2

Fundamental Data Structures

17 February 2021

Sebastian Wild

Outline

2 Fundamental Data Structures

- 2.1 Stacks & Queues
- 2.2 Resizable Arrays
- 2.3 Priority Queues
- 2.4 Binary Search Trees
- 2.5 Ordered Symbol Tables
- 2.6 Balanced BSTs

2.1 Stacks & Queues

Abstract Data Types

abstract data type (ADT)

- ► list of supported operations
- what should happen
- ▶ not: how to do it
- ▶ not: how to store data
- ≈ Java interface (with Javadoc comments)

data structures

- specify exactly how data is represented
- algorithms for operations
- has concrete costs (space and running time)
- ≈ Java class (implementing interfaces)
 (non abstract)

Abstract Data Types

abstract data type (ADT)

- ▶ list of supported operations
- what should happen
- ▶ not: how to do it
- ▶ **not:** how to store data
- ≈ Java interface (with Javadoc comments)

data structures

- specify exactly how data is represented
- algorithms for operations
- has concrete costs (space and running time)
- ≈ Java class (non abstract)

Why separate?

► Can swap out implementations → "drop-in replacements")

VS.

- → reusable code!
- ► (Often) better abstractions
- ► Prove generic lower bounds (→ Unit 3)

Abstract Data Types

abstract data type (ADT)

- list of supported operatio
- ▶ what should happen
- ▶ not: how to do it
- **not:** how to store data
- ≈ Java interface (with Javadoc comments)

Why separate?

- ► Can swap out implement
- → reusable code!
- ▶ (Often) better abstractions
- ► Prove generic lower bounds (→ Unit 3)

Which of the following are examples of abstract data types?

9

A ADT

B Stack

C) Deque

D Linked list

E binary search tree

F) Queue

G resizable array

(H) heap

priority queue

J dictionary/symbol table

() hash table

sli.do/comp526

sli.do/comp526

Stacks

Stack ADT

- top()Return the topmost item on the stackDoes not modify the stack.
- push(x)
 Add x onto the top of the stack.
- pop()Remove the topmost item from the stack (and return it).
- ► isEmpty()
 Returns true iff stack is empty.
- create()Create and return an new empty stack.

Suppose a stack initially contains the numbers 1, 2, 3, 4, 5 with 1 at the top.

What is the content of the stack after the following operations:

pop(); pop(); push(1);

- 1,2,3,1
- 3,4,5,1
- C 1,3,4,5
- empty
- E 1,2,3,4,5

sli.do/comp526

Suppose a stack initially contains the numbers 1, 2, 3, 4, 5 with 1 at the top.

What is the content of the stack after the following operations:

```
pop(); pop(); push(1);
```


- A) 1,2,3,1
 - 3,4,5,1
- C 1,3,4,5 ✓
- D empty
- E) 1,2,3,4,5

sli.do/comp526

Linked-list implementation for Stack

Invariants:

- ► maintain top pointer to topmost element
- each element points to the element below it (or null if bottommost)

Linked-list implementation for Stack

Invariants:

- ► maintain top pointer to topmost element
- each element points to the element below it (or null if bottommost)

Linked stacks:

- ▶ require $\Theta(n)$ space when n elements on stack
- ightharpoonup All operations take O(1) time

Array-based implementation for Stack

Can we avoid extra space for pointers?

→ array-based implementation

Invariants:

- ▶ maintain array S of elements, from bottommost to topmost
- ► maintain index top of position of topmost element in S.

top: 3 9

Array-based implementation for Stack

Can we avoid extra space for pointers?

→ array-based implementation

Invariants:

- ▶ maintain array S of elements, from bottommost to topmost
- ▶ maintain index top of position of topmost element in S.

What to do if stack is full upon pop?

Array stacks:

- ► require *fixed capacity C* (known at creation time)!
- ▶ require $\Theta(C)$ space for a capacity of C elements
- ightharpoonup all operations take O(1) time

2.2 Resizable Arrays

Digression – Arrays as ADT

Arrays can also be seen as an ADT!

