ALGORITHMICS \$ APPLIED

APPLIEDALGORITHMICS \$

CS\$ APPLIEDALGORITHMI

DALGORITHMICS \$ APPLIE

EDALGORITHMICS \$ APPLIE

GORITHMICS \$ APPLIEDAL

HMICS \$ APPLIEDALGORIT

ICS \$ APPLIEDALGORITHM

3

Efficient Sorting

24 February 2021

Sebastian Wild

Outline

3 Efficient Sorting

- 3.1 Mergesort
- 3.2 Quicksort
- 3.3 Comparison-Based Lower Bound
- 3.4 Integer Sorting
- 3.5 Parallel computation
- 3.6 Parallel primitives
- 3.7 Parallel sorting

Why study sorting?

- ▶ fundamental problem of computer science that is still not solved
- building brick of many more advanced algorithms

— Algorithm with optimal #comparisons in worst case?

- for preprocessing
- as subroutine
- playground of manageable complexity to practice algorithmic techniques

Here:

- "classic" fast sorting method
- parallel sorting

Part I

The Basics

Rules of the game

- ► Given:
 - ▶ array A[0..n-1] of n objects
 - ▶ a total order relation \leq among $A[0], \ldots, A[n-1]$ (a comparison function) Comparison Comparis
- ► **Goal:** rearrange (=permute) elements within A, so that A is *sorted*, i. e., $A[0] \le A[1] \le \cdots \le A[n-1]$ $\times \le \bigcirc$
- ▶ for now: A stored in main memory (internal sorting) single processor (sequential sorting)

Clicker Question

What is the complexity of sorting? Type you answer, e.g., as "Theta(sqrt(n))"

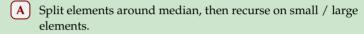
sli.do/comp526

Click on "Polls" tab

3.1 Mergesort

Clicker Question

How does mergesort work?



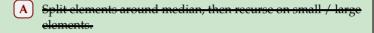
- **B** Recurse on left / right half, then combine sorted halves.
- Grow sorted part on left, repeatedly add next element to sorted range.
- D Repeatedly choose 2 elements and swap them if they are out of order.
- **E** Don't know.

sli.do/comp526

Click on "Polls" tab

Clicker Question

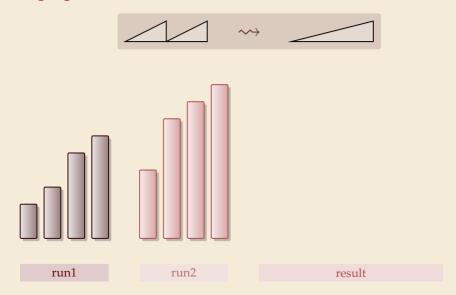
How does mergesort work?

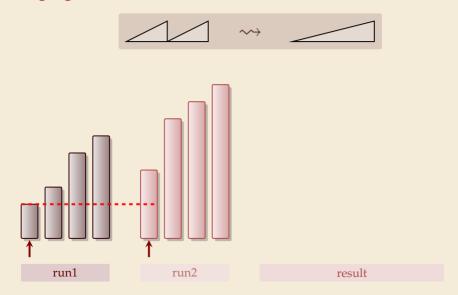


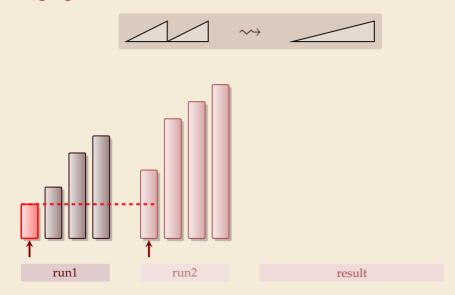
- % ا
- f B Recurse on left / right half, then combine sorted halves. \checkmark
- C Grow sorted part on left, repeatedly add next element to sorted range.
- D Repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

