ALGORITHMICS\$APPLI ED APPLIEDALGORITHMICS $\$$ CS \$APPLIEDALGORITHMI DALGORITHMICS \$ APPLIE EDALGORITHMICS\$APPLI GORITHMICS\$APPLIEDAL HMICS \$APPLIEDALGORIT

Fundamental

Data Structures
17 February 2021
Sebastian Wild

Outline

2 Fundamental Data Structures

2.1 Stacks \& Queues
2.2 Resizable Arrays
2.3 Priority Queues
2.4 Binary Search Trees
2.5 Ordered Symbol Tables
2.6 Balanced BSTs

2.1 Stacks \& Queues

Abstract Data Types

abstract data type (ADT)

- list of supported operations
- what should happen
- not: how to do it
- not: how to store data
\approx Java interface
(with Javadoc comments)

data structures

- specify exactly
how data is represented
- algorithms for operations
- has concrete costs
(space and running time)
\approx Java class (implementing interfaces) (non abstract)

Abstract Data Types

abstract data type (ADT)

- list of supported operations
- what should happen
- not: how to do it
- not: how to store data
\approx Java interface
(with Javadoc comments)

data structures

- specify exactly
how data is represented
- algorithms for operations
- has concrete costs
(space and running time)
\approx Java class
(non abstract)

Why separate?

- Can swap out implementations \rightsquigarrow "drop-in replacements")
\rightsquigarrow reusable code!
- (Often) better abstractions
- Prove generic lower bounds (\rightsquigarrow Unit 3)

Abstract Data Types

abstract data type (ADT)

- list of supported operatic
- what should happen
- not: how to do it
- not: how to store data
\approx Java interface (with Javadoc comments

Why separate?

- Can swap out implement

\rightsquigarrow reusable code!
- (Often) better abstractions
- Prove generic lower bounds (\rightsquigarrow Unit 3)

Clicker Question

Which of the following are examples of abstract data types?
(A) ADT
(G) resizable array
(B) Stack
(H) heap
(C) Deque
(I) priority queue
(D) Linked list
(E) binary search tree
(J) dictionary/symbol table
(K) hash table
(F) Queue

Clicker Question

Which of the following are examples of abstract data types?

Stacks

Stack ADT

- top()

Return the topmost item on the stack Does not modify the stack.

- push (x)

Add x onto the top of the stack.

- pop()

Remove the topmost item from the stack (and return it).

- isEmpty()

Returns true iff stack is empty.

- create()

Create and return an new empty stack.

Clicker Question

Suppose a stack initially contains the numbers $\underline{\longrightarrow}$,2,3,4,5 with 1 at the top.
What is the content of the stack after the following operations:
pop(); pop(); push(1);

$$
\begin{aligned}
& \text { A } \xrightarrow[\rightarrow]{1,2,3,1} \\
& \text { (B) } 3,4,5,1 \\
& \text { (C) } 1,3,4,5 \\
& \text { (D empty } \\
& \text { (E } 1,2,3,4,5
\end{aligned}
$$

$$
\frac{X}{2,} \downarrow
$$

$$
3
$$

$$
4
$$

$$
5
$$

Clicker Question

Suppose a stack initially contains the numbers $1,2,3,4,5$ with 1 at the top.
What is the content of the stack after the following operations:
pop(); pop(); push(1);

Q

$$
\begin{aligned}
& \text { (A) 1,2,3,7 } \\
& \text { (B) 3,4,5,4 } \\
& \text { (C) 1,3,4,5 } \\
& \text { (D) emp+y } \\
& \text { (E } 1,2,3,4,5
\end{aligned}
$$

Linked-list implementation for Stack

Invariants:

- maintain top pointer to topmost element
- each element points to the element below it (or null if bottommost)

Linked-list implementation for Stack

Invariants:

- maintain top pointer to topmost element
- each element points to the element below it (or null if bottommost)

Linked stacks:

- require $\Theta(n)$ space when n elements on stack
- All operations take $O(1)$ time

Array-based implementation for Stack

Can we avoid extra space for pointers?
\rightsquigarrow array-based implementation

Invariants:

- maintain array S of elements, from bottommost to topmost
- maintain index top of position of topmost element in S.

top: 34

Array-based implementation for Stack

Can we avoid extra space for pointers?
\rightsquigarrow array-based implementation

Invariants:

- maintain array S of elements, from bottommost to topmost
- maintain index top of position of topmost element in S.

