=

) Q€A H [H]
)N = H < -
1HOTD A A
T HBEA A RO
LA EHA<CHU
8 e ol o0 517 S
1 <C O A<
A HUNO A O
)N MO <
)OO0 < H =65
1HUAQAZE T 0N
b 62 e ol SN O N AT
VD <LHBEHRHQ
IFPFAdHE S <
1 [QMO TEs
1EHAOU RV
OV 1HU
U AR <@ -
AN A0 =
F<CCOAQAMU T

= | |

Fundamental

Data Structures

17 February 2021

Sebastian Wild

version 2021-02-23 16:13

Outline

2 Fundamental Data Structures

2.1
2.2
2
24
2.5
2.6

Stacks & Queues
Resizable Arrays
Priority Queues

Binary Search Trees
Ordered Symbol Tables
Balanced BSTs

2.1 Stacks & Queues

Abstract Data Types

abstract data type (ADT) data structures
» list of supported operations > specify exactly
> what should happen how data is represented
> not: how to do it » algorithms for operations
> not: flow to store data > has concrete costs

(space and running time)

Q

Java interface
(with Javadoc comments) ~ Javaclass ({npleen Rug inbe &Gws
(non abstract)

Abstract Data Types

abstract data type (ADT)

v

list of supported operations
»> what should happen

» not: how to do it

» not: how to store data

Q

Java interface
(with Javadoc comments)

Why separate?

data structures
> specify exactly
how data is represented
» algorithms for operations

» has concrete costs
(space and running time)

~ Java class
(non abstract)

» Can swap out implementations ~+ “drop-in replacements”)

~ reusable code!

» (Often) better abstractions
e a—

» Prove generic lower bounds (~» Unit 3)

Abstract Data Types,

abstract data type (ADT)

v

list of supported operatig
»> what should happen
» not: how to do it
>

not: how to store data

Q

Java interface
(with Javadoc comments

Why separate?

» Can swap out implement

~ reusable code!

» (Often) better abstractions

» Prove generic lower bounds (~» Unit 3)

Clicker Question

4 Which of the following are examples of abstract data types? h
ADT resizable array
Stack @ heap
Deque @ priority queue
o @ Linked list @ dictionary/symbol table
@ binary search tree ® hash table
Y Queue)

‘ sli. dO/ Comp526 ’ Click on “Polls” tab

Clicker Question

~
4 Which of the following are examples of abstract data types?

ALt Fesizablearray
Stack \/ @ heap
Deque \/ @ priority queue \/

o @ Linked list @ dictionary/symbol
table
binery-search-tiee
© (K) hashtable
Y Queue \/)

‘ sli. dO/ Comp526 ’ Click on “Polls” tab

Stacks

Stack ADT

> top()

Return the topmost item on the stack
Does not modify the stack.

push(x)
Add x onto the top of the stack.

pop()
Remove the topmost item from the stack
(and return it).

isEmpty()
Returns true iff stack is empty.

create()
Create and return an new empty stack.

Clicker Question

-

Suppose a stack initially contains the numbers 1,2, >3, 4,5 with 1 at the
top.
What is the content of the stack after the following operations:

pop(); pop(); push(1);

1,2,3,1
>

34,5,1

1,34,5
empty

1,2,34,5
- J

o
QION@RGRE

‘ sli. dO/ Comp526 Click on “Polls” tab

Clicker Question

-

~
Suppose a stack initially contains the numbers 1, 2, 3,4, 5 with 1 at the

top.

