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4.1 Introduction



Ubiquitous strings

string = sequence of characters

» universal data type for ... everything!
» natural language texts
» programs (source code)
> websites
» XML documents
» DNA sequences
> bitstrings

>

. acomputer’s memory ~- ultimately any data is a string
~» many different tasks and algorithms
y &

» This unit: finding (exact) occurrences of a pattern text.
> Ctrl+F

> grep
» computer forensics (e. g. find signature of file on disk)
>

virus scanner

» basis for many advanced applications



Notations

» alphabet X: finite set of allowed characters; o = |Z| “a string over alphabet ©”
» letters (Latin, Greek, Arabic, Cyrillic, Asian scripts, .. .)
» “what you can type on a keyboard”, Unicode characters
» {O 1} nucleotides {A C G T} comprehensive standard character set
s T s including emoji and all known symbols
Y=Y Xx---xXX: strings of length n € Ny (n-tuples)
XX =J,s0X": setof all (finite) strings over =

Xt =U,>1 2" setof all (finite) nonempty strings over X

vV vV v Vv

e € X0 the empty string  (same for all alphabets)

zero-based (like arrays)!

» for S € X", write S[i] (other sources: S;) for ith character (0 <i < n)
» for S,T € X*, write ST = S - T for concatenation of S and T

» for S € X", write S[i..j] or S; ; for the substring S[i] - S[i +1]---S[j] (0 <i<j<n)
» S[0..j]is a prefix of S; S[i..n — 1] is a suffix of S
» S[i..j) = S[i..j — 1] (endpoint exclusive) ~» S = S[0..n)



String matching — Definition

Search for a string (pattern) in a large body of text
» Input:
» T e X": The text (haystack) being searched within
» P e Y. The pattern (needle) being searched for; typically n > m

> Output:
> the first occurrence (match) of P in T: min{i € [0..n — m) : T[i..i + m) = P}
» or NO_MATCH if there isno such i (“P does not occur in T")

» Variant: Find all occurrences of P in T.
~+ Can do that iteratively (update T to T[i + 1..n) after match at i)

» Example:
> T ="Where is he?”
> Py="he” ~ i=1

> Py =“who” ~» NO_MATCH

> string matching is implemented in Java in String.index0f


https://hg.openjdk.java.net/jdk/jdk/file/tip/src/java.base/share/classes/java/lang/String.java#l1686

4.2 Brute Force



Abstract idea of algorithms

Pattern matching algorithms consist of guesses and checks:

> A guess is a position i such that P might start at T'[/].
Possible guesses (initially) are 0 < i < 7 —m.

» A check of a guess is a pair (i, j) where we compare T[i + j] to P[]].
» Note: need all m checks to verify a single correct guess 7,
but it may take (many) fewer checks to recognize an incorrect guess.

» Cost measure: #character comparisons = #checks

~s cost <n-m (number of possible checks)



Brute-force method

1 procedure bruteForceSM(T[0..n), P[0..1m)) > try all guesses i

2 fori :=0,...,n—m—1do

. forj:=0,...,m—1do » check each guess (left to right);
4 if T[i + j] # P[j] then break inner loop stop early on mismatch

5 if j == m then return i

> essentially the implementation
6 return NO_MATCH

in Java!
a b a b a b b a b

»> Example: a .

T = abbbababbab a

P = abba a

a

~ 15 char cmps alblop

(vsn - m = 44)

not too bad! alblbla




Brute-force method — Discussion

[ﬁ Brute-force method can be good enough
» typically works well for natural language text

» also for random strings

but: can be as bad as it gets!

a a a a a a a a

ala|al|b
alal|al|b
alala]|b
alala]|b

alal|a|b

alala

a|a

a

» Bad input: lots of self-similarity in T

> Worst possible input: P = a"~1h,
T =a"

> Worst-case performance: (n —m +1) - m

~ for m < n/2 thatis ®(mn)

~+ can we exploit that?