What to do if stack is full upon pop?

Array stacks:

- require fixed capacity C (known at creation time)!
- require $\Theta(C)$ space for a capacity of C elements
- all operations take $O(1)$ time

2.2 Resizable Arrays

Digression - Arrays as ADT

Arrays can also be seen as an ADT!

Array operations:

- create(n) Java: A = new int[n];

Create a new array with n cells, with positions $0,1, \ldots, n-1$

- get(i) Java: A[i]

Return the content of cell i

- $\operatorname{set}(i, x) \quad$ Java: $\mathrm{A}[i]=x$;

Set the content of cell i to x.
\rightsquigarrow Arrays have fixed size (supplied at creation).

Digression - Arrays as ADT

Arrays can also be seen as an ADT! ... but are commonly seen as specific data structure

Array operations:

- create(n) Java: A = new int[n];

Create a new array with n cells, with positions $0,1, \ldots, n-1$

- get(i) Java: A[i]

Return the content of cell i

- $\operatorname{set}(i, x) \quad$ Java: $\mathrm{A}[i]=x$;

Set the content of cell i to x.
\rightsquigarrow Arrays have fixed size (supplied at creation).

Usually directly implemented by compiler + operating system / virtual machine.

Difference to others ADTs: Implementation usually fixed
to "a contiguous chunk of memory".

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:

- maintain array S of elements, from bottommost to topmost
- maintain index top of position of topmost element in S
- maintain capacity $C=$ s.length so thadt $\frac{1}{4} C \leq n \leq C$
\rightsquigarrow can always push more elements!

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:

- maintain array S of elements, from bottommost to topmost
- maintain index top of position of topmost element in
- maintain capacity $C=$ S. length so that $\frac{1}{4} C \leq n \leq C$
\rightsquigarrow can always push more elements!

How to maintain the last invariant?

- before push If $n=C, \quad$ allocate new array of size $2 n$, copy all elements.
- after pop If $n<\frac{1}{4} C$, allocate new array of size $2 n$, copy all elements.
\rightsquigarrow "Resizing Arrays"

Clicker Question

Which of the following statements about resizable array that currently stores n elements is correct?
(A) The elements are stored in an array of size $2 n$.
(B) Adding or deleting an element at the end takes constant time.
(C) A sequence of m insertions or deletions at the end of the array takes time $O(n+m)$.
(D) Inserting and deleting any element takes O (1) amortized time.

Amortized Analysis

- Any individual operation push / pop can be expensive! $\Theta(n)$ time to copy all elements to new array.
- But: An one expensive operation of cost T means $\Omega(T)$ next operations are cheap!

Amortized Analysis

- Any individual operation push / pop can be expensive! $\Theta(n)$ time to copy all elements to new array.
- But: An one expensive operation of cost T means $\Omega(T)$ next operations are cheap!
\#array accesses

Formally: consider "credits/potential" $\Phi=\min \left\{n-\frac{1}{4} C, C-n\right\} \in[0, \underline{0.6 n}]$

- amortized cost of an operation $=\underline{\text { actual cost (array accesses) }-4 \cdot \text { change in } \Phi ~}$