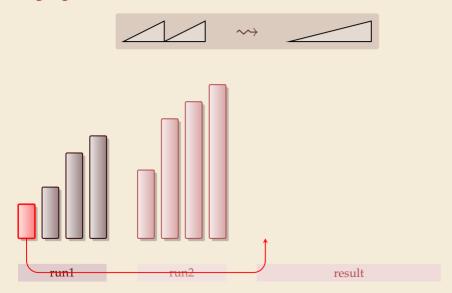
sli.do/comp526

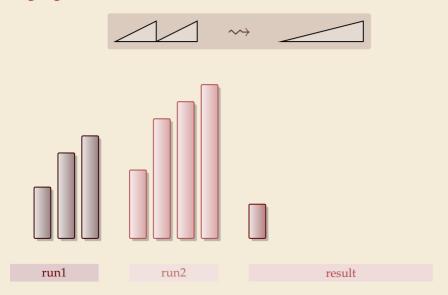
Click on "Polls" tab

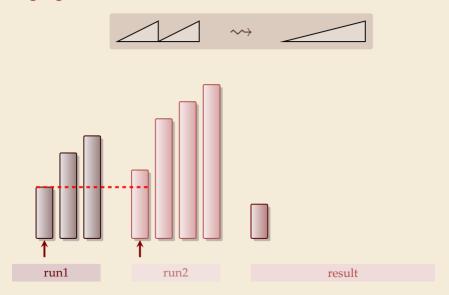


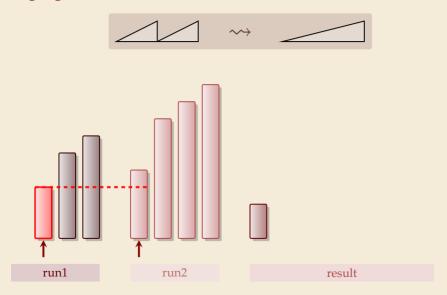


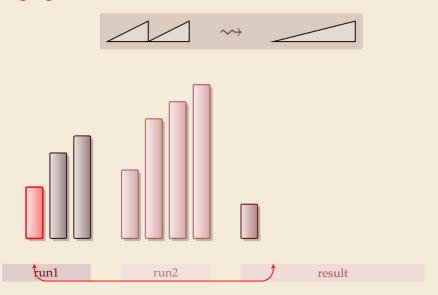


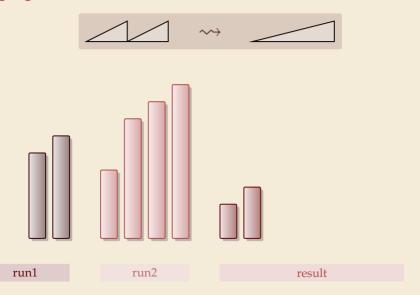


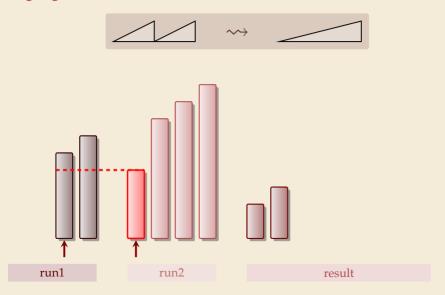


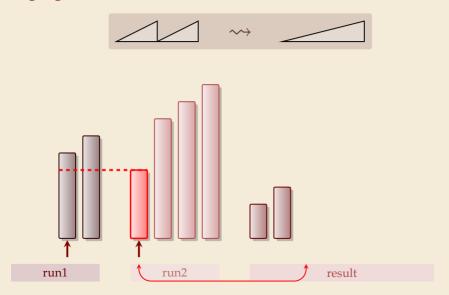


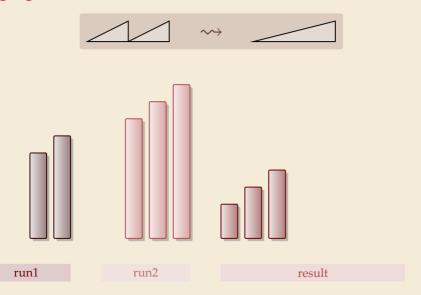


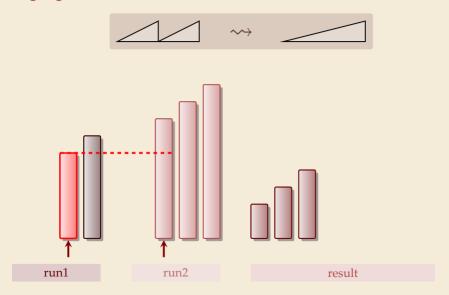


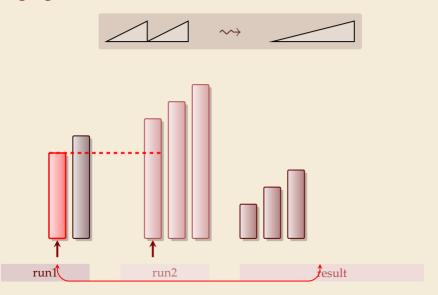


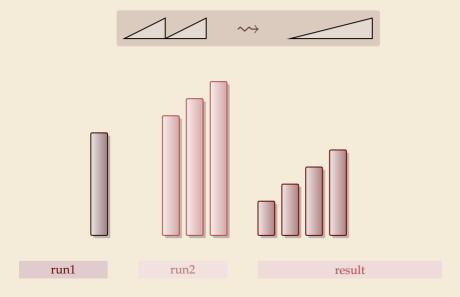


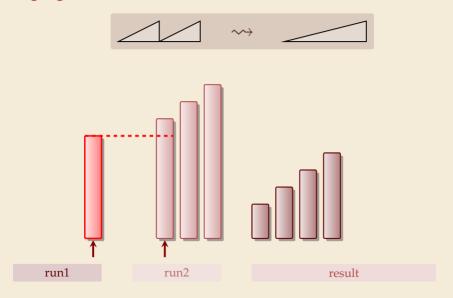


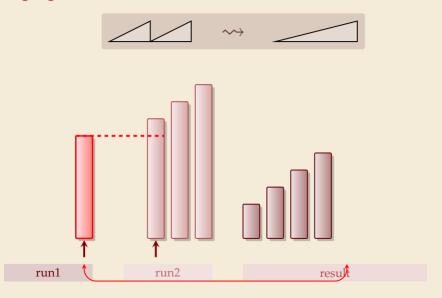




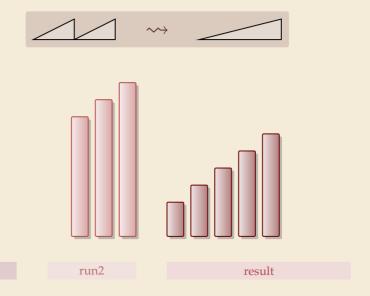




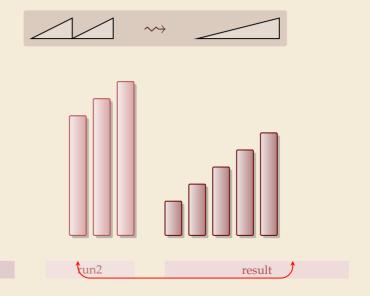




run1

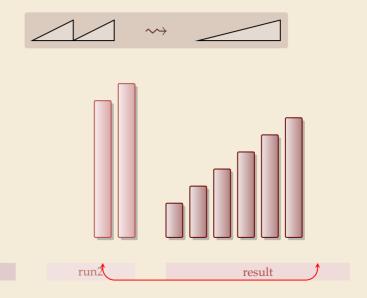


run1



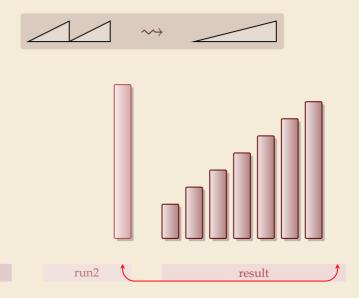
3

run1

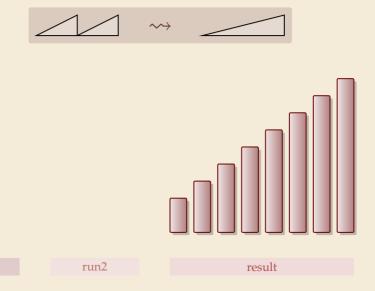


3

run1



run1



Clicker Question

What is the worst-case running time of mergesort?

