ALGORITHMICS\$APPLIED
APPLIEDALGORITHMICS\$
CS\$APPLIEDALGORITHMI
DALGORITHMICS\$APPLIE
EDALGORITHMICS\$APPLIE
GORITHMICS\$APPLIEDAL
HMICS\$APPLIEDALGORITHMICS\$APPLIEDAL

5

Parallel String Matching

10 March 2021

Sebastian Wild

Outline

5 Parallel String Matching

- 5.1 Elementary Tricks
- 5.2 Periodicity
- 5.3 String Matching by Duels

Parallelizing string matching

- We have seen a plethora of string matching methods
- ▶ But all efficient methods seem inherently sequential Indeed, they became efficient only after building on knowledge from previous steps!

Sounds like the *opposite* of parallel!

→ This unit:

- ► How well can we parallelize string matching?
- ▶ What new ideas can help?

Here: string matching = find *all* occurrences of P in T (more natural problem for parallel) always assume $m \le n$

5.1 Elementary Tricks

Embarrassingly Parallel

- ► A problem is called "embarrassingly parallel" if it can immediately be split into many, small subtasks that can be solved completely independently of each other
- ► Typical example: sum of two large matrices (all entries independent)
- → best case for parallel computation (simply assign each processor one subtask)
- Sorting is not embarrassingly parallel
 - ▶ no obvious way to define many *small* (=efficiently solvable) subproblems
 - but: some subtasks of our algorithms are, e.g., comparing all elements with pivot

Clicker Question

Is the string-matching problem "embarrassingly parallel"?

- A Yes
- B) No
- C) Only for $n \gg m$
- **D** Only for $n \approx m$

sli.do/comp526

Click on "Polls" tab

Elementary parallel string matching

Subproblems in string matching:

- ▶ string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Elementary parallel string matching

Subproblems in string matching:

- ▶ string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Approach 1:

► Check all guesses in parallel

```
\rightsquigarrow Time: \Theta(m)
```

 \rightsquigarrow Work: $\Theta((n-m)m) \rightsquigarrow$ not great . . .

Elementary parallel string matching

Subproblems in string matching:

- ▶ string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Approach 1:

► Check all guesses in parallel

```
\sim Time: \Theta(m)
\sim Work: \Theta((n-m)m) \sim not great . . .
```

Approach 2:

▶ Divide T into **overlapping** blocks of 2m characters: T[0..2m), T[m..3m), T[2m..4m), T[3m..5m)...

► Find matches inside blocks in parallel, using efficient sequential method $\Theta(2m + m) = \Theta(m)$ each

```
\rightsquigarrow Time: \Theta(m) Work: \Theta(\frac{n}{m} \cdot m) = \Theta(n)
```

Clicker Question

Is the string-matching problem "embarrassingly parallel"?

- A Yes
- B) No
- C) Only for $n \gg m$
- **D** Only for $n \approx m$

sli.do/comp526

Click on "Polls" tab

Clicker Question

Is the string-matching problem "embarrassingly parallel"?

- A) res
- B) No
- C Only for $n \gg m$
- D Only for n ≈ m

sli.do/comp526

Click on "Polls" tab

Elementary parallel matching – Discussion

- very simple methods
- $\stackrel{\frown}{\Box}$ could even run distributed with access to part of T
- \bigcap parallel speedup only for $m \ll n$

Goal:

- ▶ methods with better parallel time!

 → higher speedup
- → must genuinely parallelize the matching process! (and the preprocessing of the pattern)
- → need new ideas

5.2 Periodicity

Periodicity of Strings

- ► S = S[0..n 1] has period p iff $\forall i \in [0..n p) : S[i] = S[i + p]$
- ▶ p = 0 and any $p \ge n$ are trivial periods but these are not very interesting . . .

Examples:

 \triangleright *S* = baaababaaab has period 6:

 \triangleright *S* = abaabaabaaba has period 3:

S	а	b	а	а	b	a	а	b	а	а	b	а			
	←		\rightarrow	Ш	Ш	П	П	П	П	П	Ш	Ш			
	P	_	$^{\circ}S$	а	b	a	а	b	а	а	b	а	а	b	а
										a b a a b a					

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)

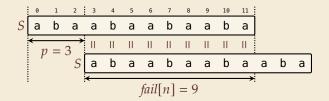
 $p \in [1..n]$ is the *shortest* period in S = S[0..n - 1] iff S[0..n - p) is the longest prefix that is also a suffix of S[p..n).