- cheap push/ pop: actual cost 1 array access, consumes ≤ 1 credits \rightsquigarrow amortized cost ≤ 5
- copying push: actual cost $2 n+1$ array accesses, creates $\frac{1}{2} n+1$ credits \rightsquigarrow amortized cost ≤ 5
- copying pop: actual cost $2 n+1$ array accesses, creates $\frac{1}{2} n-1$ credits \rightsquigarrow amortized cost $5 \square$
\rightsquigarrow sequence of m operations: total actual cost \leq total amortized cost + final credits

$$
\begin{array}{r}
a_{i}=c_{i}-4\left(\phi_{i}-\phi_{i-1}\right) \leqslant 5 \text { here: } \leq \frac{5 m}{4}+0.6 n=\Theta(m+n) \\
\sum_{i=1}^{m} a_{i} \leqslant 5 m \geqslant \sum_{i=1}^{m} a_{i}=\sum_{i=1}^{m} c_{i}-4 \sum_{i=1}^{m}\left(\phi_{i}-\phi_{i-1}\right)=\sum_{i=1}^{m} c_{i}-4\left(\phi_{m}-\phi_{0}\right) \\
\sum_{i=1}^{m} c_{i} \leqslant 5 m+4 \phi_{m}-4 \phi_{0} \leqslant 5 m+4 \emptyset_{m}
\end{array}
$$

Clicker Question

Which of the following statements about resizable array that currently stores n elements is correct?
(A) The elements are stored in an array of size $2 n$.
(B) Adding or deleting an element at the end takes constant time.
(C) A sequence of m insertions or deletions at the end of the array takes time $O(n+m)$.
(D) Inserting and deleting any element takes O (1) amortized time.

Clicker Question

Which of the following statements about resizable array that currently stores n elements is correct?
(A) The lements are tored in an array of cize 2n
(B) Adding or deleting an element at the and take enctant time.
(C) A sequence of m insertions or deletions at the end of the array takes time $O(n+m)$.
(D) Incerting and deleting any element takec- O (1) amertized time.

Queues

Operations:

- enqueue (x)

Add x at the end of the queue.

- dequeue()

Remove item at the front of the queue and return it.

Implementations similar to stacks.

Bags

What do Stack and Queue have in common?

Bags

What do Stack and Queue have in common?

They are special cases of a Bag!

Operations:

- insert (x)

Add x to the items in the bag.

- delAny()

Remove any one item from the bag and return it. (Not specified which; any choice is fine.)

- roughly similar to Java's Collection

Sometimes it is useful to state that order is irrelevant \rightsquigarrow Bag Implementation of Bag usually just a Stack or a Queue

2.3 Priority Queues

Clicker Question

What is a heap-ordered tree?
(A) A tree in which every node has exactly 2 children.
(B) A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root.
(C) A tree where all keys in the left subtree and right subtree are bigger than the key at the root.
(D) An tree that is stored in the heap-area of the memory.

Priority Queue ADT

Now: elements in the bag have different priorities.
(Max-oriented) Priority Queue (MaxPQ):

- construct (A)

Construct from from elements in array A.

- insert (x, p)

Insert item x with priority p into PQ.

- max()

Return item with largest priority. (Does not modify the PQ.)

- delMax()

Remove the item with largest priority and return it.

- changeKey (x, p^{\prime})

Update x^{\prime} s priority to p^{\prime}.
Sometimes restricted to increasing priority.

- isEmpty()

Fundamental building block in many applications.

Priority Queue ADT - min-oriented version

Now: elements in the bag have different priorities.
Min- Min
(Max-oriented) Priority Queue (MaxPQ):

- construct (A)

Construct from from elements in array A.

- insert (x, p)

Insert item x with priority p into PQ.
$-\min _{\max }()$
Return item with smallest
Return item with priority. (Does not modify the PQ.)

- delMin

Remove the item with smallest priority and return it.

- changeKey (x, p^{\prime})

Update x^{\prime} s priority to p^{\prime} de
Sometimes restricted to creasing priority.

- isEmpty()

Fundamental building block in many applications.

Clicker Question

Suppose we start with an empty priority queue and insert the numbers $7,2,4,1,9$ in that order. What is the result of delMin()?
(A) $-\infty$
(D) 4
(B) 1
(E) 7
(C) 2
(F) 9
(G) not allowed

Clicker Question

Suppose we start with an empty priority queue and insert the numbers $7,2,4,1,9$ in that order. What is the result of delMin()?