Array operations:

- reate(n) Java: A = new int[n]; Create a new array with n cells, with positions 0, 1, ..., n-1
- ▶ get(i) Java: A[i]
 Return the content of cell i
- ► set(i,x) Java: A[i] = x; Set the content of cell i to x.
- → Arrays have fixed size (supplied at creation).

Digression – Arrays as ADT

Arrays can also be seen as an ADT! ... but are commonly seen as specific data structure

Array operations:

- reate(n) Java: A = new int[n]; Create a new array with n cells, with positions 0, 1, ..., n-1
- ▶ get(i) Java: A[i]
 Return the content of cell i
- ► set(i,x) Java: A[i] = x; Set the content of cell i to x.
- → Arrays have fixed size (supplied at creation).

Usually directly implemented by compiler + operating system / virtual machine.

Difference to others ADTs: Implementation usually fixed

to "a contiguous chunk of memory".

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:

- ▶ maintain array S of elements, from bottommost to topmost
- ► maintain index top of position of topmost element in S
- ▶ maintain capacity $C = \text{S.length so th} \oint_{\Gamma} \frac{1}{4}C \le n \le C$
- → can always push more elements!

Doubling trick

Can we have unbounded stacks based on arrays?

Invariants:

▶ maintain array S of elements, from bottommost to topmost

Yes!

► maintain index top of position of topmost element in S

▶ maintain capacity C = S.length so that $\frac{1}{4}C \le n \le C$

→ can always push more elements!

How to maintain the last invariant?

- before push
 If n = C, allocate new array of size 2n, copy all elements.
- ▶ after pop If $n < \frac{1}{4}C$, allocate new array of size 2n, copy all elements.
- → "Resizing Arrays"

 → an implementation technique, not an ADT!

Which of the following statements about resizable array that currently stores *n* elements is correct?

- f A The elements are stored in an array of size 2n.
- **B** Adding or deleting an element at the end takes constant time.
- A sequence of m insertions or deletions at the end of the array takes time O(n + m).
- D Inserting and deleting any element takes O(1) amortized time.

sli.do/comp526

Amortized Analysis

- Any individual operation push / pop can be expensive! $\Theta(n)$ time to copy all elements to new array.
- **But:** An one expensive operation of cost T means $\Omega(T)$ next operations are cheap!

Amortized Analysis

blue parts are corrections after lecture (looks different in video recordings)

- ► Any individual operation push / pop can be expensive! $\Theta(n)$ time to copy all elements to new array.
- **But:** An one expensive operation of cost T means $\Omega(T)$ next operations are cheap!

Formally: consider "credits/potential"
$$\Phi = \min\{n - \frac{1}{4}C, C - n\} \in [0, 0.6n]$$

- ▶ amortized cost of an operation = $\frac{1}{2}$ actual cost (array accesses) $\frac{1}{2}$ change in $\frac{1}{2}$ change in $\frac{1}{2}$ change in $\frac{1}{2}$
 - ▶ cheap push/pop: actual cost $\underline{1}$ array access, consumes ≤ 1 credits \longrightarrow amortized cost ≤ 5 ► copying push: actual cost 2n + 1 array accesses, creates $\frac{1}{2}n + 1$ credits \longrightarrow amortized cost ≤ 5
 - copying pop: actual cost 2n + 1 array accesses, creates $\frac{1}{2}n 1$ credits \rightarrow amortized cost 5

 \rightarrow sequence of *m* operations: total actual cost \leq total amortized cost + final credits

$$a_{i} = c_{i} - 4(\phi_{i} - \phi_{i-1}) \leq 5 \qquad \text{here:} \leq \underbrace{5m} + \underbrace{4 \cdot 0.6n} = \underbrace{\Theta(m+n)}$$

$$\sum_{i=1}^{m} a_{i} \leq 5m \geq \sum_{i=1}^{m} a_{i} = \sum_{i=1}^{m} c_{i} - 4\sum_{i=1}^{m} (\phi_{i} - \phi_{i-1}) = \sum_{i=1}^{m} c_{i} - 4(\phi_{m} - \phi_{o})$$

$$\sum_{i=1}^{m} c_{i} \leq 5m + 4\phi_{m} - 4\phi_{o} \leq 5m + 4\phi_{m}$$

Which of the following statements about resizable array that currently stores *n* elements is correct?

