ALGORITHMICS\$APPLI ED APPLIEDALGORITHMICS\$ CS \$ A P P L I EDALGORITHMI DALGORITHMICS \$ APPLIE EDALGORITHMICS \$APPLI GORITHMICS\$APPLIEDAL H M I CS SAPPLIEDALGORIT

Proof Techniques

10 February 2021
Sebastian Wild

Outline

0 Proof Techniques

0.1 Proof Templates
0.2 Mathematical Induction
0.3 Correctness Proofs

What is a formal proof?

A formal proof (in a logical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), or
2. follows from previous statements using the inference rules (of the logical system).

Among experts: Suffices to convince a human that a formal proof exists.
But: Use formal logic as guidance against faulty reasoning. \rightsquigarrow bulletproof

What is a formal proof?

A formal proof (in a logical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), or
2. follows from previous statements using the inference rules (of the logical system).

Among experts: Suffices to convince a human that a formal proof exists.
But: Use formal logic as guidance against faulty reasoning. \rightsquigarrow bulletproof

Notation:

- Statements: $A \equiv$ "it rains", $B \equiv$ "the street is wet".
- Negation: $\neg A$
"Not A."

- And/Or: $A \wedge B \quad$ " A and B "; $A \vee B$ " A or B or both."
- Implication: $A \Rightarrow B$
"If A, then $B . "$
- Equivalence: $A \Leftrightarrow B \quad$ " A holds true if and only if ('iff') B holds true."

Clicker Question

Is the following statement true?
"If the Earth is flat, then ships can fall over its rim."
(A) Yes
(B) No
(C) Neither

Clicker Question

?
Is the following statement true?
"If the Earth is flat, then ships can fall over its rim."

(A) Yes A \quad B No \quad (Neither

$$
A \Rightarrow B \quad \rightarrow A, Y B \quad \text { true }
$$

sli.do/comp526

0.1 Proof Templates

Implications
To prove $A \Rightarrow B$, we can
$A=$ input to program is valid (a list of umbers)
$B=$ output of program is correct (the list is sorted) directly derive B from A direct proof (obvious)
prove $(\neg B) \Rightarrow(\neg A) \quad$ indirect proof, proof by contraposition
assume $A \wedge \neg B$ and derive a contradiction proof by contradiction, reductio ad absurdum es. $\sqrt{2}$ is irrational

- distinguish cases, i.e., separately prove
$(A \wedge \underline{C}) \Rightarrow B$ and $(A \wedge \neg C) \Rightarrow B$. proof by exhaustive case distinction
more than 2 cases possible

Clicker Question

Suppose we want to prove:
"If n^{2} is an even number, then n is also even."
For that we show that when n is odd, also n^{2} is odd. $\sqrt{a s}$ write n
Which proof template do we follow?

$$
\text { as } n=2 k+1
$$

(A) direct proof: $A \Rightarrow B$
(B) indirect proof: $(\neg B) \Rightarrow(\neg A)$
(C) proof by contradiction: $A \wedge \neg B \Rightarrow$ \&

$$
\left.\begin{aligned}
\sim n^{2} & =(2 k+1)^{2} \\
& =\underbrace{4 k^{2}+4 k}_{\text {even }}+1 \\
& =2 k^{\prime}+1
\end{aligned}\right|_{k^{\prime} \in \mathbb{N}}
$$

(D) proof by case distinction: $(A \wedge C) \Rightarrow B$ and $(A \wedge \neg C) \Rightarrow B$

Clicker Question

Suppose we want to prove:
B
"If n^{2} is an even number, then n is also even."
For that we show that when n is odd, also n^{2} is odd.
Which proof template do we follow? ${ }^{\wedge} B$ not crem \equiv odd
(A) diret prof. $A \rightarrow B$
(B) indirect proof: $(\neg B) \Rightarrow(\neg A)$
(C) prof by centradietion: $A-A-B \rightarrow-\frac{1}{x}$
(D) proof by dictinction: $(4-A-C) \rightarrow B$ and $(A, A-C) \rightarrow B$

Equivalences

, if and ouly if

To prove $A \Leftrightarrow B$,
we prove both implications $A \Rightarrow B$ and $B \Rightarrow A$ separately.
(Often, one direction is much easier than the other.)

Set Inclusion and Equality

To prove that a set S contains a set R, i. e., $R \subseteq S$, R is subset of S we prove the implication $x \in R \Rightarrow x \in S$.

To prove that two sets S and R are equal, $\underline{S=R}$, we prove both inclusions, $S \subseteq R$ and $R \subseteq S$ separately.

0.2 Mathematical Induction

Quantified Statements

Notation

- Statements with parameters: $A(x) \equiv$ " x is an even number."
- Existential quantifiers: $\exists x: A(x)$ "There exists some x, so that $A(x)$."
- Universal quantifiers: $\forall x: A(x) \quad$ "For all x it holds that $A(x)$." $\quad \forall x \in \mathbb{R}_{\geqslant 0}: A(x)$ Note: $\forall x: A(x)$ is equivalent to $\neg \exists x: \neg A(x)$

Quantifiers can be nested, e. g., $\varepsilon-\delta$-criterion for limits:

To prove $\exists x: A(x)$, we simply list an example ξ such that $A(\xi)$ is true.