What is the content of the stack after the following operations:

1345 ¢
(D) emps:

(E) 42345

pop(); pop(); push(1);

J

‘ sli. dO/ Comp526 Click on “Polls” tab

Linked-list implementation for Stack
Invariants:
> maintain top pointer to topmost element

> each element points to the element below it
(or null if bottommost)

W

ISR

fror |

Linked-list implementation for Stack
Invariants:
> maintain top pointer to topmost element

> each element points to the element below it
(or null if bottommost)

i

> require O(n) space when 1 elements on stack

Linked stacks: s

> All operations take O(1) time

Array-based implementation for Stack

Can we avoid extra space for pointers?
~> array-based implementation

Invariants:

> maintain array S of elements, from bottommost to topmost

> maintain index top of position of topmost element in S.

fop:2 G

N\ S W

(]

Array-based implementation for Stack

Can we avoid extra space for pointers?
~> array-based implementation

Invariants:

> maintain array S of elements, from bottommost to topmost

> maintain index top of position of topmost element in S.

@l What to do if stack is full upon pop?

Array stacks:

» require fixed capacity C (known at creation time)!
> require ©(C) space for a capacity of C elements _

» all operations take O(1) time

2.2 Resizable Arrays

Digression — Arrays as ADT

Arrays can also be seen as an ADT!

Array operations:

> create(n) Java: A = new int[n];

Create a new array with n cells, with positions 0,1, . ..

» get (i) Java: Ali]
Return the content of cell i

» set(i,x) Java: Ali] = x;
Set the content of cell i to x.

~+ Arrays have fixed size (supplied at creation).

,n—1

Digression — Arrays as ADT

Arrays can also be seen as an ADT! ... but are commonly seen as specific data structure

Array operations:

> create(n) Java: A = new int[n];
Create a new array with n cells, with positions 0,1,...,1n -1

» get (i) Java: Ali]
Return the content of cell i

» set(i,x) Java: Ali] = x;
Set the content of cell i to x.

~+ Arrays have fixed size (supplied at creation).

Usually directly implemented by compiler + operating system / virtual machine.

& Difference to others ADTs: Implementation usually fixed
to “a contiguous chunk of memory”.

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Doubling trick
Can we have unbounded stacks based on arrays? Yes!
Invariants:

»
>

» maintain capacity C = S.length so th{m

~ can always push more elements!

Doubling trick

Can we have unbounded stacks based on arrays? Yes!

Invariants:
>
| 4

> maintain capacity C = S.length so that 1C <n < C

~ can always push more elements! -
How to maintain the last invariant? — é

—_—

» before push
If n = C, allocate new array of size 21, copy all elements.
» after pop
Ifn < }IC, allocate new array of size 21, copy all elements.
~+ “Resizing Arrays”

an implementation technique, not an ADT!

Clicker Question

-

Which of the following statements about resizable array that currently
stores 7 elements is correct?

The elements are stored in an array of size 21.

Adding or deleting an element at the end takes constant
time.

o A sequence of 1 insertions or deletions at the end of the
array takes time O(n + m).

@ Inserting and deleting any element takes O(1) amortized
time.

‘ sli. dO/ Comp526 Click on “Polls” tab

Amortized Analysis

» Any individual operation push / pop can be expensive!
©(n) time to copy all elements to new array.

» But: An one expensive operation of cost T means ()(T) next operations are cheap!

Amortized Analysis blue parts are corrections after lecture

(fooks Oifferent in video recordings)
» Any individual operation push / pop can be expensive!

©(n) time to copy all elements to new array.

» But: An one expensive operation of cost T means ()(T) next operations are cheap!
tavvay acceses %d‘_;ﬁ_ﬂ

dlstance to boundary C « @

Formally: consider “credits/ potentlal” o= mm{n - —C C-n} € [0,0.6n

Zose 1 cwdil
> amortized cost of an operation = actual cost (array accesses) — 4 - change in ® ﬁ

» cheap push/pop: actual cost 1 array access, consumes < 1 credits ~» amortized cost <5 —

» copying push: actual cost 21 + 1 array accesses, creates %n +1 credits ~» amortized cost < 5 €

» copying pop: actual cost 21 + 1 array accesses, creates %n ~1credits ~ amortized cost5

~ sequence of m operations: total actual cost < total amortized cost + final credits

a = C ’Q(Cb'*d)r\ < s here: < 5m + 4-06n =O(m+n)
Fucsm s Foue Tt El6-00) - Tt (dg)

Z S & S s4 0, ~ 40, ésvm*Z*d)“;

(=)

Clicker Question

-

Which of the following statements about resizable array that currently
stores 7 elements is correct?

