--

) QA H [H
)N = H < -
1HO D A O
HHBPA QRO
L EHA<CH D
8 e ol o0 L' S
1O A<
A HUNO A O
)N MO <[]
)OO0 < H =€ H
1HUAQAZ TN
b i i e ol SR @ NP
)L <CHBHHQ
IFAdHE S <
1 [QMO TER
1EHAOU RV
OA<<UO 1D
O <@
AN A0 =
FLOAMU T

s |

Proof Techniques

10 February 2021

Sebastian Wild

version 2021-62-10 01:11

Outline

O Proof Techniques

0.1 Proof Templates
0.2 Mathematical Induction

0.3 Correctness Proofs

What is a formal proof?

A formal proof (in alogical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), OT

2. follows from previous statements using the inference rules (of the logical system).

Among experts: Suffices to convince a human that a formal proof exists. _“_@ 0
> B AR
But: Use formal logic as guidance against faulty reasoning. ~ bulletproof < é! A |>§

What is a formal proof?

A formal proof (in alogical system) is a sequence of statements such that each statement

1. is an axiom (of the logical system), OT

2. follows from previous statements using the inference rules (of the logical system).

g q 0
Among experts: Suffices to convince a human that a formal proof exists. 1

s
But: Use formal logic as guidance against faulty reasoning. ~~ bulletproof < él A |>§

Notation:

» Statements: A = “itrains”, B = “the street is wet”.
2

> Negation: —A “Not A.” “tl Loes ettt

> And/Or: AAB “Aand B”; AV B “A or B or both.” A®R
» Implication: A = B “If A, then B.” D

» Equivalence: A & B “A holds true if and only if (‘iff’) B holds true.”

Clicker Question

Is the following statement true?
“If the Earth is flat, then ships can fall over its rim.”

o Yes No Neither

sli. dO/ Comp526 Click on “Polls” tab

Clicker Question

Is the following statement true?

“If the Earth is flat, then w_azmti_‘
o a Yes \/ . Ne Neither

A=@ TAVEC twe

sli. dO/ COm,D526 ’ Click on “Polls” tab

0.1 Proof Templates

Implications A= inped fo pregvan s yatid (a G of o)

To prove A = B, we can

7 = UUJ‘FU&— OE Prgb(a”r, (s w (J—L\i Q}&l— is ngl{clj

» directly derive B from A direct proof (oburs. 5>
» prove (-B) = (—=A4) indirect proof, proof by contraposition

> assume A A —B and derive a contradiction proof by contradiction, reductio ad absurdum
e.5. dL is iveadomall
> distinguish cases, i. e., separately prove
(ANC)= Band (AA=C) = B. proof by exhaustive case distinction

ot &'\/\OJ\/\ L coses (aogsibﬁk

Clicker Question

-

Suppose we want to prove:
“If n? is an even number, then 7 is also even.”

For that we show that when 7 is odd, also 12 is odd. b welle ©n

Which proof template do we follow?

direct proof: A = B
indirect proof: (=B) = (=A)

proof by contradiction: A A =B = ¢

@ proof by case distinction: (A A C) = Band (AA-C) = B

r—y‘ oé&

as o =9k+ | ke N

~v V‘12 (ik#‘)L
=415 b o)

~

even

= QL el e m

/

‘sli.do/comp526

Click on “Polls” tab

Clicker Question

4 N

Suppose we wgnt to prove:
“If n” is an even number, then 2l aoeyEn”
For that we show that when 7 is odd, also 12 is odd.
1 15 001, &0 w7~ 1 Okl
Which proof template do we follow? a
-

indirect proof: (=B) = (=A) \/

g JiokinetionmiirCl-mB-and-(S
(. @ /

- A
el e = odd

‘ sli. dO/ Comp526 Click on “Polls” tab

Equivalences if and ontty 7f

To prove A & B, Al B
we prove both implications A = B and B = A separately.

(Often, one direction is much easier than the other.)

Set Inclusion and Equality <

To prove that a set S contains a set R,i.e.,, R C S, R e cobeck of &
we prove the implication x € R = x € S.

To prove that two sets S and R are equal, S = R,
we prove both inclusions, S € R and R C S separately.

