
4 String Matching –
What’s behind Ctrl+F?

3 March 2021

Sebastian Wild

version 2021-03-09 22:19 H

Outline

4 String Matching
4.1 Introduction
4.2 Brute Force
4.3 String Matching with Finite Automata
4.4 The Knuth-Morris-Pratt algorithm
4.5 Beyond Optimal? The Boyer-Moore Algorithm
4.6 The Rabin-Karp Algorithm

4.1 Introduction

Ubiquitous strings
string = sequence of characters
I universal data type for . . . everything!

I natural language texts
I programs (source code)
I websites
I XML documents
I DNA sequences
I bitstrings
I . . . a computer’s memory ultimately any data is a string

 many different tasks and algorithms

I This unit: finding (exact) occurrences of a pattern text.
I Ctrl+F
I grep
I computer forensics (e. g. find signature of file on disk)
I virus scanner

I basis for many advanced applications
1

Notations
I alphabet Σ: finite set of allowed characters; � = |Σ| “a string over alphabet Σ”

I letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, . . .)
I “what you can type on a keyboard”, Unicode

comprehensive standard character set
including emoji and all known symbols

characters
I {0, 1}; nucleotides {�, �, �,)}; . . .

I Σ= = Σ × · · · × Σ: strings of length = ∈ ℕ0 (=-tuples)

I Σ★ =
⋃
=≥0 Σ

= : set of all (finite) strings over Σ

I Σ+ =
⋃
=≥1 Σ

= : set of all (finite) nonempty strings over Σ

I � ∈ Σ0: the empty string (same for all alphabets)

I for (∈ Σ= , write ([8] (other sources: (8) for ith
zero-based (like arrays)!

character (0 ≤ 8 < =)

I for (,) ∈ Σ★, write () = (·) for concatenation of (and)

I for (∈ Σ= , write ([8.. 9] or (8 , 9 for the substring ([8] · ([8 + 1] · · · ([9] (0 ≤ 8 ≤ 9 < =)
I ([0.. 9] is a prefix of (; ([8..= − 1] is a suffix of (
I ([8.. 9) = ([8.. 9 − 1] (endpoint exclusive) (= ([0..=)

2

String matching – Definition
Search for a string (pattern) in a large body of text
I Input:

I) ∈ Σ= : The text (haystack) being searched within
I % ∈ Σ< : The pattern (needle) being searched for; typically = � <

I Output:
I the first occurrence (match) of % in): min

{
8 ∈ [0..= − <) :)[8..8 + <) = %

}
I or NO_MATCH if there is no such 8 (“% does not occur in)”)

I Variant: Find all occurrences of % in).
 Can do that iteratively (update) to)[8 + 1..=) after match at 8)

I Example:
I) = “Where is he?”
I %1 = “he” 8 = 1
I %2 = “who” NO_MATCH

I string matching is implemented in Java in String.indexOf

3

https://hg.openjdk.java.net/jdk/jdk/file/tip/src/java.base/share/classes/java/lang/String.java#l1686

4.2 Brute Force

Abstract idea of algorithms
Pattern matching algorithms consist of guesses and checks:

I A guess is a position 8 such that % might start at)[8].
Possible guesses (initially) are 0 ≤ 8 ≤ = − <.

I A check of a guess is a pair (8 , 9)where we compare)[8 + 9] to %[9].

I Note: need all < checks to verify a single correct guess 8,
but it may take (many) fewer checks to recognize an incorrect guess.

I Cost measure: #character comparisons = #checks

 cost ≤ = · < (number of possible checks)

4

Brute-force method

1 procedure bruteForceSM()[0..=), %[0..<))
2 for 8 := 0, . . . , = − < − 1 do
3 for 9 := 0, . . . , < − 1 do
4 if)[8 + 9] ≠ %[9] then break inner loop
5 if 9 == < then return 8
6 return NO_MATCH

I try all guesses 8

I check each guess (left to right);
stop early on mismatch

I essentially the implementation
in Java!

I Example:
) = abbbababbab
% = abba

 15 char cmps
(vs = · < = 44)
not too bad!

a b b b a b a b b a b
a b b a

a
a

a
a b b

a
a b b a

5

Brute-force method – Discussion
Brute-force method can be good enough
I typically works well for natural language text
I also for random strings

but: can be as bad as it gets!
a a a a a a a a a a a
a a a b

a a a b
a a a b

a a a b
a a a b

a a a b
a a a b

a a a b

I Worst possible input: % = 0<−11,
) = 0=

I Worst-case performance: (= −< + 1) · <

 for < ≤ =/2 that is Θ(<=)

I Bad input: lots of self-similarity in)! can we exploit that?