The elements are stored in an array of size 21.

Adding or deleting an element at the end takes constant
time.

o A sequence of 1 insertions or deletions at the end of the
array takes time O(n + m).

@ Inserting and deleting any element takes O(1) amortized
time.

‘ sli. dO/ Comp526 Click on “Polls” tab

Clicker Question

s

Which of the following statements about resizable array that currently
stores 7 elements is correct?

Haer

o A sequence of 1 insertions or deletions at the end of the
array takes time O(n + m). \/

N fme Y

‘ sli. dO/ Comp526 Click on “Polls” tab

Queues
Operations:

» enqueue(x)
Add x at the end of the queue.

> dequeue()
Remove item at the front of the queue and return it.

Implementations similar to stacks.

Bags

What do Stack and Queue have in common?

Bags

What do Stack and Queue have in common?

They are special cases of a Bag!
Operations:

> insert(x)
Add x to the items in the bag.

> delAny()
Remove any one item from the bag and return it.
(Not specified which; any choice is fine.)

» roughly similar to Java’s Collection

Sometimes it is useful to state that order is irrelevant ~+ Bag
Implementation of Bag usually just a Stack or a Queue

2.3 Priority Queues

Clicker Question

~
4 What is a heap-ordered tree?

A tree in which every node has exactly 2 children.
A tree where all keys in the left subtree are smaller than the

key at the root and all keys in the right subtree are bigger
than the key at the root.

o A tree where all keys in the left subtree and right subtree are
bigger than the key at the root.

@ An tree that is stored in the heap-area of the memory.
- v

‘ sli. dO/ Comp526 Click on “Polls” tab

Priority Queue ADT

Now: elements in the bag have different priorities.
(Max-oriented) Priority Queue (MaxPQ):
> construct(A)
Construct from from elements in array A.
» insert(x,p)
Insert item x with priority p into PQ.
> max()
Return item with largest priority. (Does not modify the PQ.)
> delMax()
Remove the item with largest priority and return it.
» changeKey(x,p’)
Update x’s priority to p’.
Sometimes restricted to increasing priority.
» isEmpty()

Fundamental building block in many applications.

10

Priority Queue ADT — min-oriented version
Now elements in the bag have dlfferent priorities.
(Maa(—orlented) Priority Queue (-M-a*PQ)

»> construct(A)

Construct from from elements in array A.
» insert(x,p)

Insert item x with priority p into PQ.
> Fa()

Return item with ia-rgest priority. (Does not modify the PQ.)
> de'LMe*()

Remove the item with -ia-rgest priority and return it.
» changeKey(x,p’)

Update x’s priority to p/de

Sometimes restricted to ##creasing priority.
» isEmpty()

Fundamental building block in many applications.

10

Clicker Question

(. o .
Suppose we start with an empty priority queue and insert the
numbers 7,2,4,1,9 in that order. What is the result of delMin()?
—00 @ 4 not allowed
! (e) 7
2 9
-

sli. dO/ Comp526 Click on “Polls” tab

Clicker Question

4 Suppose we start with an empty priority queue and insert the
numbers 7,2,4,1,9 in that order. What is the result of delMin()?
—se @ 4 rot-aHewed
1 Ok
2 o
-

sli. dO/ Comp526 Click on “Polls” tab

PQ implementations
Elementary implementations
» unordered list ~ ©(1) insert, but ©(n) delMax

» sorted list ~ (1) delMax, but ©(n) insert

11

PQ implementations
Elementary implementations
» unordered list ~ ©(1) insert, but ©(n) delMax

» sorted list ~ (1) delMax, but ©(n) insert

Can we get something between these extremes? Like a “slightly sorted” list?