9

$$\mathbf{A}$$
 $\Theta(1)$

G $\Theta(n \log n)$

$$\mathbf{B} \quad \Theta(\log n)$$

$$\Theta(n \log^2 n)$$

$$\bigcirc \Theta(\log\log n)$$

$$\Theta(n^{1+\epsilon})$$

$$\bigcirc$$
 $\Theta(\sqrt{n})$

$$\Theta(n^2)$$

$$\mathbf{E}$$
 $\Theta(n)$

$$\bigcirc$$
 K $\Theta(n^3)$

$$oldsymbol{\mathsf{L}} oldsymbol{\Theta}(2^n)$$

sli.do/comp526

Click on "Polls" tab

Clicker Question

What is the worst-case running time of mergesort? $\mathbf{G} \quad \Theta(n \log n) \ \checkmark$

sli.do/comp526

Click on "Polls" tab

Mergesort

```
procedure mergesort(A[l..r])

n := r - l + 1

if n \ge 1 return

m := l + \lfloor \frac{n}{2} \rfloor

mergesort(A[l..m - 1])

merge(A[l..m - 1], A[m..r], buf)

s copy buf to A[l..r]
```

- ► recursive procedure; *divide & conquer*
- merging needs
 - temporary storage for result of same size as merged runs
 - ► to read and write each element twice (once for merging, once for copying back)

Mergesort

- 1 **procedure** mergesort(A[l..r])
- n := r l + 1
- if $n \ge 1$ return
- $m := l + \left| \frac{n}{2} \right|$
- mergesort(A[l..m-1])
- mergesort(A[m..r])
- $\overline{\text{merge}(A[l..m-1], A[m..r], buf)}$
- s copy buf to A[l..r]

- ► recursive procedure; divide & conquer
- merging needs
 - temporary storage for result of same size as merged runs
 - to read and write each element twice (once for merging, once for copying back)

Analysis: count "element visits" (read and/or write)

$$C(n) = \begin{cases} 0 & n \le 1 \\ C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + 2n & n \ge 2 \end{cases}$$

same for best and worst case!

Simplification
$$n = 2^k$$
 $k \in \mathbb{N}$

$$K = \binom{n}{2} + \binom{n}$$

4

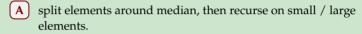
Mergesort – Discussion

- optimal time complexity of $\Theta(n \log n)$ in the worst case
- stable sorting method i. e., retains relative order of equal-key items
- memory access is sequential (scans over arrays)
- requires $\Theta(n)$ extra space
 there are in-place merging methods,
 but they are substantially more complicated
 and not (widely) used

3.2 Quicksort

Clicker Question

How does quicksort work?



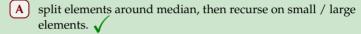
- **B** recurse on left / right half, then combine sorted halves.
- grow sorted part on left, repeatedly add next element to sorted range.
- D repeatedly choose 2 elements and swap them if they are out of order.
- **E** Don't know.

sli.do/comp526

Click on "Polls" tab

Clicker Question

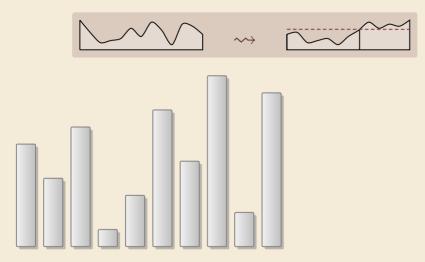
How does quicksort work?

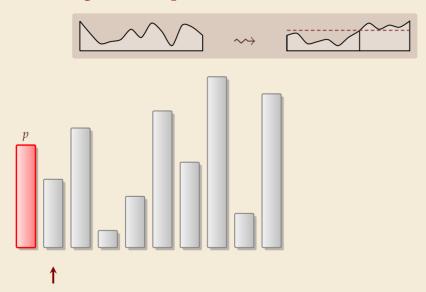


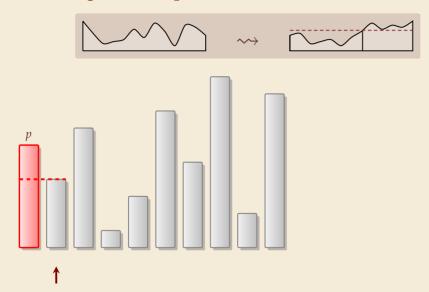
- တွ
- B recurse on left / right half, then combine sorted halves
- grow sorted part on left, repeatedly add next element to sorted range.
- D repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