I brute force does ‘obviously’ stupid repetitive comparisons can we avoid that?
6

Roadmap
I Approach 1 (this week): Use preprocessing on the pattern % to eliminate guesses

(avoid ‘obvious’ redundant work)
I Deterministic finite automata (DFA)
I Knuth-Morris-Pratt algorithm
I Boyer-Moore algorithm
I Rabin-Karp algorithm

I Approach 2 (Unit 6): Do preprocessing on the text)
Can find matches in time independent of text size(!)

I inverted indices
I Suffix trees
I Suffix arrays

7

4.3 String Matching with Finite Automata

Theoretical Computer Science to the rescue!
I string matching = deciding whether) ∈ Σ★ · % · Σ★

I Σ★ · % · Σ★ is regular formal language

 ∃ deterministic finite automaton (DFA) to recognize Σ★ · % · Σ★

 can check for occurrence of % in |) | = = steps!

Job done! WTF!?

We are not quite done yet.

I (Problem 0: programmer might not know automata and formal languages . . .)

I Problem 1: existence alone does not give an algorithm!

I Problem 2: automaton could be very big!

8

String matching with DFA
I Assume first, we already have a deterministic automaton
I How does string matching work?

Example:
) = aabacaababacaa
% = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

text: a a b a c a a b a b a c a a
state: 0 1 1 2 3 0 1 1 2 3 4 5 6 7 7

9

String matching DFA – Intuition
Why does this work?

I Main insight:

State @ means:
“we have seen %[0..@) until here
(but not any longer prefix of %)”

) = aabacaababacaa
% = ababaca

0 1 2 3 4 5 6 7
a

b,c a

b

c

a

b,c

a

b

c

a

b,c

a

b
c a

b,c

Σ

text: a a b a c a a b a b a c a a
state: 0 1 1 2 3 0 1 1 2 3 4 5 6 7 7

I If the next text character 2 does not match, we know:
(i) text seen so far ends with %[0...@) · 2
(ii) %[0...@) · 2 is not a prefix of %
(iii) without reading 2, %[0..@)was the longest prefix of % that ends here.

) = · · · %[0..@) c
%[0..@′)

with @′ < @

 New longest matched prefix will be (weakly) shorter than @

 All information about the text needed to determine it is contained in %[0...@) · 2!
10

NFA instead of DFA?
It remains to construct the DFA.

I trivial part: 0 1 2 3 4 5 6 7
a

Σ

b a b a c a

Σ

I that actually is a nondeterministic finite automaton (NFA) for Σ★% Σ★

 We could use the NFA directly for string matching:
I at any point in time, we are in a set of states
I accept when one of them is final state

Example:

text: a a b a c a a b a b a c a a
state: 0 0, 1 0, 1 0, 2 0, 1, 3 0 0, 1 0, 1 0, 2 0, 1, 3 0, 2, 4 0, 1, 3, 5 0, 6 0, 1, 7 0, 1, 7

But maintaining a whole set makes this slow . . .

11

Computing DFA directly
You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has exponential state blow up!
I guess I might as well use brute force ...

Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:
Suppose we add character %[9] to automaton � 9−1 for %[0.. 9 − 1]
I add new state and matching transition easy
I for each 2 ≠ %[9], we need �(9 , 2) (transition from 9 when reading 2)
I �(9 , 2) = length of the longest prefix of %[0.. 9)2 that is a suffix of %[1.. 9)2

= state of automaton after reading %[1.. 9)2
≤ 9 can use known automaton �9−1 for that!

 can directly compute � 9 from � 9−1!

seems to require simulating automata < · � times

State @ means:
“we have seen %[0..@) until here
(but not any longer prefix of %)”

12

Computing DFA efficiently
I KMP’s second insight: simulations in one step differ only in last symbol

 simply maintain state G, the state after reading %[1.. 9 − 1].
I copy its transitions
I update G by following transitions for %[9]

Demo: Algorithms videos of Sedgewick and Wayne

https://cuvids.io/app/video/194/watch

13

https://cuvids.io/app/video/194/watch

String matching with DFA – Discussion
I Time:

I Matching: = table lookups for DFA transitions
I building DFA: Θ(<�) time (constant time per transition edge).
 Θ(<� + =) time for string matching.