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)

 $p \in [1..n]$ is the *shortest* period in S = S[0..n - 1] iff S[0..n - p) is the longest prefix that is also a suffix of S[p..n).

$$S[0..n-1]$$
 has minimal period $p \iff fail[n] = n - p$



Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)

If string S = S[0..n-1] has periods p and q with $p+q \le n$, then it has also period gcd(p,q).

greatest common diviso

Proof: see tutorials; hint: recall Euclid's algorithm

Periodic strings

- ▶ What does the smallest period p tell us about a string S[0..n-1]?
- ► Two distinct regimes:
 - **1.** *S* is *periodic*: $p \le \frac{n}{2}$ More precisely: *S* is totally determined by a string F = F[0..p 1] = S[0..p 1] *S* keeps repeating *F* until *n* characters are filled
 - \rightsquigarrow *S* is highly repetitive!
 - **2.** *S* is *aperiodic* (also *non-periodic*): $p > \frac{n}{2}$ *S* **cannot** be written as $S = F^k \cdot Y$ with $k \ge 2$ and Y a prefix of F

Clicker Question

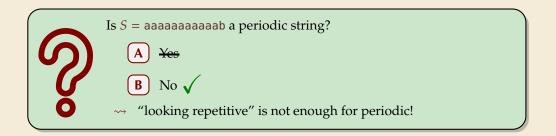
Is S = aaaaaaaaaaaa a periodic string?

- A Yes
- B No

sli.do/comp526

Click on "Polls" tab

Clicker Question



sli.do/comp526

Click on "Polls" tab

5.3 String Matching by Duels

Periods and Matching

Witnesses for non-periodicity:

► Assume, P[0..m-1] does **not** have period p

 \rightarrow \exists witness against periodicity: position $\omega \in [0..m - p) : P[\omega] \neq P[\omega + p]$

Periods and Matching

Witnesses for non-periodicity:

- Assume, P[0..m-1] does **not** have period p
- \rightarrow \exists witness against periodicity: position $\omega \in [0..m p) : P[\omega] \neq P[\omega + p]$

Dueling via witnesses:

▶ If P[0..m-1] does **not** have period p, then at most one of positions i and i+p can be (the starting position of) an occurrence of P.

Proof: Cannot have
$$T[(i+p)+\omega] = P[\omega] \neq P[\omega+p] = T[i+(\omega+p)].$$

Periods and Matching

Witnesses for non-periodicity:

- Assume, P[0..m-1] does **not** have period p
- \rightarrow \exists witness against periodicity: position $\omega \in [0..m p) : P[\omega] \neq P[\omega + p]$

Dueling via witnesses:

▶ If P[0..m-1] does **not** have period p, then at most one of positions i and i+p can be (the starting position of) an occurrence of P.

Proof: Cannot have
$$T[(i+p)+\omega] = P[\omega] \neq P[\omega+p] = T[i+(\omega+p)]$$
.

Duel between guess i and i + p: compare text character overlapped with witness ω

String Matching by Duels – Sequential

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- 3. For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, . . . run $\mu-1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

String Matching by Duels – Sequential

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- 3. For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, ... run $\mu-1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively
- \rightarrow another worst-case O(n + m) string matching method!

Analysis:

- **1.** O(1)
- **2.** $O(m) \rightsquigarrow later$
- 3. $O(\frac{n}{m})$ blocks O(m) duels each
- 4. $O(\frac{n}{m})$, $\leq m$ cmps each

String Matching by Duels – Parallel

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- 3. For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, . . . run $\mu-1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

String Matching by Duels – Parallel

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

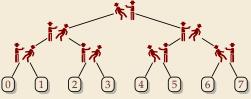
- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- 3. For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, . . . run $\mu-1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

How to parallelize:

- 1. —
- 2. $O(\log^2(m)) \rightsquigarrow \text{later}$
- 3. blocks in parallel (indep.), tournament of $\lceil \lg \mu \rceil$ rounds
- **4.** check in parallel collect result (like prefix sum)

Tournament of duals:

- ▶ each dual eliminates one guess
- → declare other guess winner
- conceptually like prefix sum!



String Matching by Duels – Parallel

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

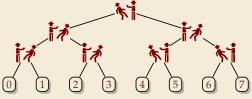
- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- 3. For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, ... run $\mu-1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

How to parallelize:

- 1. —
- 2. $O(\log^2(m)) \rightsquigarrow \text{later}$
- 3. blocks in parallel (indep.), tournament of $\lceil \lg \mu \rceil$ rounds
- **4.** check in parallel collect result (like prefix sum)

Tournament of duals:

- ▶ each dual eliminates one guess
- → declare other guess winner
- conceptually like prefix sum!



 \longrightarrow Matching part can be done in $O(\log m)$ parallel time and O(n) work!

Computing witnesses

It remains to find the witnesses $\omega[1..\mu]$.

sequentially:

- an elementary procedure is similar in spirit to KMP failure array
- ▶ can be computed in $\Theta(m)$ time

parallel:

- ▶ much more complicated → beyond scope of the module
 - first $O(\log^2(m))$ time on CREW-RAM
 - ▶ later $O(\log m)$ time and O(m) work using pseudoperiod method

Parallel Matching – State of the art

- $ightharpoonup O(\log m)$ time & work-efficient parallel string matching
 - ▶ this is optimal for CREW-PRAM
- ▶ on CRCW-PRAM: matching part even in O(1) time(!) but preprocessing requires $\Theta(\log\log m)$ time