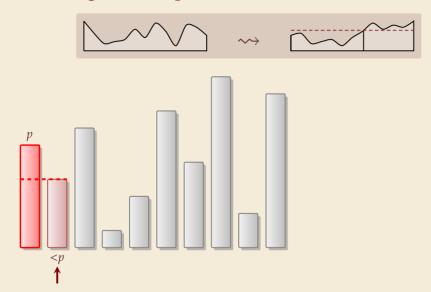
sli.do/comp526

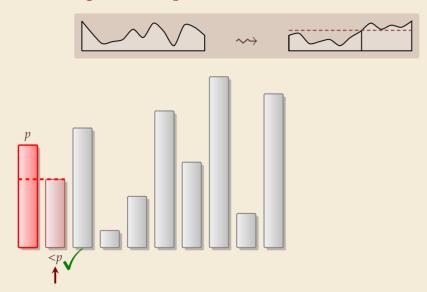
Click on "Polls" tab

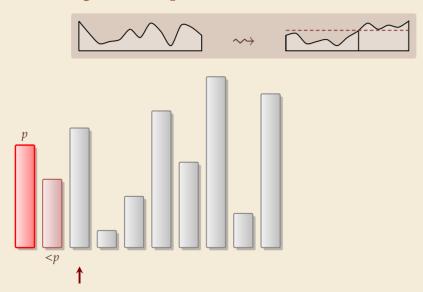


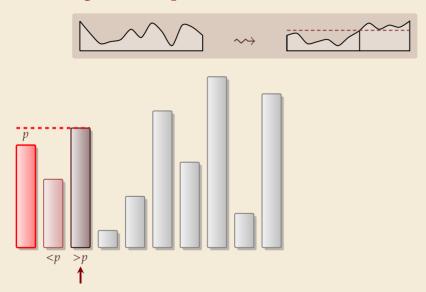


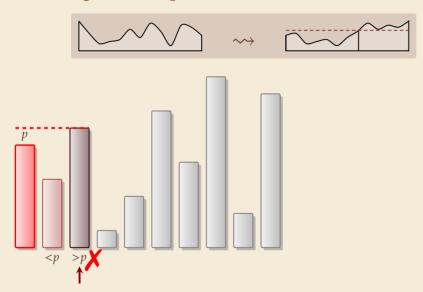


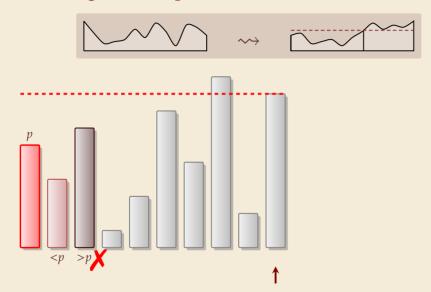


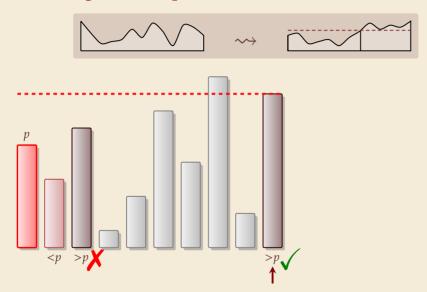


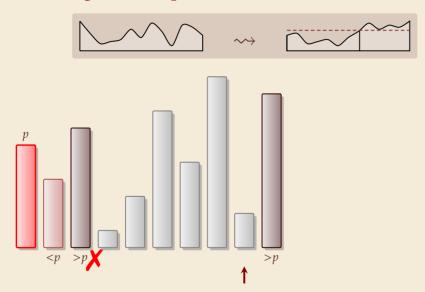


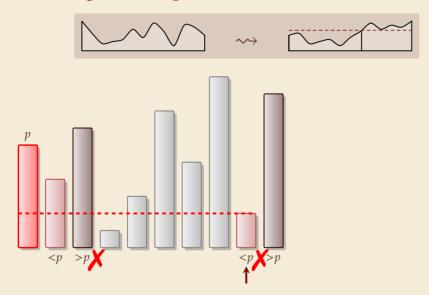


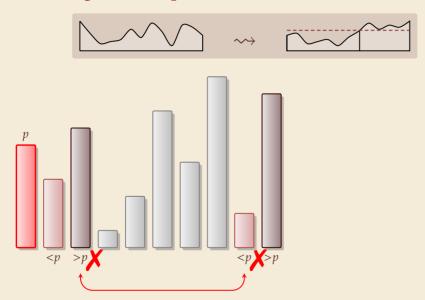


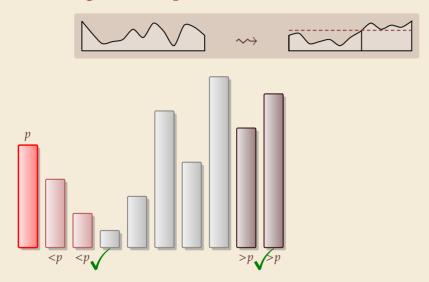


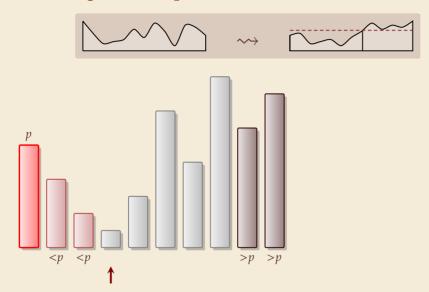


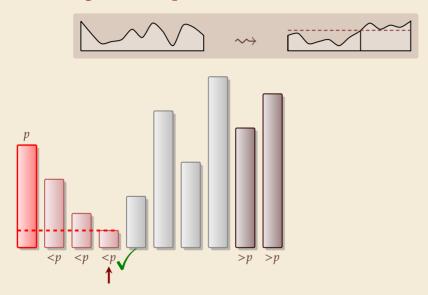


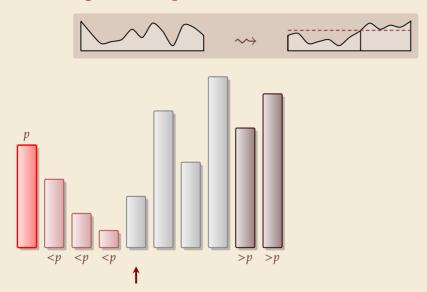


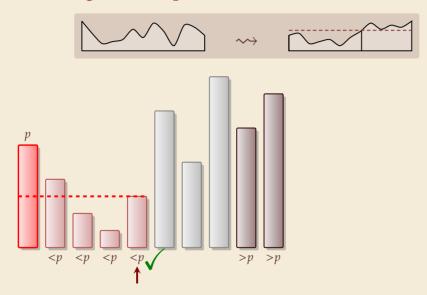


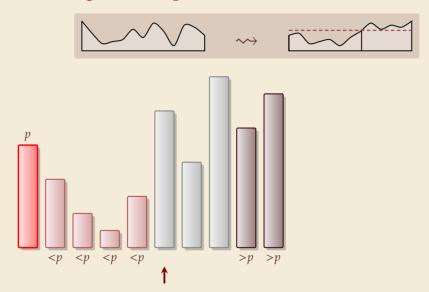


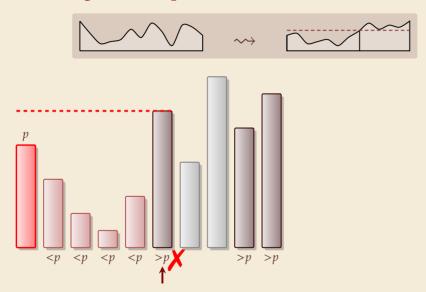


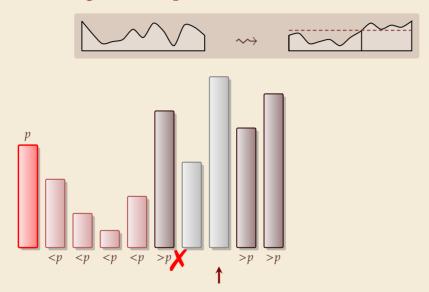


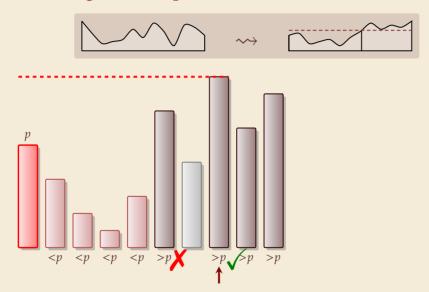


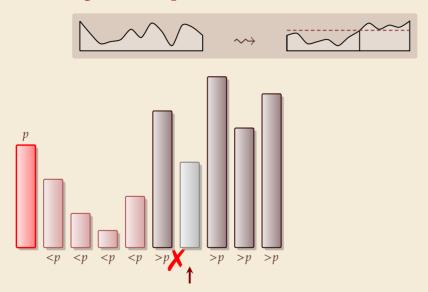


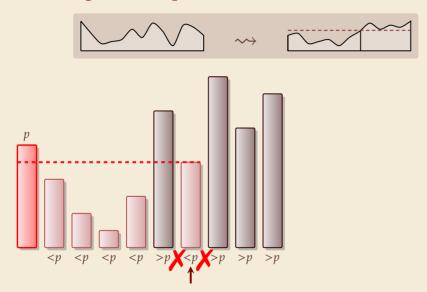


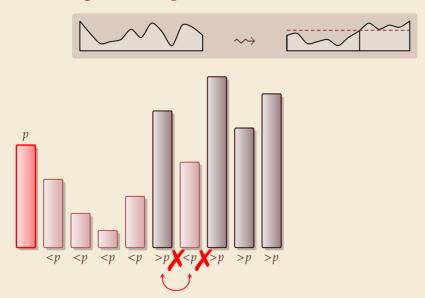


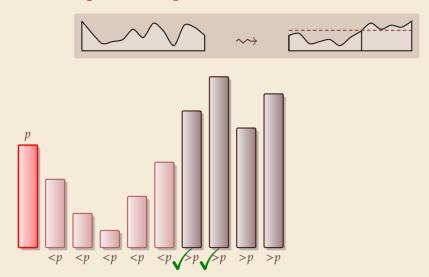


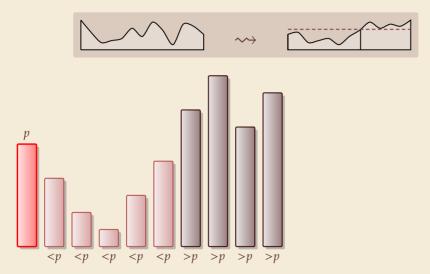