» brute force does ‘obviously” stupid repetitive comparisons ~+ can we avoid that?



Roadmap

» Approach 1 (this week): Use preprocessing on the pattern P to eliminate guesses
(avoid ‘obvious’ redundant work)
» Deterministic finite automata (DFA)
» Knuth-Morris-Pratt algorithm
» Boyer-Moore algorithm

» Rabin-Karp algorithm

» Approach 2 (~ Unit 6): Do preprocessing on the text T
Can find matches in time independent of text size(!)

» inverted indices
» Suffix trees

> Suffix arrays



4.3 String Matching with Finite Automata



Theoretical Computer Science to the rescue!
» string matching = deciding whether T € X*-P - XT*
» X* . P-X*is regular formal language
~» 3 deterministic finite automaton (DFA) to recognize X* - P - ©*

~~ can check for occurrence of P in |T| = n steps!

6@3 Job done!
(RIA

We are not quite done yet.
» (Problem 0: programmer might not know automata and formal languages . ..)
» Problem 1: existence alone does not give an algorithm!

» Problem 2: automaton could be very big!



String matching with DFA

> Assume first, we already have a deterministic automaton
» How does string matching work?

Example:
T = aabacaababacaa
P = ababaca

textt | | a|a|b|a|c|al|la|b|a]|b|a|]c]|a]|la
state: [ O [ 1 |1 (2 (3 [0 |1 (1|23 |4]|5]|6]|7]|7




String matching DFA — Intuition
Why does this work?

T = aabacaababacaa
P = ababaca

» Main insight:

State g means:
“we have seen P[0..q) until here
(but not any longer prefix of P)”

l text:[ [ a
‘ state: ‘ 0 ‘ 1

[a]
[1]

» If the next text character ¢ does not match, we know:

(i) text seen so far ends with P[0...q) - ¢ T = ...

(ii) P[O...q) - ¢ is not a prefix of P P[0..9")

a|b
1|2

(i) without reading c, P[0..q) was the longest prefix of P that ends here. with g

~» New longest matched prefix will be (weakly) shorter than g

~» All information about the text needed to determine it is contained in PI0...a) - ¢!



NFA instead of DFA?

It remains to construct the DFA.
DI Z

> trivial part: Qﬂﬁe@ee@

» that actually is a nondeterministic finite automaton (NFA) for 2*P ©*

~» We could use the NFA directly for string matching:

> at any point in time, we are in a set of states

» accept when one of them is final state

Example:

text: a a b

o
[}
[
o
i)
o
[}
o
i)

a
state: | O [ 0,1 ] 01|021}013)0]01]01{02]060,13]|¢024]0135]|06 017

0,1,7

But maintaining a whole set makes this slow .. .

11




Computing DFA directly

@3 You have an NFA and want a DFA?
Simply apply the power-set construction
(and maybe DFA minimization)!

The powerset method has exponential state blow up!
I guess I might as well use brute force ...

'
-:O:- Ingenious algorithm by Knuth, Morris, and Pratt: construct DFA inductively:
= Suppose we add character P[f] to automaton A;_; for P[0..j — 1]
» add new state and matching transition ~» easy
» for each ¢ # P[j], weneed 6(j,c) (transition from @ when reading c)

» 6(j,c) = length of the longest prefix of P[0..j)c that is a suffix of P[1..j)c
state of automaton after reading P[1..j)c

IA I

j ~» can use known automaton A;_; for that! State g means:
“we have seen P|0..q) until here
~» can directly compute A; from A; ;! (but not any longer prefix of P)”

[@ seems to require simulating automata m - ¢ times

12



Computing DFA efficiently

» KMP’s second insight: simulations in one step differ only in last symbol

~+ simply maintain state x, the state after reading P[1..j — 1].
» copy its transitions

» update x by following transitions for P[j]

Demo: Algorithms videos of Sedgewick and Wayne

r N
Knuth-Morris-Pratt construction demo (in linear time)
Mismatch transition. For each state j and char c = pat.charAt(j), set
dfa[c][j] = dfal[c][X]; then update X = dfa[pat.charAt(j)](X].
x N
3 5
A 1
B 4
c 0
Constructing the DFA for KMP substring search for ABA B A C
A
/‘ J
«"* 4
'¥/ / ~x
\ J

https://cuvids.io/app/video/194/watch


https://cuvids.io/app/video/194/watch

String matching with DFA - Discussion

» Time:

» Matching: # table lookups for DFA transitions
» building DFA: ©(mo) time (constant time per transition edge).

