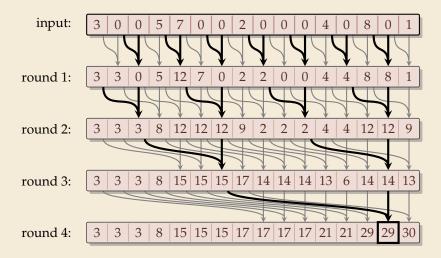
3

A[i] := A[i-1] + A[i]



Parallel prefix sums

 Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse



Parallel prefix sums – Code

- can be realized in-place (overwriting A)
- ▶ assumption: in each parallel step, all reads precede all writes

```
1procedure parallelPrefixSums(A[0..n-1])2for r := 1, ... \lceil \lg n \rceil do3step := 2^{r-1}4for i := step, ... n - 1 do in parallel5A[i] := A[i] + A[i - step]6end parallel for7end for
```

Parallel prefix sums – Analysis

Time:

- all additions of one round run in parallel
- ▶ $\lceil \lg n \rceil$ rounds
- $\rightsquigarrow \Theta(\log n)$ time best possible!

Work:

- ▶ $\geq \frac{n}{2}$ additions in all rounds (except maybe last round)
- $\rightsquigarrow \Theta(n \log n)$ work
- more than the $\Theta(n)$ sequential algorithm!
- ► Typical trade-off: greater parallelism at the expense of more overall work

For prefix sums:

- can actually get $\Theta(n)$ work in *twice* that time!
- $\rightsquigarrow~$ algorithm is slightly more complicated
- ▶ instead here: linear work in *thrice* the time using "blocking trick"

Work-efficient parallel prefix sums

standard trick to improve work: compute small blocks sequentially

- **1.** Set $b := \lceil \lg n \rceil$
- **2.** For blocks of *b* consecutive indices, i. e., *A*[0..*b*), *A*[*b*..2*b*), . . . do in parallel: compute local prefix sums sequentially
- **3.** Use previous work-inefficient algorithm only on rightmost elements of block, i. e., to compute prefix sums of *A*[*b* 1], *A*[2*b* 1], *A*[3*b* 1], . . .
- **4.** For blocks *A*[0..*b*), *A*[*b*..2*b*), . . . do in parallel: Add block-prefix sums to local prefix sums

Analysis:

► Time:

- 2. & 4.: $\Theta(b) = \Theta(\log n)$ time
- ► 3. $\Theta(\log(n/b)) = \Theta(\log n)$ times

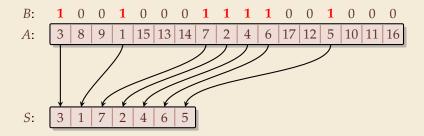
Work:

- 2. & 4.: $\Theta(b)$ per block $\times \lceil \frac{n}{b} \rceil$ blocks $\rightsquigarrow \Theta(n)$
- ► 3. $\Theta(\frac{n}{b}\log(\frac{n}{b})) = \Theta(n)$

Compacting subsequences

How do prefix sums help with sorting? one more step to go ...

Goal: *Compact* a subsequence of an array



Use prefix sums on bitvector *B* → offset of selected cells in *S*

parallelPrefixSums(B)
 for j := 0,..., n - 1 do in parallel
 if B[j] == 1 then S[B[j] - 1] := A[j]
 end parallel for

3.7 Parallel sorting

Parallel quicksort

Let's try to parallelize quicksort

- recursive calls can run in parallel (data independent)
- our sequential partitioning algorithm seems hard to parallelize
- but can split partitioning into *rounds*:
 - 1. comparisons: compare all elements pivot (in parallel), store bitvector
 - 2. compute prefix sums of bit vectors (in parallel as above)
 - 3. compact subsequences of small and large elements (in parallel as above)

Parallel quicksort – Code

```
1 procedure parQuicksort(A[l..r])
       b := choosePivot(A[l..r])
2
       i := \text{parallelPartition}(A[l..r], b)
3
       in parallel { parQuicksort(A[l..j-1]), parQuicksort(A[j+1..r]) }
4
5
6 procedure parallelPartition(A[1..r], b)
       swap(A[n-1], A[b]); p := A[n-1]
7
       for i = 0, \ldots, n - 2 do in parallel
8
            S[i] := [A[i] \le p] // S[i] \text{ is 1 or 0}
9
           L[i] := 1 - S[i]
10
       end parallel for
11
       in parallel { parallelPrefixSum(S[0..n – 2]); parallelPrefixSum(L[0..n – 2]) }
12
       i := S[n-2] + 1
13
       for i = 0, \ldots, n - 2 do in parallel
14
           x := A[i]
15
           if x \le p then A[S[i] - 1] := x
16
            else A[i + L[i]] := x
17
       end parallel for
18
       A[j] := p
19
       return j
20
```

Parallel quicksort – Analysis

Time:

- ▶ partition: all O(1) time except prefix sums $\rightsquigarrow \Theta(\log n)$ time
- ▶ quicksort: expected depth of recursion tree is $\Theta(\log n)$
- \rightsquigarrow total time $O(\log^2(n))$ in expectation

Work:

- ▶ partition: O(n) time except prefix sums $\rightsquigarrow \Theta(n \log n)$ work
- \rightsquigarrow quicksort $O(n \log^2(n))$ work in expectation
- using a work-efficient prefix-sums algorithm yields (expected) work-efficient sorting!

Parallel mergesort

- As for quicksort, recursive calls can run in parallel
- ▶ how about merging sorted halves *A*[*l*..*m* − 1] and *A*[*m*..*r*]?
- Must treat elements independently.

• correct position of x in sorted output = rank of x breaking ties by position in A

#elements $\leq x$

- ▶ # elements $\leq x$ = # elements from A[l..m-1] that are $\leq x$ + # elements from A[m..r] that are $\leq x$
- ▶ Note: rank in own run is simply the index of *x* in that run
- ▶ find rank in *other* run by binary search
- $\rightsquigarrow~$ can move it to correct position

Parallel mergesort – Analysis

Time:

- merge: $\Theta(n)$ from binary search, rest O(1)
- mergesort: depth of recursion tree is $\Theta(\log n)$
- \rightsquigarrow total time $O(\log^2(n))$

Work:

- merge: *n* binary searches $\rightsquigarrow \Theta(n \log n)$
- \rightsquigarrow mergesort: $O(n \log^2(n))$ work

• work can be reduced to $\Theta(n)$ for merge

- do full binary searches only for regularly sampled elements
- ranks of remaining elements are sandwiched between sampled ranks
- use a sequential method for small blocks, treat blocks in parallel
- (detailed omitted)

Parallel sorting - State of the art

- ▶ more sophisticated methods can sort in *O*(log *n*) parallel time on CREW-RAM
- practical challenge: small units of work add overhead
- ▶ need a lot of PEs to see improvement from *O*(log *n*) parallel time
- $\rightsquigarrow\,$ implementations tend to use simpler methods above
 - check the Java library sources for interesting examples! java.util.Arrays.parallelSort(int[])