- f A The elements are stored in an array of size 2n.
- **B** Adding or deleting an element at the end takes constant time.
- A sequence of m insertions or deletions at the end of the array takes time O(n + m).
- D Inserting and deleting any element takes O(1) amortized time.

sli.do/comp526

Which of the following statements about resizable array that currently stores *n* elements is correct?

- A The elements are stored in an array of size 2**
- B Adding or deleting an element at the end takes constant time.
- A sequence of m insertions or deletions at the end of the array takes time O(n + m).
- D Inserting and deleting any element takes O(1) amortized time.

sli.do/comp526

Queues

Operations:

- enqueue(x)Add x at the end of the queue.
- dequeue()Remove item at the front of the queue and return it.

Implementations similar to stacks.

Bags

What do Stack and Queue have in common?

Bags

What do Stack and Queue have in common?

They are special cases of a **Bag!**

Operations:

- ▶ insert(x)Add x to the items in the bag.
- delAny()Remove any one item from the bag and return it.(Not specified which; any choice is fine.)
- ► roughly similar to Java's Collection

Sometimes it is useful to state that order is irrelevant → Bag Implementation of Bag usually just a Stack or a Queue

2.3 Priority Queues

What is a heap-ordered tree?

- B A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root.
- C A tree where all keys in the left subtree and right subtree are bigger than the key at the root.
- D An tree that is stored in the heap-area of the memory.

sli.do/comp526

Priority Queue ADT

Now: elements in the bag have different *priorities*.

(Max-oriented) Priority Queue (MaxPQ):

- ► construct(*A*)

 Construct from from elements in array *A*.
- ▶ insert (x, p) Insert item x with priority p into PQ.
- max() Return item with largest priority. (Does not modify the PQ.)
- delMax()Remove the item with largest priority and return it.
- ▶ changeKey(x,p')
 Update x's priority to p'.
 Sometimes restricted to *increasing* priority.
- ► isEmpty()

Fundamental building block in many applications.

Priority Queue ADT - min-oriented version

Now: elements in the bag have different *priorities*.

Min(Max-oriented) Priority Queue (MaxPQ):

- ► construct(*A*)
 Construct from from elements in array *A*.
- ▶ insert (x, p) Insert item x with priority p into PQ.
- Return item with largest priority. (Does not modify the PQ.)
- ► del Min ()
 Remove the item with largest priority and return it.
- ► changeKey(*x*, *p'*)

 Update *x'*s priority to *p'*de

 Sometimes restricted to
 #*creasing priority.
- ► isEmpty()

Fundamental building block in many applications.

Suppose we start with an empty priority queue and insert the numbers 7, 2, 4, 1, 9 in that order. What is the result of delMin()?

 \mathbf{A} $-\infty$

D) 4

G not allowed

B) 1

C) 2

F) 9

sli.do/comp526

Suppose we start with an empty priority queue and insert the numbers 7, 2, 4, 1, 9 in that order. What is the result of delMin()?

G F

not allowed

sli.do/comp526

PQ implementations

Elementary implementations

- ▶ unordered list \longrightarrow $\Theta(1)$ insert, but $\Theta(n)$ delMax
- ▶ sorted list \longrightarrow $\Theta(1)$ delMax, but $\Theta(n)$ insert

PQ implementations

Elementary implementations

- ▶ unordered list \longrightarrow $\Theta(1)$ insert, but $\Theta(n)$ delMax
- ▶ sorted list \longrightarrow $\Theta(1)$ delMax, but $\Theta(n)$ insert

Can we get something between these extremes? Like a "slightly sorted" list?

PQ implementations

Elementary implementations

- ▶ unordered list \longrightarrow $\Theta(1)$ insert, but $\Theta(n)$ delMax
- ▶ sorted list \longrightarrow $\Theta(1)$ delMax, but $\Theta(n)$ insert

Can we get something between these extremes? Like a "slightly sorted" list?

Yes! Binary heaps.

Binary heap example

Why heap-shaped trees?

Why complete binary tree shape?