11

PQ implementations
Elementary implementations
» unordered list ~ ©(1) insert, but ©(n) delMax

» sorted list ~ (1) delMax, but ©(n) insert

Can we get something between these extremes? Like a “slightly sorted” list?

Yes! Binary heaps.

Array view Tree view

all but last level full
last level flush left

Heap = tree thatis
(i) a complete binary tree
(ii) heap ordired

Heap = array A with
Vi € [n] : A[li/2]] > Ali]

store nodes
in level order Pey ot
in A[1..n] fedkrex > children

11

Binary heap example

12

Why heap-shaped trees?
Why complete binary tree shape?

» only one possible tree shape ~> keep it simple!
> complete binary trees have minimal height among all binary trees

» simple formulas for moving from a node to parent or children:
For a node at index k in A
» parentat [k/2]
> left child at 2k
» right child at 2k + 1

13

Why heap-shaped trees?
Why complete binary tree shape?
» only one possible tree shape ~> keep it simple!

» complete binary trees have minimal height among all binary trees

» simple formulas for moving from a node to parent or children:
For a node at index k in A
» parentat [k/2]
> left child at 2k
» right child at 2k + 1

Why heap ordered?

» Maximum must be at root! ~» max() is trivial!

» But: Sorted only along paths of the tree; leaves lots of leeway for fast inserts

how? ... stay tuned

13

Clicker Question

~
4 What is a heap-ordered tree?

keyat-therootandalleysinthericht subtreeare bisger
hen-thetkeyattheroot

o A tree where all keys in the left subtree and right subtree are
bigger than the key at the root.

(. @ J

‘ sli. dO/ Comp526 Click on “Polls” tab

Insert

£

S(/oFa g f-w-oy 4 Poxsf% pox«"Lr‘or-

QUT L“‘ZGP‘OftLLA/ é
=> Swiw v(; H,u. ()\(lc,r;

14

Delete Max

?7 LV‘({ Wi X s €agy
Qé[—w vﬁwo\/rvs |r(-

é (oo—\pﬁtLv [Ofucn/\‘gl bres

shepa +/
haoP—ardﬂ” é
Ly 0.b 2S siuk jn ho&P

15

Heap construction
—> o (vn 9o S V\>

A]vzs_oxl

e Nev -

cour do

n stuls fo [Anc,P o gres <5
q

V1

— - ¢ 7]
Y

) <2
e

2 k= 20

@(‘/‘3 /—ao[aﬁ Floce Qﬂr ("-“10 cously

16

Analysis
Height of binary heaps:
> height of a tree: #edges on longest root-to-leaf path

» depth/level of a node: #edges from root ~» root has depth 0

k
» How many nodes on first k full levels? E 2 =2F1 1 é
¢
=0 %2
/

~» Height of binary heap: & = minks.t. 26 _1>pn = |1g(n)]

Analysis

Height of binary heaps:

> height of a tree: #edges on longest root-to-leaf path
» depth/level of a node: #edges from root ~» root has depth 0

k
» How many nodes on first k full levels? Z 2 =2F1 1
(=0
~» Height of binary heap: & = minks.t. 26 _1>pn = |1g(n)]

Analysis:
> insert: new element “swims” up ~» < h steps (h cmps)
> delMax: lastelement “sinks” down ~-» < h steps (2h cmps)

» construct from 1 elements:
cost = cost of letting each node in heap sink!
<1-h+2:(h=-1)+4-(h=2)+--+20 - (h=O)+---+2"1.1+2".0

h

h h 2}, ;
:sz(h—f)z Eizzhzi < 2.2" < apn
=0 i=0 i=0

17

Binary heap summary

Operation

Running Time

construct(A[l..n])
max ()

insert(x,p)
delMax ()
changeKey (x,p”)
isEmpty()

size()

O(n)
o)
O(logn)
O(logn)
O(logn)
o)
o)

18

2.4 Binary Search Trees

Clicker Question

Have you ever used a printed dictionary (physical book)?