(G)

PQ implementations

Elementary implementations

- unordered list $\rightsquigarrow \Theta(1)$ insert, but $\Theta(n)$ delMax
- sorted list $\rightsquigarrow \Theta(1)$ delMax, but $\Theta(n)$ insert

PQ implementations

Elementary implementations

- unordered list $\rightsquigarrow \Theta(1)$ insert, but $\Theta(n)$ delMax
- sorted list $\rightsquigarrow \Theta(1)$ delMax, but $\Theta(n)$ insert

Can we get something between these extremes? Like a "slightly sorted" list?

PQ implementations

Elementary implementations

- unordered list $\rightsquigarrow \Theta(1)$ insert, but $\Theta(n)$ delMax
- sorted list $\rightsquigarrow \Theta(1)$ delMax, but $\Theta(n)$ insert

Can we get something between these extremes? Like a "slightly sorted" list?

Yes! Binary heaps.

Array view

$$
\begin{gathered}
\text { Heap }=\text { array } A \text { with } \\
\forall i \in[n]: A[\lfloor i / 2\rfloor] \geq A[i]
\end{gathered}
$$

Tree view

Binary heap example

Why heap-shaped trees?

Why complete binary tree shape?

- only one possible tree shape \rightsquigarrow keep it simple!
- complete binary trees have minimal height among all binary trees
- simple formulas for moving from a node to parent or children:

For a node at index k in A

- parent at $\lfloor k / 2\rfloor$
- left child at $2 k$
- right child at $2 k+1$

Why heap-shaped trees?

Why complete binary tree shape?

- only one possible tree shape \rightsquigarrow keep it simple!
- complete binary trees have minimal height among all binary trees
- simple formulas for moving from a node to parent or children:

For a node at index k in A

- parent at $\lfloor k / 2\rfloor$
- left child at $2 k$
- right child at $2 k+1$

Why heap ordered?

- Maximum must be at root! $\rightsquigarrow \max ()$ is trivial!
- But: Sorted only along paths of the tree; leaves lots of leeway for fast inserts

Clicker Question

What is a heap-ordered tree?
(A) A tree in which erery node hacently 2 children
(B) A tree where all keys in the left oubtree are cmaller than the
ky at the reand all keys in the right cubtree are bigger than the key at the roet.
(C) A tree where all keys in the left subtree and right subtree are bigger than the key at the root. $\sqrt{ }$
(D) An tree that is stered in the heap areaf the memory.

Insert

68 shope: only 1 possible position
BUT heop-order \& \Rightarrow swim up the he op

Delete Max

87 find max is easy after removing it \sum complete binary tree

Heap construction
n. insert $\quad \Rightarrow \theta(n \log n)$
can do better:

$\frac{n}{4}$. sink in heap of side ≤ 3

$$
\begin{aligned}
& \frac{n}{8} \cdot \\
& \frac{n}{2^{k}}
\end{aligned} \quad \leq 7
$$

$\theta(n)$ total time for hop cons!

Analysis

Height of binary heaps:

- height of a tree: \# edges on longest root-to-leaf path
- depth/level of a node: \#edges from root \rightsquigarrow root has depth 0

- How many nodes on first k full levels?

$$
\sum_{\ell=0}^{k} 2^{\ell}=2^{k+1}-1 \log _{2} \longrightarrow
$$

\rightsquigarrow Height of binary heap: $h=\min k$ s.t. $2^{k+1}-1 \geq n=\lfloor\lg (n)\rfloor$

Analysis

Height of binary heaps:

- height of a tree: \# edges on longest root-to-leaf path
- depth/level of a node: \# edges from root \rightsquigarrow root has depth 0
- How many nodes on first k full levels? $\quad \sum_{\ell=0}^{k} 2^{\ell}=2^{k+1}-1$
\rightsquigarrow Height of binary heap: $h=\min k$ s.t. $2^{k+1}-1 \geq n=\lfloor\lg (n)\rfloor$

Analysis:

- insert: new element "swims" up $\rightsquigarrow \leq h$ steps ($h \mathrm{cmps}$)
- delMax: last element "sinks" down $\rightsquigarrow \leq h$ steps ($2 h \mathrm{cmps}$)
- construct from n elements:
cost $=$ cost of letting each node in heap sink!

