1 4
1A HMI H I F
)HN=EZH Jd<*
1HOID A AC
T HBPA QA
TS HA<CHT
I Pita sl S SR
1O Q<
A HUNOAC
)N A0 = <L
JOO CH =7+
I1HUOAQAZ TN .
(= AOITEFROC
YL <TKHBPHHC
IFAAdHTS <
1H O A O T
1IEHAOUERL
OO I T
O <@
(AN AO:
IO AMR U

_| |

Inimum

Range-M
Queries

04 May 2021

Sebastian Wild

version 2021-03-16 20:53 H

Outline

9 Range-Minimum Queries

9.1
9.2
9.3
9.4
o5

Introduction

RMQ, LCP, LCE, LCA — WTF?
Sparse Tables

Cartesian Trees

“Four Russians” Table

9.1 Introduction

Range-minimum queries (RMQ)
array /numbers don’t change

» Given: Static array A[0..nn) of numbers

» Goal: Find minimum in a range;
A known in advance and can be preprocessed

RMQ(7,15) = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1afefaf7]w]s]e[3]uf2]2[3]610]o]is]4]6]16]0]

> Nitpicks:
» Report index of minimum, not its value

» Report leftmost position in case of ties

Rules of the Game

» comparison-based ~+ values don’t matter, only relative order

» Two main quantities of interest:

1. Preprocessing time: Running time P(n) of the preprocessing step

2. Query time: Running time Q(1) of one query (using precomputed data)

» Write “(P(n), Q(n)) time solution” for short

9.2 RMQ, LCP, LCE, LCA — WTF?

Recall Unit 6

Application 4: Longest Common Extensions
» We implicitly used a special case of a more general, versatile idea:

The longest common extension (LCE) data structure:
> Given: String T[0..n —1]
» Goal: Answer LCE queries, i.e.,
given positions i, jin T,
how far can we read the same text from there?
formally: LCE(i, j) = max{¢: T[i..i +¢) = T[j..j + {)}

~ use suffix tree of T'!

s a by
L 2
longest common prefix of ith and jth suffix $na n.
» InT: LCE(,j) = LCP(T,’,T/') ~> same thing, different name! $ a 0]
string depth of 1
lowest common ancester (LCA) of nab L]
$ n
leaves| i |and | j %
» in short: | LCE(/, /) = LCP(T;, T)) = stringDepth(LCA(7]))]

n

[L

b $ a

%

3 I
% abab
i

Recall Unit 6

Efficient LCA

How to find lowest common ancestors?

» Could walk up the tree to find LCA ~» ©(n) worst case ERP

» Could store all LCAs in big table ~» ©(1?) space and preprocessing EQ:)

<4

%I/@ Amazing result: Can compute data structure in ©(n) time and space
kL J that finds any LCA is constant(!) time.

» abit tricky to understand
» but a theoretical breakthrough

» and useful in practice

(S

and suffix tree construction inside . .. &

=/ &

~ for now, use O(1) LCA as black box. =

~» | After linear preprocessing (time & space), we can find LCEs in O(1) time.]

Finally: Longest common extensions

» In Unit 6: Left question open how to compute LCA in suffix trees

» But: Enhanced Suffix Array makes life easier!

[LCE(i, /) = RMQucp(R[i] +1, R[f])

Inverse suffix array: going left & right

» to understand the fastest algorithm, it is helpful to define the inverse suffix array:
> Rlil=r — L[rl=i L=lafamy
& there are r suffixes that come before T; in sorted order
& T has (0-based) rank r ~ call R[0..n] the rank array

i R[] T; right r Llr] Tiyy

0 6" bananaban$ - [o]

1 4" ananabans$ A0=6 abans

2 9 nanaban$ an$

5 3 anaban$ 3 anaban$
1 8 naban$ ananaban$
5 1 aban$ 5 [6] ban$

6 5 ban$ [@] bananabans
7 2 an$ ALIBI=4 [8] ns

s 7 n$ Ieff - [4]nabans

9 0 $ nanaban$

sort suffixes

LCP array and internal nodes

LePinervals LCP[1..1] L[0..1]

EII =
ananabans$

By ©
Blﬂ H =
[oersens] (2]

o
I

nn
I |m

ol

~ Leaf array L[0..n] plus LCP array LCP[1..11] encode full tree!