Yes

o No

sli. dO/ Comp526 Click on “Polls” tab

Clicker Question

4 I

What is a binary search tree (tree in symmetric order)?
A tree in which every node has exactly 2 children.
A tree where all keys in the left subtree are smaller than the

key at the root and all keys in the right subtree are bigger
than the key at the root.

o A tree where all keys in the left subtree and right subtree are
bigger than the key at the root.

@ A tree that is stored in the heap-area of the memory.

‘ sli. dO/ Comp526 Click on “Polls” tab

Clicker Question

4)

What is a binary search tree (tree in symmetric order)?

A tree where all keys in the left subtree are smaller than the
key at the root and all keys in the right subtree are bigger
than the key at the root.

o A&eea%he%e—aﬂ-keys&bhﬁe#aa-b&ee—&ad—ﬁgh#s&b&ee—a*e
biggerthanthekeyattheroot

(. @ J

‘ sli. dO/ Comp526 Click on “Polls” tab

Symbol table ADT

Java: java.util.Map<K,V>

Symbol table / Dictionary / Map / Associative array / key-value store:

Pelated 1o o,

: torial /ang,, '

lke a dictator ’”\'”.' ‘.

orially adov (Latiy, &
TATOR]

inte diction /'dikf(e)n; , -
ciation in speaking e

dictio from dico dict. Say§
dictionary /dikfonay,)
k listing (usu. alph
plaining the words of

» put(k,v) Python dict: d[k] = v
Put key-value pair (k, v) into table

» get(k) Python dict: d[k]
Return value associated with key k

> delete(k)
Remove key k (any associated value) form table

» contains (k)
Returns whether the table has a value for key k

Most fundamental building block in computer science.

(Every programming library has a symbol table implementation.)

19

Symbol tables vs mathematical functions

» similar interface

» but: mathematical functions are static (never change their mapping)

(Different mapping is a different function)

> symbol table = dynamic mapping

Function may change over time

20

Elementary implementations
Unordered (linked) list:

[b Fast put

E@ ®(n) time for get

~ Too slow to be useful

21

Elementary implementations
Unordered (linked) list:

[b Fast put

E@ ®(n) time for get

~ Too slow to be useful

Sorted linked list:
E@ ®(n) time for put
l@ ©(n) time for get

~ Too slow to be useful

~~ Sorted order does not help us at all?!

21

Binary search

It does help . . . if we have a sorted array!

Example: search for 69
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11|12 (17 (2835|5557 |63 (6977|7980 |82 |85 |88 (97

¢ m r

22

Binary search

It does help . . . if we have a sorted array!

Example: search for 69
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2177287355557 63 (69| 77|79 80|82 (85 (88 97|

¢ m r

69|77 79|80|(82|85|88 97|

{ m r

63

€9

22

Binary search

It does help . . . if we have a sorted array!

Example: search for 69
] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1112 (17 (2835|5557 |63 (69|77 |79 80|82 |85 (88 97|

¢ m r

6977|791 80 5197 |
m r

8 9 10

6977179

{ m r

22

Binary search

It does help . . . if we have a sorted array!

Example: search for 69

9 10 11 12 13 14 15

11112 (17 (2835|5557 |63 | 69

77 |79(80 (82|85 |88 97|

0 m

r

9 10 11 12 13 14 15

77 |79(80 (82|85 |88 97|

m r

9 10

711 7918662855662

m r

22

Binary search

It does help . . . if we have a sorted array!

Example: search for 69 Binary search:
] 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 +1

> halv@maining
11|12(17|28|35|55|57 |63 69|77 |79 (80|82 |85 |88 97| o
list in each step
{ m r

~ < |lgn| +1 cmps

8 9 10 11 12 13 14 15 in the Worst case

69|77 79|80|(82|85|88 97|

{ m r

A needs random access

8 9 10

69 (77|79
{ m r

8

69

22

Clicker Question
4)

Suppose we have a sorted array containing the numbers

10, 20, 30, 40, 50, 60, 70 and we use binary search to check whether
this array contains key 25.