$$
\begin{aligned}
& \leq 1 \cdot h+2 \cdot(h-1)+4 \cdot(h-2)+\cdots+2^{\ell} \cdot(h-\ell)+\cdots+2^{h-1} \cdot 1+2^{h} \cdot 0 \\
& =\sum_{\ell=0}^{h} 2^{\ell}(h-\ell)=\sum_{i=0}^{h} \frac{2^{h}}{2^{i}} i=2^{h} \sum_{i=0}^{h} \frac{i}{2^{i}} \leq 2 \cdot 2^{h} \leq 4 n
\end{aligned}
$$

Binary heap summary

Operation	Running Time
construct $(A[1 \ldots n])$	$O(n)$
$\max ()$	$O(1)$
insert (x, p)	$O(\log n)$
delMax()	$O(\log n)$
changeKey $\left(x, p^{\prime}\right)$	$O(\log n)$
isEmpty ()	$O(1)$
size()	$O(1)$

2.4 Binary Search Trees

Clicker Question

Have you ever used a printed dictionary (physical book)?
(A) Yes
(B) No

Clicker Question

What is a binary search tree (tree in symmetric order)?
(A) A tree in which every node has exactly 2 children.
(B) A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root.
(C) A tree where all keys in the left subtree and right subtree are bigger than the key at the root.
(D) A tree that is stored in the heap-area of the memory.

Clicker Question

What is a binary search tree (tree in symmetric order)?
(A) A tree in which every node hasex lly 2children
(B) A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root. $\sqrt{ }$
(C) A tree where alllkeys in the left oubtre and right oubtree are bigger than the key at the reot.
(D) A tree that ic stored in the heap rea f the memery.

Symbol table ADT

Java: java.util.Map<K,V>
Symbol table / Dictionary / Map / Associative array / key-value store:

- put $(k, v) \quad$ Python dict: $\mathrm{d}[k]=v$

$$
\text { Put key-value pair }(k, v) \text { into table }
$$

- get (k) Python dict: $\mathrm{d}[k]$

Return value associated with key k

- delete(k)

Remove key k (any associated value) form table

- contains(k)

Returns whether the table has a value for key k

- isEmpty(),size()
- create()

Most fundamental building block in computer science.
(Every programming library has a symbol table implementation.)

Symbol tables vs mathematical functions

- similar interface
- but: mathematical functions are static (never change their mapping)
(Different mapping is a different function)
- symbol table = dynamic mapping

Function may change over time

Elementary implementations

Unordered (linked) list:
0 Fast put
q $\Theta(n)$ time for get
\rightsquigarrow Too slow to be useful

Elementary implementations

Unordered (linked) list:Fast put
$\mathcal{F} \Theta(n)$ time for get
\rightsquigarrow Too slow to be useful

Sorted linked list:

q $\Theta(n)$ time for put
q $\Theta(n)$ time for get
\rightsquigarrow Too slow to be useful
\rightsquigarrow Sorted order does not help us at all?!

Binary search

It does help . . . if we have a sorted array!
Example: search for 69

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
11	12	17	28	35	55	57	63	69	77	79	80	82	85	88	97
ℓ							m							r	

Binary search

It does help . . . if we have a sorted array!
Example: search for 69

Binary search

It does help . . . if we have a sorted array!
Example: search for 69

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
11	12	17	28	35	55	57	63	69	77	79	80	82	85	88	97
ℓ							m							r	

Binary search

It does help . . . if we have a sorted array!
Example: search for 69

Binary search

It does help . . . if we have a sorted array!