For-all statements

To prove $\forall x: A(x)$, we can

- derive $\underline{A(x)}$ for an "arbitrary but fixed value of x ", or,
- for $x \in \mathbb{N}_{0}$, use induction, i.e.,

$$
N_{0}=\{0,1,2,3, \ldots\}
$$

- prove $A(0)$, induction basis, and
- prove $\forall n \in \mathbb{N}_{0}: A(n) \Rightarrow A(n+1) \quad$ inductive step

More general variants of induction:

- complete/strong induction inductive step shows $(A(0) \wedge \cdots \wedge A(n)) \Rightarrow A(n+1)$
- structural/transfinite induction works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, ...

0.3 Correctness Proofs

- continued -

Formal verification

- verification: prove that a program computes the correct result
\rightsquigarrow not our focus in COMP 526
but some techniques are useful for reasoning about algorithms

Here:

1. Prove that loop or recursive call eventually terminates.
2. Prove that a loop computes the correct result.

Proving termination

To prove that a recursive procedure $\operatorname{proc}\left(x_{1}, \ldots, x_{m}\right)$ eventually terminates, we

- define a potential $\Phi\left(x_{1}, \ldots x_{m}\right) \in \mathbb{N}_{0}$ of the parameters (Note: $\Phi\left(x_{1}, \ldots x_{m}\right) \geq 0$ by definition!)
- prove that every recursive call decreases the potential, i.e., any recursive call $\underline{\operatorname{proc}}\left(y_{1}, \ldots, y_{m}\right)$ inside $\operatorname{proc}\left(x_{1}, \ldots, x_{m}\right)$ satisfies

$$
\frac{\Phi\left(y_{1}, \ldots, y_{m}\right)<\Phi\left(x_{1}, \ldots, x_{m}\right)}{n \leqslant \Phi\left(x_{1}, \ldots, x_{m}\right)-1}
$$

$\rightsquigarrow \operatorname{proc}\left(x_{1}, \ldots, x_{m}\right)$ terminates because
we can only strictly decrease the (integral!) potential a finite number of times from its initial value

- Can use same idea for a loop: show that potential decreases in each iteration.
\rightsquigarrow see tutorials for an example.

Loop invariants

Goal: Prove that a post condition holds after execution of a (terminating) loop.

```
1 // (A) before loop
2 while cond do
        // (B) before body
        body
        // (C) after body
    end while
7 // (D) after loop
```

For that, we

- find a loop invariant I (that's the tough part!)
- prove that I holds at (A)
- prove that $I \wedge$ cond at (B) imply I at (C)
- prove that $I \wedge \neg$ cond imply the desired post condition at (D)

Note: I holds before, during, and after the loop execution, hence the name.

Loop invariant - Example

- loop condition: cond $\equiv i<n$
- post condition (after line
curMax $=\max _{k \in[0 . . n-1]} A[k]$

```
procedure array Max \((A, n)\)
    // input: array of \(n\) elements, \(n \geq 1\)
    // output: the maximum element in \(A[0 . . n-1]\)
    curMax := \(A[0] ; i=1\)
    // (A)
    while \(i<n\) do
        // (B)
        if \(A[i]>\) curMax
            curMax := ALi]
        \(i:=i+1\)
        // (C)
    end while
    // (D)
return cur Max
return curMax
```

(i) I holds at (A) $\sqrt{ }$

We have to proof:

- loop invariant:

$$
I \equiv \operatorname{curMax}=\max _{k \in[0 . . i-1]} A[k] \wedge i \leq n
$$

-re mar
(ii) $I \wedge$ cond at $(\mathrm{B}) \Rightarrow I$ at (C)
(iii) $I \wedge \neg$ cold \Rightarrow post condition
(i) here (at (A)) have $i=1$

$$
\leadsto I \equiv \frac{\text { curMax }=A[0] \wedge 1 \leqslant n}{[0 \ldots i-1]=\{0 \ldots i-1\}} \vee\left\{\begin{array}{l}
\sim 1
\end{array}\right.
$$

(ii) case distinction

$$
\begin{aligned}
& \text { case distinction } \\
& \text { (a) } A[i\}>\text { cor Max } \xlongequal[=]{\underline{I}} \max _{k \in[0 \ldots i-1]} A[k]
\end{aligned}
$$

then go to line 9. cur Max $=A[i]$ after line 9 after line 10 cur Max $=\max _{k \in[0 \ldots i-1]} A[k]=A[i-1]$

$$
\left.\begin{array}{rl}
\text { cond } \equiv & i<n \quad \Leftrightarrow \quad i \leqslant n-1 \\
& i+1 \leqslant n
\end{array}\right\} \text { at (B) }
$$

\leadsto at (C) have $i \leqslant n$
(iii)

$$
\begin{aligned}
\neg \text { cond } \equiv i \geqslant n \quad i & \leqslant n \quad \sim D \quad i=n \\
\text { cur Max } & =\max _{k \in[0 \cdots n-1]} A[k] \quad \longleftarrow \text { post condition. }
\end{aligned}
$$