What is the sequence of comparisons executed by the binary search
algorithm?

10 < 25,20 < 25,30 > 25
40 > 25,20 < 25,30 > 25
(o) 20 < 25 < 30

(D) 40>2520<25

@ don’t know

-)

‘ sli. dO/ Comp526 Click on “Polls” tab

Clicker Question
4)

Suppose we have a sorted array containing the numbers

10, 20, 30, 40, 50, 60, 70 and we use binary search to check whether
this array contains key 25.

What is the sequence of comparisons executed by the binary search

algorithm?

10« 25, 20 <25 305 35

40 > 25,20 < 25,30 > 25 /
o w0530

(p) .

denlarow
o @ J

‘ sli. dO/ Comp526 Click on “Polls” tab

Binary search trees

Binary search trees (BSTs) ~ dynamic sorted array

» binary tree
» Each node has left and right child
» Either can be empty (null) g

oy rské

> Keys satisfy search-tree property

all keys in left subtree < root key < all keys in right subtree]

23

BST example & find
find €9 v fd 83 x

24

BST insert

Example: Insert 88

L fad

25

BST insert

Example: Insert 88

97

25

BST insert

Example: Insert 88

25

BST insert

Example: Insert 88

25

BST delete

> . ~
Easy. case: remove}e/af, eg, 11 replace by null
> Medium case: remove unary, e.g.,69 ~ replace by unique child

» Hard case: remove binary, e.g., 85 ~» swap with predecessor, recurse

Analysis

se C\\’C\/\

I

tnsexd

delite s

T < height of BST

(%*1 Cin 5\
~J Lz >.=)

il

Loyt &y Seaxch O((/l\

geowc(r\ go{ 1< PQM; ibs (:(QQ(EC,UYO/ O(L‘\)

27

BST summary

Operation

Running Time

construct(A[l..n])
put(k,v)

get (k)

delete(k)
contains (k)
isEmpty()

size()

O(nh)
O(h)
O(h)
O(h)
O(h)
o)
o)

28

Whot is Hu haight of o BST 2

Cx\ wovgé casa

b} avecraga Case

(?mgeﬂhou) [A \(oxu\c(aaw G){'A_m_/ g o ieﬁ&k}

h = O(log) (eren with high probabi@hy)

2.5 Ordered Symbol Tables

Ordered symbol tables ADT

» min(), max()
Return the smallest resp. largest key in the ST

» floor(x), lx] = Z.floor(x)
Return largest key k in ST with k < x.

» ceiling(x) [51
Return smallest key k in ST with k > x.

» rank(x)
Return the number of keys k in ST k < x.

> select(i) | ALY ;
Return the #th smallest key in ST (zero-based, i. e., #e [0..1n))

With select, we can simulate access as in a truly dynamic array!.

(Might not need any keys at all then!)

Augmented BSTs

sdo - combk (35)

30

il

Select selecd (4) <“ATLY 4 <9

Select r=4

82

A do chowmes ks subbeer cie (ol womls)
2.6 c¢ (V¥ oYeT T e

C o be vwafmk"a/\nmé v pen uq)gakzi

O*/Q’Q YCAMZXJ C(AMSQ

2.6 Balanced BSTs

Clicker Question

What ways of maintaining a balanced binary search tree do you
know?
Write “none” if you have not seen balanced BSTs before.

o

sli. dO/ Comp526 Click on “Polls” tab

Balanced BSTs e Q Yoo sdick for BT

Balanced binary search trees:
> imposes shape invariant that guarantees O(log 72) height

» adds rules to restore invariant after updates

33

Balanced BSTs
Balanced binary search trees:

> imposes shape invariant that guarantees O(log 72) height -

» adds rules to restore invariant after updates

SL\GPQ is/\vavw'mm% .
> many examples known /
> AVL trees (height-balanced trees)

/O

» red-black trees

> weight-balanced trees (BB[«] trees)
> ..