Example: search for 69

Binary search:

- halve remaining list in each step
$\rightsquigarrow \leq\lfloor\lg n\rfloor+1 \mathrm{cmps}$ in the worst case
needs random access

Clicker Question

Suppose we have a sorted array containing the numbers $10,20,30,40,50,60,70$ and we use binary search to check whether this array contains key 25 .
What is the sequence of comparisons executed by the binary search algorithm?
(A) $10<25,20<25,30>25$
(B) $40>25,20<25,30>25$
(C) $20<25<30$
(D) $40>25,20<25$
(E) don't know

Clicker Question

Suppose we have a sorted array containing the numbers $10,20,30,40,50,60,70$ and we use binary search to check whether this array contains key 25 .
What is the sequence of comparisons executed by the binary search algorithm?
(A) $10<25,20 \sim 25,30>25$
(B) $40>25,20<25,30>25$,
(C) $20 \sim 25<30$
(D) $40 \rightarrow 25,20<25$
(E)

Binary search trees

Binary search trees (BSTs) \approx dynamic sorted array

- binary tree
- Each node has left and right child
- Either can be empty (null)
- Keys satisfy search-tree property
all keys in left subtree \leq root key \leq all keys in right subtree

BST example \& find

$$
\begin{array}{lllllllllllllll}
11 & 12 & 17 & 28 & 35 & 55 & 57 & 63 & 69 & 77 & 79 & 80 & 82 & 85 & 97
\end{array}
$$

BST insert

Example: Insert 88

BST delete

- Easy case: remove leaf, e.g., $11 \leadsto$ replace by null
- Medium case: remove unary, e.g., $69 \rightsquigarrow$ replace by unique child
- Hard case:
remove binary, e. g., $85 \rightsquigarrow$ swap with predecessor, recurse

Analysis
search:

$$
\prod_{1} \leqslant \text { height of BST }
$$

insert: same as search $O(h)$
delete, search for k plus its proclecersor OCh)

BST summary

Operation	Running Time
$\operatorname{construct}(A[1 . . n])$	$O(n h)$
put (k, v)	$O(h)$
get (k)	$O(h)$
delete (k)	$O(h)$
contains (k)	$O(h)$
isEmpty ()	$O(1)$
size()	$O(1)$

What is the height of a BST?
a) worst case

b) average case (insertions in random order \& no delete) $h=\theta(\log n) \quad$ (even with high probability)

2.5 Ordered Symbol Tables

Ordered symbol tables

- min(), max()

Return the smallest resp. largest key in the ST

- floor (x),
$\lfloor x\rfloor=\mathbb{Z}$. floor (x)
Return largest key k in ST with $k \leq x$.
- ceiling $(x) \quad\lceil x\rceil$

Return smallest key k in ST with $k \geq x$.

- rank (x)

Return the number of keys k in ST $k<x$.

- select (i^{i})
$A[i]$
Return the h smallest key in ST (zero-based, i.e., $\left.\begin{array}{c}i \\ i\end{array}\right][0 . . n)$)

With select, we can simulate access as in a truly dynamic array!.
(Might not need any keys at all then!)

Augmented BSTs
slido: $\begin{array}{r}\operatorname{rank}(35) \\ x=35\end{array}$

Rank

each node stores its subtree size (not rants)
can be maintained upon updates

2.6 Balanced BSTs

Clicker Question

What ways of maintaining a balanced binary search tree do you know?
Write "none" if you have not seen balanced BSTs before.

Balanced BSTs

Balanced binary search trees:

too strict fol BST

- imposes shape invariant that guarantees $O(\log n)$ height
- adds rules to restore invariant after updates

Balanced BSTs
Balanced binary search trees:

(2) all leaves have same 6 lack height

Balanced BSTs

Balanced binary search trees:

- imposes shape invariant that guarantees $O(\log n)$ height
- adds rules to restore invariant after updates
- many examples known
- AVL trees (height-balanced trees)
- red-black trees
- weight-balanced trees ($\mathrm{BB}[\alpha]$ trees)
- other (simpler) options:
- amortization: splay trees, scapegoat trees
- randomization: randomized BSTs, treaps, skip lists

BSTs vs. Heaps

Balanced binary search tree

Operation	Running Time
construct $(A[1 . . n])$	$O(n \log n)$
put (k, v)	$O(\log n)$
$\operatorname{get}(k)$	$O(\log n)$
delete (k)	$O(\log n)$
$\operatorname{contains}(k)$	$O(\log n)$
isEmpty()	$O(1)$
$\operatorname{size}()$	$O(1)$
$\min () / \max ()$	$O(\log n) \rightsquigarrow O(1)$
floor (x)	$O(\log n)$
ceiling (x)	$O(\log n)$
rank (x)	$O(\log n)$
select (i)	$O(\log n)$