- ▶ only one possible tree shape → keep it simple!
- ▶ complete binary trees have minimal height among all binary trees
- ▶ simple formulas for moving from a node to parent or children:

For a node at index k in A

- ▶ parent at $\lfloor k/2 \rfloor$
- ightharpoonup left child at 2k
- right child at 2k + 1

Why heap-shaped trees?

Why complete binary tree shape?

- ▶ only one possible tree shape → keep it simple!
- ▶ complete binary trees have minimal height among all binary trees
- ▶ simple formulas for moving from a node to parent or children:

For a node at index k in A

- ▶ parent at $\lfloor k/2 \rfloor$
- ightharpoonup left child at 2k
- right child at 2k + 1

Why heap ordered?

- ► Maximum must be at root! → max() is trivial!
- ▶ But: Sorted only along paths of the tree; leaves lots of leeway for fast inserts

how? ... stay tuned

What is a heap-ordered tree?

- A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root.
- A tree where all keys in the left subtree and right subtree are bigger than the key at the root.
- D An tree that is stored in the heap area of the memory.

sli.do/comp526

Insert

Delete Max

Heap construction

n. insert => \text{O}(nlogn)

com do better:

Analysis

Height of binary heaps:

- ► *height* of a tree: # edges on longest root-to-leaf path
- ► depth/level of a node: #edges from root → root has depth 0
- ightharpoonup How many nodes on first k full levels?

$$\sum_{\ell=0}^{k} 2^{\ell} = 2^{k+1} - 1$$

 \rightarrow Height of binary heap: $h = \min k \text{ s.t. } 2^{k+1} - 1 \ge n = \lfloor \lg(n) \rfloor$

Analysis

Height of binary heaps:

- ▶ *height* of a tree: #edges on longest root-to-leaf path
- ► depth/level of a node: # edges from root → root has depth 0
- ► How many nodes on first *k* full levels? $\sum_{\ell=0}^{k} 2^{\ell} = 2^{k+1} 1$
- \rightarrow Height of binary heap: $h = \min k \text{ s.t. } 2^{k+1} 1 \ge n = \lfloor \lg(n) \rfloor$

Analysis:

- ▶ insert: new element "swims" up \rightsquigarrow ≤ h steps (h cmps)
- ▶ delMax: last element "sinks" down \longrightarrow ≤ h steps (2h cmps)
- ightharpoonup construct from n elements:

cost = cost of letting each node in heap sink!

$$\leq 1 \cdot h + 2 \cdot (h-1) + 4 \cdot (h-2) + \dots + 2^{\ell} \cdot (h-\ell) + \dots + 2^{h-1} \cdot 1 + 2^{h} \cdot 0$$

= $\sum_{\ell=0}^{h} 2^{\ell} (h-\ell) = \sum_{i=0}^{h} \frac{2^{h}}{2^{i}} i = 2^{h} \sum_{i=0}^{h} \frac{i}{2^{i}} \leq 2 \cdot 2^{h} \leq 4n$

Binary heap summary

Operation	Running Time
construct(A[1n])	O(n)
max()	O(1)
insert(x,p)	$O(\log n)$
delMax()	$O(\log n)$
changeKey(x, p')	$O(\log n)$
isEmpty()	O(1)
size()	O(1)

2.4 Binary Search Trees

Have you ever used a printed dictionary (physical book)?

- A Yes
- B) No

sli.do/comp526

What is a binary search tree (tree in symmetric order)?

- B A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root.
- C A tree where all keys in the left subtree and right subtree are bigger than the key at the root.
- D A tree that is stored in the heap-area of the memory.

sli.do/comp526

What is a binary search tree (tree in symmetric order)?

- B A tree where all keys in the left subtree are smaller than the key at the root and all keys in the right subtree are bigger than the key at the root.
- A tree where all keys in the left subtree and right subtree are bigger than the key at the root.
- D A tree that is stored in the heap area of the memory.

sli.do/comp526

Symbol table ADT

,Java: java.util.Map<K,V>

Symbol table / Dictionary / Map / Associative array / key-value store:

- ▶ put (k, v) Python dict: d[k] = vPut key-value pair (k, v) into table
- ▶ get(k) Python dict: d[k] Return value associated with key k
- ► delete(*k*)
 Remove key *k* (any associated value) form table
- contains(k)
 Returns whether the table has a value for key k
- ▶ isEmpty(), size()
- ► create()

Most fundamental building block in computer science.