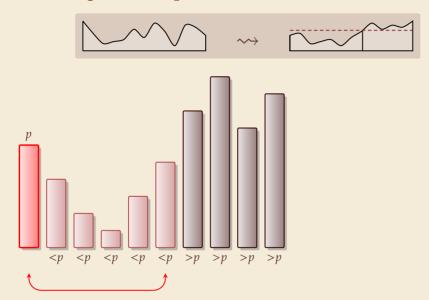


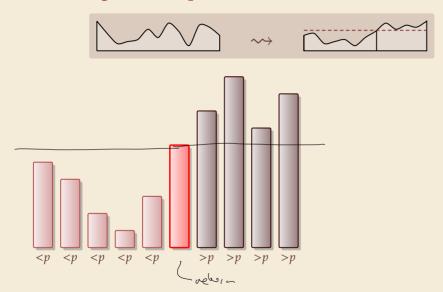


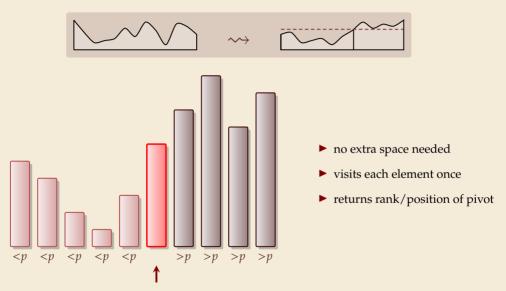












Partitioning – Detailed code

Beware: details easy to get wrong; use this code!

```
procedure partition(A, b)
      // input: array A[0..n-1], position of pivot b \in [0..n-1]
      swap(A[0], A[b])
     i := 0, \quad i := n
    while true do
          do i := i + 1 while i < n and A[i] < A[0]
          do j := j - 1 while j \ge 1 and A[j] > A[0]
          if i \ge j then break (goto 8)
          else swap(A[i], A[j])
9
      end while
10
      swap(A[0], A[i])
11
      return j
12
```

Loop invariant (5–10):	Α	р	≤ <i>p</i>	?	≥ <i>p</i>
				i j	

```
1 procedure quicksort(A[l..r])

2 if l \ge r then return

3 b := \text{choosePivot}(A[l..r])

4 j := \text{partition}(A[l..r], b)

5 quicksort(A[l..j-1])

6 quicksort(A[j+1..r])
```

- ► recursive procedure; divide & conquer
- choice of pivot can be
 - ► fixed position → dangerous!
 - ► random
 - ▶ more sophisticated, e.g., median of 3

Clicker Question

What is the worst-case running time of quicksort?

