=

) QA H [H -
)N H A< -
1HOTD A A
T HBPA QR C
L EHA<CHT
8 Wite sl oS ST S
1RO A<
A HUNOAC
)N M A0 - <[
)OO0 < H =65 -
1HUOAQAZ T 0N -
b2 i d e ol SR O N a ¥
I L HBHHA
IFPFAdHE S <
1 [QMO TEl
IEHALOU R U
OA<<UO 11T
U A M-
AN N0 =
F<CCOAMT T

= | |

< g
g >
© 3
> =
&1
0)
Q
c
oyl
-
o
g+
>

1

Sebastian Wild

version 2021-62-16 10:31

Outline

1 Machines & Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics & Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions.

think: recipe

e.g. Java program

More precisely:

1. mechanically executable
EACCHIdD O
~ no “common sense” needed

unuum—{f\\é

3. solves a problem, i.e., a class of problem instances

2. finite deSCI’iptiOl’l # finite computation!

X +y, notonly 17 + 4

) 0_950 _——" DU&PQ’&

P

T PVQ —
typical example: bubblesort

not a specific program but underlying idea

What is a data structure?

A data structure is

1. arule for encoding data
(in computer memory), plus

2. algorithms to work with it
(queries, updates, etc.)

typical example: binary search tree

|m ﬂill_'illl

ﬁ N _ﬁ_\\'_‘ W

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.

Good “usually” means

can be complicated in distributed systems

» fast running time

» moderate memory space usage

Algorithm analysis is a way to
» compare different algorithms,

» predict their performance in an application

Running time experiment

Why not simply run and time it?

» results only apply to
» single test machine
> tested inputs

> tested implementation
> ..

universal truths

> instead: consider and analyze algorithms on an abstract machine

~» provable statements for model survives Pentium 4

~ testable model hypotheses

~> Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

> worst-case performance:
consider the worst of all inputs as our cost metric

> best-case performance:
consider the best of all inputs as our cost metric

> average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n.

~~ performance is only a function of 7.

1.2 The RAM Model

Clicker Question

Vs

What is the cost of adding two d-digit integers?
For example, for d = 5, what is 45235 + 91 3427

constant time
logarithmic in d
proportional to d

@ quadratic in d

@ no idea what you are talking about

‘sli.do/comp526

Click on “Polls” tab

Clicker Question

~
4 What is the cost of adding two d-digit integers?

For example, for d = 5, what is 45235 + 91 3427
Constanttime\/ iE Rb iale ae inE (6L b))

'] Ufberfim il

proportional to d \/ € ks = 64
(o) ©) o (Bigluleser)

@ no idea what you are talking about \/

‘ sli. dO/ Comp526 ’ Click on “Polls” tab

Machine models
The machine model decides
> what algorithms are possible
> how they are described (= programming language)

» what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines,
abstract enough to unify architectures,
simple enough to analyze.

Random Access Machines

Random access machine (RAM) s e) off Gt s R g) Bt s
by Sanders, Mehlhorn, Dietzfelbinger, Dementiev

» unlimited memory MEM[O], MEM[1], MEM[2], . ..
> fixed number of registers Ry, ..., R, (say r = 100)

> memory cells MEM[/] and registers R; store w-bit integers, i. e., numbers in [0..2% — 1]
w is the word width/size; typically w o Ign ~ 29 % n

w =64 A2
» Instructions: T e dd e g Tupeh D
> load & store: R; := MEM[R;] MEM[R;] := R; ©
» operations on registers: Rj := R; + R; (arithmetic is modulo 2°1)
o alSOR;—R]‘, R['R]', Rl‘ diVR/, R,‘ mod Rj
PE SN C-style operations (bitwise and/or/xor, left/right shift)

Y
» conditional and unconditional jumps

» cost: number of executed instructions
JADe OF CRECUIed uuerots

we will see further models later

~» The RAM is the standard model for sequential computation.

Pseudocode

Typical simplifications for convenience:

» more abstract pseudocode to specify algorithms
code that humans understand (easily)

» count dominant operations (e.g. array accesses) instead of all operations

In both cases: can go to full detail if needed.

WO ye LAV N

1.3 Asymptotics & Big-Oh

Why asymptotics?

Algorithm analysis focuses on (e limiting behavior for infinitely) large inputs.

» abstracts from unnecessary detail f
» simplifies analysis

> often necessary for sensible comparison

[Asymptotics = approximation around oo]

Example: Consider a function f (1) given by
2n2 = 3n|log,(n + 1)) + 7n — 3|log,(n + 1)] + 120
L e T e

104

0 10 20 30 40 50 60 70 80 90 100

Why asymptotics?

Algorithm analysis focuses on (e limiting behavior for infinitely) large inputs.