Binary heaps

Operation	Running Time
construct $(A[1 . . n])$	$O(n)$
insert (x, p)	$O(\log n)$
delMax($)$	$O(\log n)$
changeKey $\left(x, p^{\prime}\right)$	$O(\log n)$
max()	$O(1)$
isEmpty ()	$O(1)$
size()	$O(1)$

BSTs vs. Heaps

Balanced binary search tree

Operation	Running Time
construct $(A[1 . . n])$	$O(n \log n)$
put (k, v)	$O(\log n)$
$\operatorname{get}(k)$	$O(\log n)$
delete (k)	$O(\log n)$
$\operatorname{contains}(k)$	$O(\log n)$
isEmpty()	$O(1)$
$\operatorname{size}()$	$O(1)$
$\min () / \max ()$	$O(\log n) \rightsquigarrow O(1)$
floor (x)	$O(\log n)$
$\operatorname{ceiling}(x)$	$O(\log n)$
rank (x)	$O(\log n)$
select (i)	$O(\log n)$

Binary heaps

Operation	Running Time
construct $(A[1 . . n])$	$O(n)$
insert (x, p)	$O(\log n)$
delMax($)$	$O(\log n)$
changeKey $\left(x, p^{\prime}\right)$	$O(\log n)$
max()	$O(1)$
isEmpty ()	$O(1)$
size()	$O(1)$

- apart from faster construct, BSTs always as good as binary heaps

BSTs vs. Heaps

Balanced binary search tree

Operation	Running Time
construct $(A[1 . . n])$	$O(n \log n)$
put (k, v)	$O(\log n)$
$\operatorname{get}(k)$	$O(\log n)$
$\operatorname{delete}(k)$	$O(\log n)$
$\operatorname{contains}(k)$	$O(\log n)$
isEmpty()	$O(1)$
$\operatorname{size}()$	$O(1)$
$\min () / \max ()$	$O(\log n) \rightsquigarrow O(1)$
floor (x)	$O(\log n)$
$\operatorname{ceiling}(x)$	$O(\log n)$
$\operatorname{rank}(x)$	$O(\log n)$
$\operatorname{select}(i)$	$O(\log n)$

Binary heaps

Operation	Running Time
construct $(A[1 . . n])$	$O(n)$
insert (x, p)	$O(\log n)$
delMax($)$	$O(\log n)$
changeKey $\left(x, p^{\prime}\right)$	$O(\log n)$
max()	$O(1)$
isEmpty ()	$O(1)$
size()	$O(1)$

- apart from faster construct, BSTs always as good as binary heaps
- MaxPQ abstraction still helpful

BSTs vs. Heaps

Balanced binary search tree

Operation	Running Time
construct $(A[1 . . n])$	$O(n \log n)$
put (k, v)	$O(\log n)$
$\operatorname{get}(k)$	$O(\log n)$
delete (k)	$O(\log n)$
$\operatorname{contains}(k)$	$O(\log n)$
isEmpty()	$O(1)$
$\operatorname{size}()$	$O(1)$
$\min () / \max ()$	$O(\log n) \rightsquigarrow O(1)$
floor (x)	$O(\log n)$
$\operatorname{ceiling}(x)$	$O(\log n)$
rank (x)	$O(\log n)$
$\operatorname{select}(i)$	$O(\log n)$

Binary heaps

Operation	Running Time
construct $(A[1 . . n])$	$O(n)$
insert (x, p)	$O(\log n) O(1)$
delMax ()	$O(\log n)$
changeKey $\left(x, p^{\prime}\right)$	$O(\log n) O(1)$
max($)$	$O(1)$
isEmpty ()	$O(1)$
size($)$	$O(1)$

- apart from faster construct, BSTs always as good as binary heaps
- MaxPQ abstraction still helpful
- and faster heaps exist!