う

- $\Theta(1)$
 - $\Theta(\log n)$
- $\Theta(\log \log n)$
- $lackbox{D} \ \Theta(\sqrt{n})$
- \mathbf{E} $\Theta(n)$
- **F**) $\Theta(n \log \log n)$

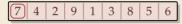
- **G**) $\Theta(n \log n)$
- $\begin{array}{|c|c|} \hline \mathbf{H} & \Theta(n\log^2 n) \\ \hline \mathbf{I} & \Theta(n^{1+\epsilon}) \end{array}$

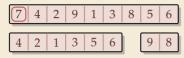
- **K** $\Theta(n^3)$
- $oldsymbol{\mathsf{L}}$ $\Theta(2^n)$

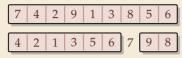
Clicker Question

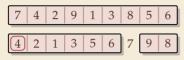
sli.do/comp526

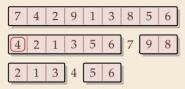
Click on "Polls" tab

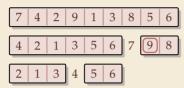


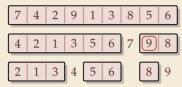


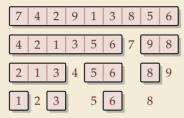


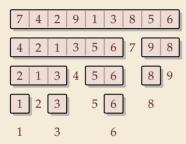


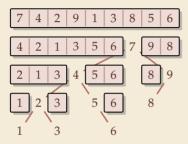




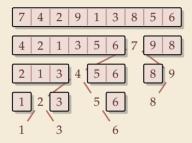








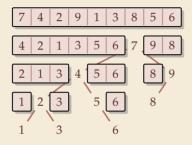
Quicksort



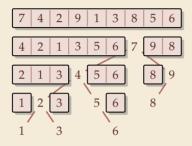
Binary Search Tree (BST)

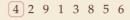
7 4 2 9 1 3 8 5 6

Quicksort

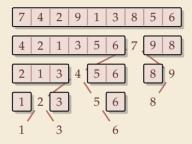


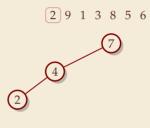
Quicksort



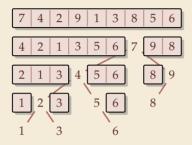


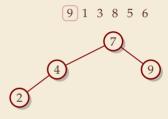
Quicksort



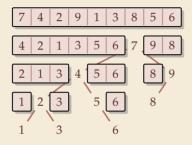


Quicksort

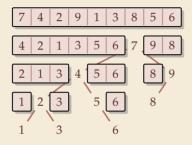


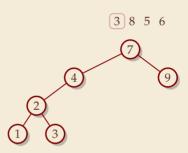


Quicksort

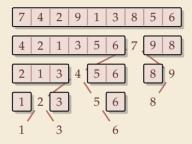


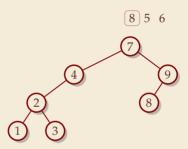
Quicksort



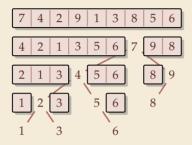


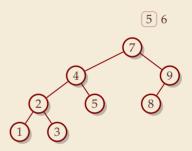
Quicksort

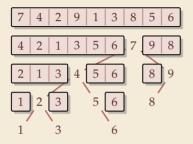


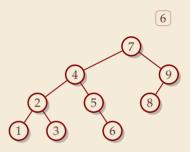


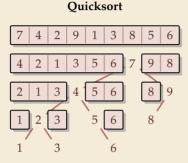
Quicksort

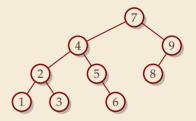












- ► recursion tree of quicksort = binary search tree from successive insertion
- ► comparisons in quicksort = comparisons to built BST
- ► comparisons in quicksort ≈ comparisons to search each element in BST

Quicksort – Worst Case

- ► Problem: BSTs can degenerate
- ightharpoonup Cost to search for k is k-1

$$\rightsquigarrow$$
 Total cost $\sum_{k=1}^{n} (k-1) = \frac{n(n-1)}{2} \sim \frac{1}{2}n^2$

 \leadsto quicksort worst-case running time is in $\Theta(n^2)$

terribly slow

But, we can fix this:

Randomized quicksort:

- ► choose a *random pivot* in each step
- → same as randomly shuffling input before sorting

Randomized Quicksort - Analysis

- ightharpoonup C(n) = element visits (as for mergesort)
- \rightsquigarrow quicksort needs $\sim 2 \ln(2) \cdot n \lg n \approx 1.39n \lg n$ in expectation

Mengesort 2 nlgn

- ▶ also: very unlikely to be much worse: e. g., one can prove: $Pr[cost > 10n \lg n] = O(n^{-2.5})$
 - distribution of costs is "concentrated around mean"
- ▶ intuition: have to be *constantly* unlucky with pivot choice

Quicksort - Discussion

fastest general-purpose method

 $\Theta(n \log n)$ average case

works *in-place* (no extra space required)

memory access is sequential (scans over arrays)

 \square $\Theta(n^2)$ worst case (although extremely unlikely)

not a *stable* sorting method

Open problem: Simple algorithm that is fast, stable and in-place.