» abstracts from unnecessary detail f
» simplifies analysis

> often necessary for sensible comparison

[Asymptotics = approximation around oo]

Example: Consider a function f (1) given by
2n2 = 3n|log,(n +1)] + 7n — 3|log,(n + 1)] + 120 ~ 212

0 10 20 30 40 50 60 70 80 90 100

Asymptotic tools — Formal & definitive definition
if, and only if f (n)

N
» “Tilde Notation:” f(n) ~g(n) iff lim——= =1 preserues NI

,f and g are asymptotically equivalent”

'QDL&'O(‘S

10

Asymptotic tools — Formal & definitive definition

if, and only if

N
> “Tilde Notation:” f(n) ~ g(n) iff lim — =1

,f and g are asymptotically equivalent”

also write ‘=" instead P L
J/ fn) (gl cord
> “Big-Oh Notation:” [f(n) € O(g(n)) o) is bounded for n > ng be ©)
need supremum since limit might not exlsl‘ f
iff hm sup |—| < o
n—oo ()

Variants: “Big-Omega”

v
> f()EQ(g(n) iff g(n)=O(f(n)
(

> f(n)%@ g(n) iff f(n)=0(g(n) and f(n)=Q(g(n))

“Big-Theta”

10

Asymptotic tools — Formal & definitive definition

if, and only if

N
> “Tilde Notation:” f(n) ~ g(n) iff lim — =1

,f and g are asymptotically equivalent”

also write ‘=" instead

n
> “Big-Oh Notation:” f(n) € O(g(n)) iff jLn; is bounded for n > ng
need supremum since limit might not exlsl‘ f
iff hm sup |—| < o
n—oo ()

Variants: “Big-Omega”

v .
> fn)=Q(g(n) iff g(n)=0(f(n)
(

> f(n) :/‘® g(m) iff f(n)=0(g(n) and f(n)=CQ(g(n))
“Big-Theta”
> “Little-Oh Notation:” f(n) = o(g(n)) iff nlgrgo ;‘EZ;

fln) = a)(g(n)) if lim = oo

Asymptotic tools — Intuition
cg(n)
» f(n)=0(g(n)): f(n)isatmost g(n)
~— up to constant factors and
for sufficiently large n

f(n)

Ugéﬁ

no

> f(n)=0(g(n): f(n)isequal to g(n)
up to constant factors and
for sufficiently large n

agn £ fm) & eg(m)

A [Plots can be misleading!] Example (7

Clicker Question

Assume f(n) € O(g(n)). What can we say about g(1)?

g(n) = O(f(n)
g(n) = Q(F(m)
o g(n) = O(f(n))

@ Nothing (it depends on f and g)

‘ sli. dO/ COm,D526 Click on “Polls” tab

Clicker Question

Assume f(n) € O(g(n)). What can we say about g(1)?
e
g(n) = Q(f(n) v

o e
@ Nothi : 1 1 c] ’

‘ sli. dO/ Comp526 Click on “Polls” tab

Clicker Question

Assume f(n) € O(g(1)). What can we say about g(1)?
PRPIEVEARY
s =0(fm) v GEfn) % 0)
o =B

@ Nothing (it depends on f and g) /

‘ sli. dO/ Comp526 Click on “Polls” tab

Asymptotics — Example 1
QOV\;+ (O Qo +&

Basic examples:
> 2013 + 10nIn(n) + 5 :—20713 :’%3) %Tm ,2®m3
> 31g(n2) +1g(lg(n) = O(logn) 10 (O dee £
—_— . .‘»
> 10100 = O(1) ’ = Y Do © 20 u*
w -2 oo 1 20
A (O nPun t5§
3.9 06)+ Ial () Lo T oA
32 G5l PolO(e) o N 2047
Q‘:} n n—>av Q—//
10 < oo =0
LY = 0(»°)

Use wolframalpha to compute/check limits.

12

Clicker Question

Is (sin(n) + 2)n? = @(n?)?

Yes No

sli. dO/ COm,D526 Click on “Polls” tab

Clicker Question

Is (sin(n) + 2)n% = ©(n?)?

Yes\/ Ne

sli. dO/ comp526 Click on “Polls” tab

Asymptotics — Frequently used facts

» Rules:

| 4
| 4

>

¢ f(n) = O(f(n)) for constant ¢ # 0

O(f +8) = O(max{f,g}) largest summand determines order of growth

> Frequently used orders of growth:
logarithmic ©(logn) Note: a,b > 0 constants ~» ©(log, (1)) = ©(log; (1))
linear ©(n)
linearithmic ©(n logn)
quadratic ©(1?)
polynomial O(n°) for constant ¢
exponential O(c") for constant ¢ Note: a > b > 0 constants ~ b" = o(a")

| 4
>
>
>
| 4

9 (goss

13

Asymptotics — Example 2
Square-and-multiply algorithm
for computing x™ with m € N
Inputs:
» m as binary number (array of bits)

> x a floating-point number

» Cost: C =#multiplications

1 double pow(double base, boolean[] exponentBits) {
2 double res = 1;

3 for (boolean bit : exponentBits) {
4 res *= res;
5 if (bit) res *= base;
6 }

7 return res;
8

}

»> C = n (line 4) + #one-bits binary representation of 1 (line 5)

~n<C<2n

14

Clicker Question

We showed n < C(n) < 2n; what is the most precise
asymptotic approximation for C(#) that we can make?

Write e. g. 0(n"2) for O(n?) or Theta(sqrt(n)) for ©(~/n).

sli. dO/ Comp526 Click on “Polls” tab

Asymptotics — Example 2
Square-and-multiply algorithm
for computing x" with m € N
Inputs:
» m as binary number (array of bits)
> 1 = #bits in m

> x a floating-point number

» Cost: C =#multiplications

0

shift

d

tiol
Lpty

|

0

200

400

600

800

1000

» C = n (line 4) + #one-bits binary represeﬁtation of m (line 5)

~n<C<2n
~ [C =0(n) = @(logm)]

Note: Often, you can pretend © is “like ~ with an unknown constant”
but in this case, no such constant exists!

15