RMQ Implications for LCE

» Recall: Can compute (inverse) suffix array and LCP array in O(n) time

~ A (P(n), Q(n)) time RMQ data structure implies a (P(n), Q(n)) time solution for
longest-common extensions

9.3 Sparse Tables

Trivial Solutions

RMQ(7,15) = 10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[1]a]6]a]7]w0]s5]6[3]u]2]2]3]610fo]13]4]6]16]10]

» Two easy solutions show extreme ends of scale:
1. Scan on demand

» no preprocessing at all
» answer RMQ(7, j) by scanning through A[i..j], keeping track of min
~ (0(1),0(n))

2. Precompute all

» Precompute all answers in a big 2D array M[0..7)[0..1)
» queries simple: RMQ(7, j) = M[i][]]
~ (0(n%),0(1)

> Preprocessing can reuse partial results ~ (O(n?), O(1))

Sparse Table

» Idea: Like “precompute-all”, but keep only some entries

> store M[i][j]iff ¢ = j — i + 1is 2F.

~ < n-lgn entries
» How to answer queries?
RMQ(10,18) = 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
[1]4]6]a]7]0]5]6]3]]2]2]3]6]10[0]13]1]6]16]10]

RMQ(7,13) = 10

» Preprocessing can be done in O(7 log 1) times

~» (O(nlogn), O(1)) time solution!

9.4 Cartesian Trees

Range-maximum queries

— > Range-max queries on array A:
rmq (i, j) = arg max A[k]
——— 75— ———- i<k<j

M = index of max

rmq(7,15) = 10

M > Task: Preprocess A,
then answer RMQs fast
ideally constant time!

9 10 11 12 13 14 15 16 17 18 19 20
[4|6|4|7|10|5|6|3|11|14|2|3|6|10|9|13|4|6|16|10]

Range-maximum queries

Ica(7,15) =1

>

>

Range-max queries on array A:
rmq (i, j) = arg max A[k]
i<k<j
= index of max
Task: Preprocess A,
then answer RMQs fast
ideally constant time!

Cartesian tree: (cf. treap)
construct binary tree by
sweeping line down

rmq(7, j) = inorder of

lowest common ancestor (LCA)

of ith and jth node in inorder

10

Cartesian Tree — Example

14 29 10 18 3 5 11 8 12 23 1 6 20 26 17 28 9 25 16 30 27 4 21 2 19 13 7 24 22 15

11

Counting binary trees

> all RMQ answers are determined by Cartesian tree

» How many different Cartesian trees are there for A[0..1)?

1 (2
» known result: Catalan numbers (n)
n+1\n

> casy to see: < 22"

12

9.5 “Four Russians” Table

Bootstrapping

» We know a (O(nlogn), O(1)) time solution

» If we use that for m = @(n/log n) elements, O(m logm) = O(n)!

» Break A into blocks of b = [i lg n'] numbers

» Create array of block minima B[0..m] for m = [n/b] = O(n/logn)

~~ Use sparse tables for B.

13

Query decomposition

14

Precomputing intra-block queries

15

Discussion

» (O(n),O(1)) time solution for RMQ

~» (O(n), O(1)) time solution for LCE in strings!

[ﬂ] optimal preprocessing and query time!
[@ a bit complicated

Research questions:

» Reduce the space usage

> Avoid access to A at query time

16

	Range-Minimum Queries
	Introduction
	 Range-minimum queries (RMQ)
	 Rules of the Game

	RMQ, LCP, LCE, LCA — WTF?
	 Recall Unit 6
	 Recall Unit 6
	 Finally: Longest common extensions
	 RMQ Implications for LCE

	Sparse Tables
	 Trivial Solutions
	 Sparse Table

	Cartesian Trees
	 Range-maximum queries
	 Cartesian Tree – Example
	 Counting binary trees

	``Four Russians'' Table
	 Bootstrapping
	 Query decomposition
	 Precomputing intra-block queries
	 Discussion