I Space:
I Θ(<�) space for transition matrix.

fast matching time actually: hard to beat!

total time asymptotically optimal for small alphabet (for � = $(=/<))

substantial space overhead, in particular for large alphabets

14

4.4 The Knuth-Morris-Pratt algorithm

Failure Links
I Recall: String matching with is DFA fast,

but needs table of < × � transitions.
I in fast DFA construction, we used that all simulations differ only by last symbol

 KMP’s third insight: do this last step of simulation from state G during matching!
. . . but how?

I Answer: Use a new type of transition, the failure links
I Use this transition (only) if no other one fits.
I × does not consume a character. might follow several failure links

0 1 2 3 4 5 6 7a

Σ − 0

b

×

a

×

b

×

a

×

c

×

a

×

Σ

 Computations are deterministic (but automaton is not a real DFA.)

15

Failure link automaton – Example
Example:) = abababaaaca, % = ababaca

0 1 2 3 4 5 6 7a

Σ − 0

b

×

a

×

b

×
a

×

c

×
a

×

Σ

) : a b a b a b a a b a b
% : a b a b a × to state 3

(a) (b) (a) b a × to state 1
a b a b

@: 1 2 3 4 5 3, 4 5 3, 1, 0, 1 2 3 4
(after reading this character)

16

The Knuth-Morris-Pratt Algorithm
1 procedure KMP()[0..= − 1], %[0..< − 1])
2 fail[0..<] := failureLinks(%)
3 8 := 0 // current position in)
4 @ := 0 // current state of KMP automaton
5 while 8 < = do
6 if)[8] == %[@] then
7 8 := 8 + 1; @ := @ + 1
8 if @ == < then
9 return 8 − @ // occurrence found
10 else // i.e.)[8] ≠ %[@]
11 if @ ≥ 1 then
12 @ := fail[@] // follow one ×
13 else
14 8 := 8 + 1
15 end while
16 return NO_MATCH

I only need single array fail for failure
links

I (procedure failureLinks later)

Analysis: (matching part)

I always have fail[9] < 9 for 9 ≥ 1

 in each iteration
I either advance position in text

(8 := 8 + 1)
I or shift pattern forward

(guess 8 − @)

I each can happen at most = times

 ≤ 2= symbol comparisons!

17

Computing failure links
I failure links point to error state G (from DFA construction)

 run same algorithm, but store fail[9] := G instead of copying all transitions

1 procedure failureLinks(%[0..< − 1])
2 fail[0] := 0
3 G := 0
4 for 9 := 1, . . . , < − 1 do
5 fail[9] := G

6 // update failure state using failure links:
7 while %[G] ≠ %[9]
8 if G == 0 then
9 G := −1; break
10 else
11 G := fail[G]
12 end while
13 G := G + 1
14 end for

Analysis:
I < iterations of for loop

I while loop always decrements G

I G is incremented only once per
iteration of for loop

 ≤ < iterations of while loop in total

 ≤ 2< symbol comparisons

18

Knuth-Morris-Pratt – Discussion
I Time:

I ≤ 2= + 2< = $(= + <) character comparisons
I clearly must at least read both) and %
 KMP has optimal worst-case complexity!

I Space:
I Θ(<) space for failure links

total time asymptotically optimal (for any alphabet size)

reasonable extra space

19

The KMP prefix function
I It turns out that the failure links are useful beyond KMP

I a slight variation is more widely used: (for historic reasons)
the (KMP) prefix function � : [1..< − 1] → [0..< − 1]:

�[9] is the length of the longest prefix of %[0.. 9]
that is a suffix of %[1.. 9].

I Can show: fail[9] = �[9 − 1] for 9 ≥ 1, and hence

fail[9] = length of the
longest prefix of %[0.. 9)
that is a suffix of %[1.. 9).

memorize this!

20

4.5 Beyond Optimal? The Boyer-Moore Algorithm

Motivation
I KMP is an optimal algorithm, isn’t it? What else could we hope for?

I KMP is “only” optimal in the worst-case (and up to constant factors)

I how many comparisons do we need for the following instance?
) = aaaaaaaaaaaaaaaa, % = xxxxx
I there are no matches
I we can certify the correctness of that output with only 4 comparisons:

) a a a a a a a a a a a a a a a a
x

x
x

x

 We did not even read most text characters!

21

Boyer-Moore Algorithm
I Let’s check guesses from right to left!

I If we are lucky, we can eliminate several shifts in one shot!

must avoid (excessive) redundant checks, e. g., for) = 0= , % = 10<−1

 New rules:
I Bad character jumps: Upon mismatch at)[8] = 2:

I If % does not contain 2, shift % entirely past 8!
I Otherwise, shift % to align the last occurrence of 2 in % with)[8].