~> @(mo + n) time for string matching.

> Space:

» ©(mo) space for transition matrix.

[fb fast matching time  actually: hard to beat!

[ﬂ] total time asymptotically optimal for small alphabet  (for o = O(n/m))

[Q_) substantial space overhead, in particular for large alphabets

14



4.4 The Knuth-Morris-Pratt algorithm



Failure Links

» Recall: String matching with is DFA fast,
but needs table of 1 X ¢ transitions.

» in fast DFA construction, we used that all simulations differ only by last symbol

~» KMP’s third insight: do this last step of simulation from state x during matching!
... but how?

» Answer: Use a new type of transition, the failure links
» Use this transition (only) if no other one fits.

» X does not consume a character. ~» might follow several failure links

~» Computations are deterministic  (but automaton is not a real DFA.)

15



Failure link automaton — Example

Example: T = abababaaaca, P = ababaca

T: a b a b a b a a b a b
P:la|b a b a X to state 3
(a) | (b) | (a) b a X to state 1

a bla|b

g: (1|2 3 | 4 | 5 [34]5]31,01[2][3][4]

(after reading this character)

16



The Knuth-Morris-Pratt Algorithm

1 procedure KMP(T[0..n — 1], P[0..m — 1])

2 fail[0..m] := failureLinks(P)

3 i := 0// current position in T

4 q = 0// current state of KMP automaton
5 while i < n do

6 if T[i] == P[q] then

7 i=i+1l;, qg:=qg+1

8 if g == m then

9 return i — g // occurrence found
10 else //ie. T[i] # P[q]

11 if g=1 then

1 q = fail[q] // follow one x

1 else

14 i=i+1

15 end while

16 return NO MATCH

» only need single array fail for failure
links

» (procedure failureLinks later)

Analysis:  (matching part)

» always have fail[j] < jforj>1

~~ in each iteration
» either advance position in text
(i:=i+1)
» or shift pattern forward
(guess i — q)

» each can happen at most 7 times

~+ < 2n symbol comparisons!

17



Computing failure links

» failure links point to error state x (from DFA construction)

~ run same algorithm, but store fail[j] := x instead of copying all transitions

1 procedure failureLinks(P[0..m — 1])

fail[0] :== 0
=10 :
Analysis:
forj:=1,...,m—-1do natysts
falllf] = x » m iterations of for loop

// update failure state using failure links:

~ .
while P[x] # P[]] while loop always decrements x

if x == 0 then » x is incremented only once per
x := —1; break iteration of for loop
else . . q .
e ~» < m iterations of while loop in total
x = fail[x]
end while ~+ < 2m symbol comparisons
xi=x+1

end for

18



Knuth-Morris-Pratt — Discussion

» Time:

» < 2n+2m = O(n + m) character comparisons
» clearly must at least read both T and P

~+ KMP has optimal worst-case complexity!

> Space:

» ©(m) space for failure links

[fb total time asymptotically optimal  (for any alphabet size)

[ﬂ] reasonable extra space

19



The KMP prefix function

» It turns out that the failure links are useful beyond KMP

» a slight variation is more widely used: (for historic reasons)
the (KMP) prefix function F : [1..m — 1] — [0..m —1]:

F[j] is the length of the longest prefix of P|0..j]
that is a suffix of P[1..f].

» Can show: fail[j] = F[j — 1] for j > 1, and hence

— memorize this!

fail[j] = length of the
longest prefix of P[0..j)
that is a suffix of P[1..j).