(Every programming library has a symbol table implementation.)

Symbol tables vs mathematical functions

- similar interface
- ▶ but: mathematical functions are *static* (never change their mapping) (Different mapping is a *different* function)
- symbol table = dynamic mapping
 Function may change over time

Elementary implementations

Unordered (linked) list:

→ Too slow to be useful

Elementary implementations

Unordered (linked) list:

 $\Theta(n)$ time for get

→ Too slow to be useful

Sorted linked list:

 $\Theta(n)$ time for get

→ Too slow to be useful

→ Sorted order does not help us at all?!

It does help . . . if we have a sorted array!

Example: search for 69

It does help . . . if we have a sorted array!

Example: search for 69

It does help . . . if we have a sorted array!

Example: search for 69

It does help . . . if we have a sorted array!

It does help . . . if we have a sorted array!

Binary search:

- halve remaining list in each step
- $\rightsquigarrow \leq \lfloor \lg n \rfloor + 1 \text{ cmps}$ in the worst case

needs random access

Suppose we have a sorted array containing the numbers 10, 20, 30, 40, 50, 60, 70 and we use binary search to check whether this array contains key 25.

၇

What is the sequence of comparisons executed by the binary search algorithm?

sli.do/comp526

Suppose we have a sorted array containing the numbers 10, 20, 30, 40, 50, 60, 70 and we use binary search to check whether this array contains key 25.

What is the sequence of comparisons executed by the binary search algorithm?

(A)
$$10 < 25, 20 < 25, 30 > 25$$

B
$$40 > 25, 20 < 25, 30 > 25$$

$$(D)$$
 $40 > 25, 20 < 25$

sli.do/comp526

Binary search trees

Binary search trees (BSTs) \approx dynamic sorted array

- ▶ binary tree
 - ► Each node has left and right child
 - ► Either can be empty (null)
- ► Keys satisfy *search-tree property*

BST example & find

BST delete

► <u>Easy case</u>: remove leaf, e.g., 11 ~ replace by null

► Medium case: remove unary, e.g., 69 ~ replace by unique child

► Hard case: remove binary, e. g., <u>85</u> → swap with predecessor, recurse

Analysis

insert: same as search O(h)

search for k plus its prodecuror delete:

BST summary

Operation	Running Time
construct(A[1n])	O(nh)
put(k,v)	O(h)
get(k)	O(h)
delete(k)	O(h)
contains(k)	O(h)
isEmpty()	O(1)
size()	O(1)

What is the height of a BST ?

a) worst case

b) average case

(insertions in random order & no delete)
$$h = \Theta(\log n) \qquad (even with high probability)$$

h = O(logn)

2.5 Ordered Symbol Tables

Ordered symbol tables

ADT

min(), max()
Return the smallest resp. largest key in the ST

- ► floor(x), $[x] = \mathbb{Z}.floor(x)$ Return largest key k in ST with $k \le x$.
- rank(x)
 Return the number of keys k in ST k < x.
- ► select(i) ξ $\triangle \exists \zeta$ Return the Mth smallest key in ST (zero-based, i. e., $i \in [0..n)$)

With select, we can simulate access as in a truly dynamic array!.

(Might not need any keys at all then!)

Augmented BSTs

each node stores its subtree size (not rank)
can be maintained upon updates

2.6 Balanced BSTs

Clicker Question

What ways of maintaining a **balanced** binary search tree do you know?

Write "none" if you have not seen balanced BSTs before.

sli.do/comp526

Click on "Polls" tab

Balanced BSTs

too strict for BST

Balanced binary search trees:

- ▶ imposes shape invariant that guarantees $O(\log n)$ height
- ► adds rules to restore invariant after updates

Balanced BSTs

Balanced binary search trees:

ightharpoonup imposes shape invariant that guarantees $O(\log n)$ height

invariant:

adds rules to restore invariant after updates

- many examples known
 - ► AVL trees (height-balanced trees)
 - red-black trees
 - weight-balanced trees (BB[α] trees)
 - ▶ ...

edges of edges

2) all lerves have some 6 Rock haight 33

Balanced BSTs

Balanced binary search trees:

- ightharpoonup imposes shape invariant that guarantees $O(\log n)$ height
- adds rules to restore invariant after updates
- ► many examples known
 - ► AVL trees (height-balanced trees)
 - red-black trees
 - weight-balanced trees (BB[α] trees)
 - **.**..
- ▶ other (simpler) options:
 - ▶ amortization: splay trees, scapegoat trees
 - randomization: randomized BSTs, treaps, skip lists

Balanced binary search tree

Operation	Running Time
construct(A[1n])	$O(n \log n)$
put(k,v)	$O(\log n)$
get(<i>k</i>)	$O(\log n)$
delete(k)	$O(\log n)$
contains(k)	$O(\log n)$
isEmpty()	O(1)
size()	O(1)
<pre>min() / max()</pre>	$O(\log n) \rightsquigarrow O(1)$
floor(x)	$O(\log n)$
ceiling(x)	$O(\log n)$
rank(x)	$O(\log n)$
select(<i>i</i>)	$O(\log n)$

Binary heaps

Operation	Running Time
construct(A[1n])	O(n)
insert(x,p)	$O(\log n)$
delMax()	$O(\log n)$
changeKey(x,p')	$O(\log n)$
max()	O(1)
isEmpty()	O(1)
size()	O(1)

Balanced binary search tree

Operation	Running Time
construct(A[1n])	$O(n \log n)$
put(k,v)	$O(\log n)$
get(<i>k</i>)	$O(\log n)$
delete(k)	$O(\log n)$
contains(k)	$O(\log n)$
isEmpty()	O(1)
size()	O(1)
<pre>min() / max()</pre>	$O(\log n) \rightsquigarrow O(1)$
floor(x)	$O(\log n)$
ceiling(x)	$O(\log n)$
rank(x)	$O(\log n)$
select(<i>i</i>)	$O(\log n)$

Binary heaps

Operation	Running Time
construct(A[1n])	O(n)
insert(x,p)	$O(\log n)$
delMax()	$O(\log n)$
changeKey (x,p')	$O(\log n)$
max()	O(1)
isEmpty()	O(1)
size()	O(1)

► apart from faster construct, BSTs always as good as binary heaps

Balanced binary search tree

Operation	Running Time
construct(A[1n])	$O(n \log n)$
put(k,v)	$O(\log n)$
get(<i>k</i>)	$O(\log n)$
delete(k)	$O(\log n)$
contains(k)	$O(\log n)$
isEmpty()	O(1)
size()	O(1)
<pre>min() / max()</pre>	$O(\log n) \rightsquigarrow O(1)$
floor(x)	$O(\log n)$
ceiling(x)	$O(\log n)$
rank(x)	$O(\log n)$
select(i)	$O(\log n)$

Binary heaps

Operation	Running Time
construct(A[1n])	O(n)
insert(x,p)	$O(\log n)$
delMax()	$O(\log n)$
changeKey(x, p')	$O(\log n)$
max()	O(1)
isEmpty()	O(1)
size()	O(1)

- ► apart from faster construct, BSTs always as good as binary heaps
- ► MaxPQ abstraction still helpful

Balanced binary search tree

Operation	Running Time
construct(A[1n])	$O(n \log n)$
put(k,v)	$O(\log n)$
get(k)	$O(\log n)$
delete(k)	$O(\log n)$
contains(k)	$O(\log n)$
isEmpty()	O(1)
size()	O(1)
<pre>min() / max()</pre>	$O(\log n) \rightsquigarrow O(1)$
floor(x)	$O(\log n)$
ceiling(x)	$O(\log n)$
rank(x)	$O(\log n)$
select(<i>i</i>)	$O(\log n)$

Binary heaps Strict Fibonacci heaps

Operation	Running Time
construct(A[1n])	O(n)
insert(x,p)	$O(\log n)$ $O(1)$
delMax()	$O(\log n)$
changeKey(x , p')	$O(\log n)$ $O(1)$
max()	O(1)
isEmpty()	O(1)
size()	O(1)

- ► apart from faster construct, BSTs always as good as binary heaps
- ► MaxPQ abstraction still helpful
- ▶ and faster heaps exist!