0.2 Mathematical Induction

Quantified Statements

Notation
> Statements with parameters: A(x) = “xis an even number.”

> Existential quantifiers: Jx : A(x) “There exists some x, so that A(x).”

» Universal quantifiers: Vx : A(x) “For all x it holds that A(x).” Vxe Rm : Al
Note: Vx : A(x) is equivalent to —=3x : =A(x)

Quantifiers can be nested, e. g., e-0-criterion for limits:

lirréf(x):a & Ye>035>0: (x—& <8)=|f(x)—a| <e.
X— —

8(0\”\&WA own Zﬁ

To prove 3x : A(x), we simply list an example & such that A() is true.

For-all statements

To prove Vx : A(x), we can

» derive A(x) for an “arbitrary but fixed value of x”, or,
A GBI GO [EREE G @

» for x € Ny, use induction, i.e., Ne= {0,023, .=%
» prove A(0), induction basis, and py
» prove Vi € Ng : A(n) = A(n + 1) inductive step
ACD
AL
—1 Al

More general variants of induction:
> complete/strong induction
inductive step shows (A(0) A -+ A A(n)) = A(n +1)

» structural/transfinite induction
works on any well-ordered set, e. g., binary trees, graphs, Boolean formulas, strings, . . .

no infinite strictly decreasing chains

0.3 Correctness Proofs

S comﬂtim Ug& —

Formal verification

> verification: prove that a program computes the correct result
~~ not our focus in COMP 526
but some techniques are useful for reasoning about algorithms
Here:
1. Prove that loop or recursive call eventually terminates.

2. Prove that a loop computes the correct result.

Proving termination
To prove that a recursive procedure proc(xy, ..., x,) eventually terminates, we

» define a potential ®(x1, ... xn) € Ng of the parameters
(Note: ®(x1,...x,) > 0 by definition!)

> prove that every recursive call decreases the potential, i.e.,
any recursive call proc(y1, ..., y,) inside proc(x, . .., x,,) satisfies

‘T’(y1,---,ym) < D(xq,...,xXp)
e S ®Ckwx—r)<w’>" [

~» proc(xy, ..., X,) terminates because
we can only strictly decrease the (integral!) potential a finite number of times from its
initial value

» Can use same idea for a loop: show that potential decreases in each iteration.

~ see tutorials for an example.

Loop invariants

Goal: Prove that a post condition holds after execution of a (terminating) loop.

1 // (A) before loop For that, we

2 while con . . .

s J/(B) before body » find a loop invariant I (that's the tough part!)
¢ bty » prove that I holds at (A)

5 // (C) after body

¢ end while » prove that I A cond at (B) imply I at (C)

7 //(D) after loop

» prove that I A —cond imply the desired post condition at (D)

Note: I holds before, during, and after the loop execution, hence the name.

Loop invariant — Example

1 procedure arrayMax(A,n)
» loop condition: cond = i <n 2 // input: array of n elements, n > 1
| 3 // output: the maximum element in A[0..n — 1]
> post condition (after line #): 4 curMax = A[0]; i =1
curMax = max Alk] s /(A
ke[0..n-1] 6 while i < n do
B
> lOOp invariant: ; ﬁ(Afz] > curMax
I = curMax = max A[k] Ai<n 9 curMax = Ali]
ke[0..i—1] N) - f o= Al
o n VA@)
] 12 end while
We have to proof: e D
(i) I holds at (A) S 14 return curMax
(ii) I Acondat (B) = Iat(C) () hare (o BY) hove
(iii) I A —cond = post condition > T 2 cochlax = AT} Al s
Fo. ¢~ ={o,. -l = {03
(i[) cose diskuchion {I
(& ALY S coc Mox = nox ALKS
keld. .c-I1Y

10

‘HuzAASOL\d Q("‘—(q

cocMax = ALY aflee Lae

agie,(Qe 1O Cov Max = v & X AZ&] = AI[‘G \/

~D ot (&> lave

keld..¢~13
s L (B)
C €wn
~D (= n

ke Lo..n-13

= mia < AEL"S <ﬁ Fa.&i Ceué}‘ L)”Qu‘ .

N