3.3 Comparison-Based Lower Bound

Lower Bounds

- ▶ **Lower bound:** mathematical proof that *no algorithm* can do better.
 - ▶ very powerful concept: bulletproof impossibility result
 ≈ conservation of energy in physics
 - ► (unique?) feature of computer science: for many problems, solutions are known that (asymptotically) achieve the lower bound

Lower Bounds

- ▶ **Lower bound:** mathematical proof that *no algorithm* can do better.
 - ▶ very powerful concept: bulletproof *impossibility* result
 ≈ conservation of energy in physics
 - (unique?) feature of computer science: for many problems, solutions are known that (asymptotically) achieve the lower bound
- ▶ To prove a statement about *all algorithms*, we must precisely define what that is!
- ▶ already know one option: the word-RAM model
- ► Here: use a simpler, more restricted model.

The Comparison Model

- ▶ In the *comparison model* data can only be accessed in two ways:
 - comparing two elements
 - ▶ moving elements around (e.g. copying, swapping)
 - ► Cost: number of these operations.

The Comparison Model

- ▶ In the *comparison model* data can only be accessed in two ways:
 - comparing two elements
 - moving elements around (e.g. copying, swapping)
 - ► Cost: number of these operations.

That's good! /Keeps algorithms general!

- ▶ This makes very few assumptions on the kind of objects we are sorting.
- ▶ Mergesort and Quicksort work in the comparison model.

The Comparison Model

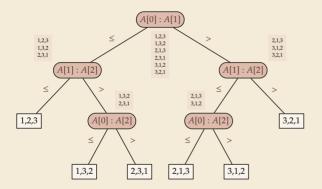
- ▶ In the *comparison model* data can only be accessed in two ways:
 - comparing two elements
 - moving elements around (e.g. copying, swapping)
 - Cost: number of these operations.

That's good! Keeps algorithms general!

- ▶ This makes very few assumptions on the kind of objects we are sorting.
- ▶ Mergesort and Quicksort work in the comparison model.
- Every comparison-based sorting algorithm corresponds to a *decision tree*.
 - ▶ only model comparisons → ignore data movement
 - ▶ nodes = comparisons the algorithm does
- A[17] 3 A[427
 - ▶ next comparisons can depend on outcomes → different subtrees
 - ► child links = outcomes of comparison
 - ▶ leaf = unique initial input permutation compatible with comparison outcomes

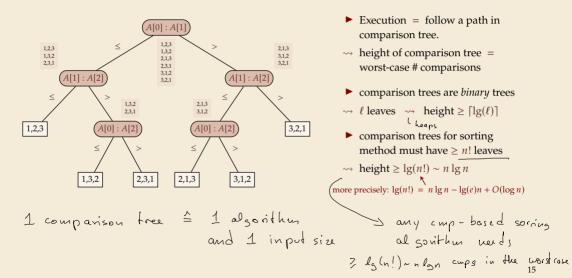
Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:



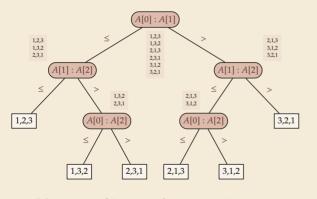
Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:



Comparison Lower Bound

Example: Comparison tree for a sorting method for A[0..2]:



- Execution = follow a path in comparison tree.
- → height of comparison tree = worst-case # comparisons
- comparison trees are binary trees
- $\rightsquigarrow \ell \text{ leaves } \rightsquigarrow \text{ height } \geq \lceil \lg(\ell) \rceil$
- ▶ comparison trees for sorting method must have $\geq n!$ leaves
- \rightarrow height ≥ $\lg(n!) \sim n \lg n$ more precisely: $\lg(n!) = n \lg n - \lg(e)n + O(\log n)$
- ▶ Mergesort achieves $\sim n \lg n$ comparisons \rightsquigarrow asymptotically comparison-optimal!
- ▶ Open (theory) problem: Sorting algorithm with $n \lg n \lg(e)n + o(n)$ comparisons?

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?

A Yes

No

sli.do/comp526

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?

A Yes √

No

sli.do/comp526

3.4 Integer Sorting

▶ Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?

- ▶ Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- ▶ **Not necessarily;** only in the *comparison model!*
 - \leadsto Lower bounds show where to *change* the model!

- ▶ Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- ▶ **Not necessarily**; only in the *comparison model!*
 - → Lower bounds show where to *change* the model!
- \blacktriangleright Here: sort n integers
 - ► can do *a lot* with integers: add them up, compute averages, . . . (full power of word-RAM)
 - we are **not** working in the comparison model
 - *→* above lower bound does not apply!

- ▶ Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- ▶ **Not necessarily**; only in the *comparison model!*
 - → Lower bounds show where to *change* the model!
- \blacktriangleright Here: sort n integers
 - ▶ can do *a lot* with integers: add them up, compute averages, . . . (full power of word-RAM)
 - we are **not** working in the comparison model
 - *→* above lower bound does not apply!
 - but: a priori unclear how much arithmetic helps for sorting . . .

Counting sort

encoded in binary

- ► Important parameter: size/range of numbers
 - ▶ numbers in range $[0..U) = \{0,..., U-1\}$ typically $U = 2^b \longrightarrow b$ -bit binary numbers

Counting sort

- ► Important parameter: size/range of numbers
 - ▶ numbers in range $[0..U) = \{0,..., U-1\}$ typically $U = 2^b \rightsquigarrow b$ -bit binary numbers
- ▶ We can sort n integers in $\Theta(n+U)$ time and $\Theta(U)$ space when $b \leq w$:

Counting sort

```
procedure countingSort(A[0..n-1])

// A contains integers in range [0..U).

C[0..U-1] := \text{new integer array, initialized to } 0

// Count occurrences

for i := 0, ..., n-1

C[A[i]] := C[A[i]] + 1

i := 0
// Produce sorted list
```

► *count* how often each *possible* \(\cdot \) value occurs

used in Arrays. sort (byte[])

- produce sorted result directly from counts
- circumvents lower bound by using integers as array index / pointer offset

Can sort *n* integers in range [0..U) with U = O(n) in time and space $\Theta(n)$.