< Sedsepsick (i
'[V\\la\f;w,«é 2 reé ec[ng /z- %

blods edges @/f&g o too nd yes

“
4) o vow

@ @l Saswer have sewx

b Qacl lafght .

Balanced BSTs

Balanced binary search trees:
> imposes shape invariant that guarantees O(log 72) height

» adds rules to restore invariant after updates

> many examples known
» AVL trees (height-balanced trees)
» red-black trees

> weight-balanced trees (BB[«] trees)
> ..

> other (simpler) options:
» amortization: splay trees, scapegoat trees

» randomization: randomized BSTs, treaps, skip lists

33

BSTs vs. Heaps

Balanced binary search tree

Binary heaps

Operation

Running Time

Operation

Running Time

construct (A[l..n])
put(k,v)

get (k)
delete(k)
contains (k)
isEmpty()
size()

min() / max()
floor(x)
ceiling(x)
rank(x)
select(7)

O(nlogn)

O(logn)
O(logn)
O(logn)
O(logn)
O(1)

o(1)

O(logn)
O(logn)
O(logn)
O(logn)
O(logn)

~ 0(1)

construct (A[l..n])

insert(x,p)
delMax ()
changeKey (x,p’)
max ()

isEmpty()
size()

O(n)
O(logn)
O(logn)
O(logn)
o)
o(1)
o)

34

BSTs vs. Heaps

Balanced binary search tree Binary heaps
Operation Running Time Operation Running Time
construct(A[l..n]) O(nlogn) construct(A[l..n]) O(n)
put (k,v) O(logn) insert(x,p) O(logn)
get (k) O(logn) delMax () O(logn)
delete(k) O(logn) changeKey (x,p’) O(logn)
contains (k) O(logn) max () o(1)
isEmpty() o(1) isEmpty() o(1)
size() o(1) size() o(1)
min() / max() O(logn) ~ 0(1)
ﬂ‘.""f‘“ O(log n) » apart from faster construct,
ceiling(x) O(log) BSTs always as d as bi h
rank(x) O(log 1) ys as good as binary heaps
select (i) O(logn)

34

BSTs vs. Heaps

Balanced binary search tree Binary heaps
Operation Running Time Operation Running Time
construct(A[l..n]) O(nlogn) construct(A[l..n]) O(n)
put (k,v) O(logn) insert(x,p) O(logn)
get (k) O(logn) delMax () O(logn)
delete(k) O(logn) changeKey (x,p’) O(logn)
contains (k) O(logn) max () o(1)
isEmpty() o(1) isEmpty() o(1)
size() o(1) size() o(1)
min() / max() O(logn) ~ 0(1)
ﬂ‘.""f‘“ O(log n) » apart from faster construct,
ceiling(x) O(log) BSTs always as d as bi h
rank(x) O(log 1) ys as good as binary heaps
select (i) O(logn) » MaxPQ abstraction still helpful

34

BSTs vs. Heaps

Balanced binary search tree

W Strict Fibonacci heaps

Operation

Running Time

Operation

Running Time

construct (A[l..n])
put (k,v)

get (k)
delete(k)
contains (k)
isEmpty()
size()

min() / max()
floor(x)
ceiling(x)
rank(x)
select(7)

O(nlogn)
O(logn)
O(logn)
O(logn)
O(logn)
O(1)

o(1)

O(logn) ~ 0(1)

O(logn)
O(logn)
O(logn)
O(logn)

construct (A[l..n])
insert(x,p)
delMax ()
changeKey (x,p’)
max ()

isEmpty()

size()

O(n)

QlegTT 0(1)

O(logn)

QlerTT 0(1)

0(1)
0(1)
0(1)

» apart from faster construct,
BSTs always as good as binary heaps

» MaxPQ abstraction still helpful

» and faster heaps exist!

34