20



4.5 Beyond Optimal? The Boyer-Moore Algorithm



Motivation

» KMP is an optimal algorithm, isn’t it? What else could we hope for?

» KMP is “only” optimal in the worst-case (and up to constant factors)

» how many comparisons do we need for the following instance?
T = aaaaaaaaaaaaaaaa, P = xxxxx

» there are no matches

> we can certify the correctness of that output with only 4 comparisons:

T a a a a a a a a a a a a a

~ We did not even read most text characters!

21



Boyer-Moore Algorithm

» Let’s check guesses from right to left!

» If we are lucky, we can eliminate several shifts in one shot!

A must avoid (excessive) redundant checks, e.g., for T = 4", P = ba"=t

~+ New rules:
» Bad character jumps: Upon mismatch at T[i] = c:

» If P does not contain c, shift P entirely past i!
» Otherwise, shift P to align the last occurrence of c in P with T[i].
» Good suffix jumps:
Upon a mismatch, shift so that the already matched suffix of P aligns with a
previous occurrence of that suffix (or part of it) in P.
(Details follow; ideas similar to KMP failure links)

~+ two possible shifts (next guesses); use larger jump.

22



Boyer-Moore Algorithm — Code

1 procedure boyerMoore(T[0..n — 1], P[0..m —1])

A = computeLastOccurrences(P)
y = computeGoodSuffixes(P)

i := 0// current guess

whilei <n —m

j = m —1//next position in P to check
while j > 0 A P[j] ==T[i + j] do

ji=j-1
if i == —1 then

return i
else

i := i+max{j - A[T[i + 1], y[jlI}

return NO_ MATCH

» A and y explained below

» shift forward is larger of two
heuristics

» shift is always positive (see
below)

23



Bad character examples

~ 6 characters not looked at

P = m 0 e

T = b y € r m o
e
(r) | e

(m) | o

~ 4 characters not looked at



Last-Occurrence Function

» Preprocess pattern P and alphabet X

» last-occurrence function A[c] defined as
» the largest index 7 such that P[i] = c or

» —1 if no such index exists

» Example: P = moore

P = m e
c m o r e allothers T = b o y e r m
Ale] 0 2 3 4 -1 €
(r) | e

i=0,j=4 Tli+jl=r, Alr] =3
~ shiftby j - A[T[i +j]] =1

» A easily computed in O(m + |Z]|) time.

» store as array A[0..0 —1].



Good suffix examples

1. P =sells,shells

s h e i 1 a _, s e 1 1 s .
e 1 1 S
(e) | (L) | (L) ]| (s)
2. P = odetofood
i 1 i k e f o o d f r o

o d

(o) | (d)

» Crucial ingredient: longest suffix of P[j+1..m—1] that occurs earlier in P.

» 2 cases (as illustrated above)

1. complete suffix occursin P ~» characters left of suffix are not known to match

2. part of suffix occurs at beginning of P

matched suffix

26



Good suffix jumps

» Precompute good suffix jumps y[0..m — 1]:
» For 0 < j < m, y[j] stores shift if search failed at P[]
» At this point, had T[i+j+1..i+m—1] = P[j+1..m—1], but T[i] # P[j]

~ p[j] is the shift m — 1 — ¢ for the largest ¢ such that
» P[j+1...m—1]is a suffix of P[0...¢] and P[j] # P[{—m+j+1]

h e 1 1 s
(e) | (L) | (V)] (s)

—OR-
» P[0...¢]isasuffix of P[j+1,..., m—1]

o f o o d
(o) | (d)

» Computable (similar to KMP failure function) in ®(m) time.

» Note: You do not need to know how to find the values y|[]] for the exam,
but you should be able to find the next guess on examples.

27



Boyer-Moore algorithm — Discussion

[fb Worst-case running time € O(n + m + |Z|) if P does not occur in T.
(follows from not at all obvious analysis!)