I Good suffix jumps:
Upon a mismatch, shift so that the already matched suffix of % aligns with a
previous occurrence of that suffix (or part of it) in %.
(Details follow; ideas similar to KMP failure links)

 two possible shifts (next guesses); use larger jump.

22

Boyer-Moore Algorithm – Code

1 procedure boyerMoore()[0..= − 1], %[0..< − 1])
2 � := computeLastOccurrences(%)
3 � := computeGoodSuffixes(%)
4 8 := 0 // current guess
5 while 8 ≤ = − <
6 9 := < − 1 // next position in % to check
7 while 9 ≥ 0 ∧ %[9] ==)[8 + 9] do
8 9 := 9 − 1
9 if 9 == −1 then
10 return 8
11 else
12 8 := 8 +max

{
9 − �[)[8 + 9]], �[9]

}
13 return NO_MATCH

I � and � explained below

I shift forward is larger of two
heuristics

I shift is always positive (see
below)

23

Bad character examples

% = a l d o
) = w h e r e i s w a l d o

o
o

a l d o

 6 characters not looked at

% = m o o r e
) = b o y e r m o o r e

e
(r) e

(m) o o r e

 4 characters not looked at

24

Last-Occurrence Function
I Preprocess pattern % and alphabet Σ

I last-occurrence function �[2] defined as
I the largest index 8 such that %[8] = 2 or
I −1 if no such index exists

I Example: % = moore

2 m o r e all others

�[2] 0 2 3 4 −1

% = m o o r e
) = b o y e r m o o r e

e
(r) e

8 = 0, 9 = 4,)[8 + 9] = A, �[A] = 3
 shift by 9 − �[)[8 + 9]] = 1

I � easily computed in $(< + |Σ|) time.

I store as array �[0..� − 1].

25

Good suffix examples
1. % = sells␣shells

s h e i l a ␣ s e l l s ␣ s h e l l s
h e l l s

(e) (l) (l) (s)

2. % = odetofood

i l i k e f o o d f r o m m e x i c o
o f o o d

(o) (d)

I Crucial ingredient: longest suffix of %[9+1..<−1]

matched suffix

that occurs earlier in %.

I 2 cases (as illustrated above)
1. complete suffix occurs in % characters left of suffix are not known to match
2. part of suffix occurs at beginning of %

26

Good suffix jumps
I Precompute good suffix jumps �[0..< − 1]:

I For 0 ≤ 9 < <, �[9] stores shift if search failed at %[9]
I At this point, had)[8+9+1..8+<−1] = %[9+1..<−1], but)[8] ≠ %[9]

 �[9] is the shift < − 1 − ℓ for the largest ℓ such that
I %[9+1 . . . <−1] is a suffix of %[0 . . . ℓ] and %[9] ≠ %[ℓ−<+9+1]

h e l l s
× (e) (l) (l) (s)

–OR–
I %[0 . . . ℓ] is a suffix of %[9+1, . . . , <−1]

o f o o d
(o) (d)

I Computable (similar to KMP failure function) in Θ(<) time.

I Note: You do not need to know how to find the values �[9] for the exam,
but you should be able to find the next guess on examples.

27

Boyer-Moore algorithm – Discussion
Worst-case running time ∈ $(= + < + |Σ|) if % does not occur in).
(follows from not at all obvious analysis!)

As given, worst-case running time Θ(=<) if we want to report all occurrences
I To avoid that, have to keep track of implied matches.

(tricky because they can be in the “middle” of %)
I Note: KMP reports all matches in $(= + <)without modifications!

On typical English text, Boyer Moore probes only approx. 25% of the characters in)!
 Faster than KMP on English text.

requires moderate extra space Θ(< + �)

28

4.6 The Rabin-Karp Algorithm

Space – The final frontier
I Knuth-Morris-Pratt has great worst case and real-time guarantees

I Boyer-Moore has great typical behavior

I What else to hope for?

I All require Ω(<) extra space;
can be substantial for large patterns!

I Can we avoid that?

29

Rabin-Karp Fingerprint Algorithm – Idea

Idea: use hashing (but without explicit hash tables)

I Precompute & store only hash of pattern

I Compute hash for each guess

I If hashes agree, check characterwise

Example: (treat (sub)strings as decimal numbers)

% = 59265
) = 3141592653589793238

Hash function: ℎ(G) = G mod 97
 ℎ(%) = 95.