@ As given, worst-case running time ©(nm) if we want to report all occurrences

» To avoid that, have to keep track of implied matches.
(tricky because they can be in the “middle” of P)

» Note: KMP reports all matches in O(n + m) without modifications!

[ﬁ On typical English text, Boyer Moore probes only approx. 25% of the characters in T'!
~> Faster than KMP on English text.

[b requires moderate extra space O(m + o)

28



4.6 The Rabin-Karp Algorithm



Space — The final frontier

» Knuth-Morris-Pratt has great worst case and real-time guarantees
» Boyer-Moore has great typical behavior

» What else to hope for?

» All require Q(rm) extra space;
can be substantial for large patterns!

» Can we avoid that?

29



Rabin-Karp Fingerprint Algorithm — Idea

Idea: use hashing (but without explicit hash tables)

» Precompute & store only hash of pattern
» Compute hash for each guess

» If hashes agree, check characterwise

314 15 9 2 6 5 3
1(31415) = 84

1(14159) = 94
h(41592) = 76
1(15926) = 18
1(59262) = 95

Example:
P =59265
T =3141592653589793238

Hash function: /(x) = x mod 97
~ h(P) = 95.

(treat (sub)strings as decimal numbers)

5 8 9 7 9 3 2 3 8

30



Rabin-Karp Fingerprint Algorithm — First Attempt

1 procedure rabinKarpSimplistic(T[0..n — 1], P[0..m —1])

2 M := suitable prime number

3 hp := computeHash(P[0..m —1)], M)

4 fori :=0,...,n—mdo

5 hr = computeHash(T[i..i + m — 1], M)

6 if it == hp then

7 if T[i..i + m — 1] == P // m comparisons
8 then return i

9 return NO_MATCH

» never misses a match since /1(S1) # h(S) implies S1 # Sz\/
» h(T[k..k+m—1]) depends on m characters ~- naive computation takes ®(mm) time

~» Running time is ©(mn) for search miss ... can we improve this?



Rabin-Karp Fingerprint Algorithm — Fast Rehash

» Crucial insight: We can update hashes in constant time.

» Use previous hash to compute next hash

» O(1) time per hash, except first one

Example:
» Pre-compute: 10000 mod 97 =9

» Previous hash: 41592 mod 97 = 76

» Next hash: 15926 mod 97 = ??

Observation:

15926 mod 97

(41592 — (4-10000)) - 10 + 6
76 —-(49 ))-10+6
406 mod 97 = 18

for above hash function!

mod 97
mod 97

32



Rabin-Karp Fingerprint Algorithm — Code
» use a convenient radix R > o (R = 10 in our examples; R = 2¥ is faster)
» Choose modulus M at random to be huge prime (randomization against worst-case inputs)

» all numbers remain < 2R?> ~» (1) time arithmetic on word-RAM

1 procedure rabinKarp(T[0..n — 1], P[0..m — 1], R)
2 M := suitable prime number

3 hp := computeHash(P[0..m — 1)], M)

4 hr := computeHash(T'[0..m — 1], M)

5 s := R™ 1 mod M

6 fori :=0,...,n—mdo

7 if it == hp then

8 ifT[i.i+m—-1]=P

9 return i

10 if i < n — m then

" hr := ((hr = T[i] - s) - R+ T[i + m]) mod M

12 return NO_MATCH

33



Rabin-Karp — Discussion

[fb Expected running time is O(m + n)

®(mn) worst-case;
but this is very unlikely

[ﬂ] Extends to 2D patterns and other generalizations

[b Only constant extra space!

34



String Matching Conclusion

Brute- DFA KMP BM RK Suffix
Force trees*

Pr;if:c —  O(m[z]) O(m)  O(m+o) O(m) O
S:;;Zh O(nm) O(n) i@ (ofte?\(lile)tter) (gfge;?cﬁ Otm)
f;:ﬁi —  O(mlZ) O(m)  O(m+o) o) Olr)

* (see Unit 6)

35
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