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8
ℎ(31415) = 84

ℎ(14159) = 94

ℎ(41592) = 76

ℎ(15926) = 18

h(59262) = 95

30

Rabin-Karp Fingerprint Algorithm – First Attempt

1 procedure rabinKarpSimplistic()[0..= − 1], %[0..< − 1])
2 " := suitable prime number
3 ℎ% := computeHash(%[0..< − 1)], ")
4 for 8 := 0, . . . , = − < do
5 ℎ) := computeHash()[8..8 + < − 1], ")
6 if ℎ) == ℎ% then
7 if)[8..8 + < − 1] == % // < comparisons
8 then return 8
9 return NO_MATCH

I never misses a match since ℎ((1) ≠ ℎ((2) implies (1 ≠ (2X
I ℎ()[:..:+<−1]) depends on < characters naive computation takes Θ(<) time

 Running time is Θ(<=) for search miss . . . can we improve this?

31

Rabin-Karp Fingerprint Algorithm – Fast Rehash
I Crucial insight: We can update hashes in constant time

for above hash function!

.
I Use previous hash to compute next hash
I $(1) time per hash, except first one

Example:
I Pre-compute: 10000 mod 97 = 9

I Previous hash: 41592 mod 97 = 76

I Next hash: 15926 mod 97 = ??

Observation:

15926 mod 97 = (41592 − (4·10000)) · 10 + 6 mod 97
= (76 − (4·9)) · 10 + 6 mod 97
= 406 mod 97 = 18

32

Rabin-Karp Fingerprint Algorithm – Code
I use a convenient radix ' ≥ � (' = 10 in our examples; ' = 2: is faster)

I Choose modulus " at random to be huge prime (randomization against worst-case inputs)

I all numbers remain ≤ 2'2 $(1) time arithmetic on word-RAM

1 procedure rabinKarp()[0..= − 1], %[0..< − 1], ')
2 " := suitable prime number
3 ℎ% := computeHash(%[0..< − 1)], ")
4 ℎ) := computeHash()[0..< − 1], ")
5 B := '<−1 mod "

6 for 8 := 0, . . . , = − < do
7 if ℎ) == ℎ% then
8 if)[8..8 + < − 1] = %
9 return 8

10 if 8 < = − < then
11 ℎ) :=

(
(ℎ) −)[8] · B) · ' +)[8 + <]

)
mod "

12 return NO_MATCH

33

Rabin-Karp – Discussion
Expected running time is $(< + =)

Θ(<=)worst-case;
but this is very unlikely

Extends to 2D patterns and other generalizations

Only constant extra space!

34

String Matching Conclusion

Brute- DFA KMP BM RK Suffix
Force trees*

Preproc. — $(< |Σ|) $(<) $(< + �) $(<) $(=)time

Search
$(=<) $(=) $(=) $(=) $(= + <)

$(<)time (often better) (expected)

Extra — $(< |Σ|) $(<) $(< + �) $(1) $(=)space

* (see Unit 6)

35

	String Matching
	Introduction
	 Ubiquitous strings
	 Notations
	 String matching – Definition

	Brute Force
	 Abstract idea of algorithms
	 Brute-force method
	 Brute-force method – Discussion
	 Roadmap

	String Matching with Finite Automata
	 Theoretical Computer Science to the rescue!
	 String matching with DFA
	 String matching DFA – Intuition
	 NFA instead of DFA?
	 Computing DFA directly
	 Computing DFA efficiently
	 String matching with DFA – Discussion

	The Knuth-Morris-Pratt algorithm
	 Failure Links
	 Failure link automaton – Example
	 The Knuth-Morris-Pratt Algorithm
	 Computing failure links
	 Knuth-Morris-Pratt – Discussion
	 The KMP prefix function

	Beyond Optimal? The Boyer-Moore Algorithm
	 Motivation
	 Boyer-Moore Algorithm
	 Boyer-Moore Algorithm – Code
	 Bad character examples
	 Last-Occurrence Function
	 Good suffix examples
	 Good suffix jumps
	 Boyer-Moore algorithm – Discussion

	The Rabin-Karp Algorithm
	 Space – The final frontier
	 Rabin-Karp Fingerprint Algorithm – Idea
	 Rabin-Karp Fingerprint Algorithm – First Attempt
	 Rabin-Karp Fingerprint Algorithm – Fast Rehash
	 Rabin-Karp Fingerprint Algorithm – Code
	 Rabin-Karp – Discussion
	 String Matching Conclusion