Integer Sorting – State of the art

- ightharpoonup O(n) time sorting also possible for numbers in range $U = O(n^c)$ for constant c.
 - radix sort with radix 2^w
- ► Algorithm theory

- suppose $U = 2^w$, but w can be an arbitrary function of n
- \blacktriangleright how fast can we sort n such w-bit integers on a w-bit word-RAM?
 - for $w = O(\log n)$: linear time (radix/counting sort)
 - for $w = \Omega(\log^{2+\varepsilon} n)$: linear time (signature sort)
 - ► for w in between: can do $O(n\sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!

Integer Sorting – State of the art

- ightharpoonup O(n) time sorting also possible for numbers in range $U = O(n^c)$ for constant c.
 - ightharpoonup radix sort with radix 2^w

► Algorithm theory

- ▶ suppose $U = 2^w$, but w can be an arbitrary function of n
- \blacktriangleright how fast can we sort *n* such *w*-bit integers on a *w*-bit word-RAM?
 - for $w = O(\log n)$: linear time (radix/counting sort)
 - for $w = \Omega(\log^{2+\varepsilon} n)$: linear time (signature sort)
 - for w in between: can do $O(n\sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!

* * *

▶ for the rest of this unit: back to the comparisons model!

Which statements are correct? Select all that apply.

My computer has 64-bit words, so an int has 64 bits. Hence I can sort any int[] of length $n ext{ . . .}$

- $oldsymbol{A}$ in time proportional to n.
- **B** in O(n) time.
- in $O(n \log n)$ time.
- **D** in constant time.
- **E** some time, but not possible to say from given information.

sli.do/comp526

Which statements are correct? Select all that apply.

My computer has 64-bit words, so an int has 64 bits. Hence I can sort any int[] of length $n \dots$

- B in O(n) time. $\sqrt{O(n+1)}$ counting soit
- \bigcirc in $O(n \log n)$ time. \checkmark (mayesock)
- some time, but not possible to say from given information.

sli.do/comp526

Part II

Sorting with of many processors

3.5 Parallel computation

Have you ever written a concurrent program (explicit threads, job pools library, or using a framework for distributed computing)?

- A Yes
- B) No
- C Concur... what?

sli.do/comp526

Have you ever written a concurrent program (explicit threads, job pools library, or using a framework for distributed computing)?

- A Yes
- B) No
- C Concur...what?

sli.do/comp526

Types of parallel computation

£££ can't buy you more time ... but more computers!

· Challenge: Algorithms for *parallel* computation.

Types of parallel computation

£££ can't buy you more time . . . but more computers!

→ Challenge: Algorithms for *parallel* computation.

There are two main forms of parallelism:

- **1. shared-memory parallel computer** \leftarrow *focus of today*
 - ▶ *p processing elements* (PEs, processors) working in parallel
 - ▶ single big memory, accessible from every PE
 - communication via shared memory
 - ▶ think: a big server, 128 CPU cores, terabyte of main memory

2. distributed computing

- p PEs working in parallel
- each PE has private memory
- communication by sending messages via a network
- think: a cluster of individual machines

PRAM – Parallel RAM

- extension of the RAM model (recall Unit 1)
- ▶ the *p* PEs are identified by ids 0, ..., p-1
 - ▶ like \underline{w} (the word size), \underline{p} is a parameter of the model that can grow with n
 - ▶ $p = \Theta(n)$ is not unusual maaany processors!

the same

- ► the PEs all **independently** run a RAM-style program (they can use their id there)
- ▶ each PE has its own registers, but MEM is shared among all PEs
- computation runs in <u>synchronous</u> steps: in each time step, every PE executes one instruction

PRAM - Conflict management

Problem: What if several PEs simultaneously overwrite a memory cell?

- ► EREW-PRAM (exclusive read, exclusive write) any parallel access to same memory cell is forbidden (crash if happens)
- ► CREW-PRAM (concurrent read, exclusive write) parallel write access to same memory cell is *forbidden*, but reading is fine
- ► CRCW-PRAM (concurrent read, concurrent write) concurrent access is allowed, need a rule for write conflicts:
 - common CRCW-PRAM: all concurrent writes to same cell must write same value
 - ► arbitrary CRCW-PRAM:
 some unspecified concurrent write wins

 ► (more exist ...)

coadidions

▶ no single model is always adequate, but our default is CREW

PRAM – Execution costs

Cost metrics in PRAMs

- ► space: total amount of accessed memory
- ▶ time: number of steps till all PEs finish assuming sufficiently many PEs! sometimes called *depth* or *span*
- ▶ work: total #instructions executed on all PEs

PRAM – Execution costs

Cost metrics in PRAMs

- **space:** total amount of accessed memory
- ▶ time: number of steps till all PEs finish assuming sufficiently many PEs! sometimes called *depth* or *span*
- ▶ work: total #instructions executed on all PEs

Holy grail of PRAM algorithms:

- ▶ minimal time (and space) often want poly log time \(\theta(log n)\)
- work (asymptotically) no worse than running time of best sequential algorithm
 - \leadsto "work-efficient" algorithm: work in same $\underline{\Theta\text{-class}}$ as best sequential

 $Does\ every\ computational\ problem\ allow\ a\ work-efficient\ algorithm?$

- A) Yes
- No

sli.do/comp526

 $Does\ every\ computational\ problem\ allow\ a\ work-efficient\ algorithm?$

- A Yes 🗸
 -) No

sli.do/comp526

The number of processors

Hold on, my computer does not have $\Theta(n)$ processors! Why should I care for span and work!?

Theorem 3.1 (Brent's Theorem:)

If an algorithm has span T and work W (for an arbitrarily large number of processors), it can be run on a PRAM with p PEs in time $O(T + \frac{W}{p})$ (and using O(W) work).

→ span and work give guideline for *any* number of processors

P=
$$kp+1$$
 $W=T.p$
 $W=T.p$
 $W=T.p$

$$k = \frac{W}{R}$$

3.6 Parallel primitives

Prefix sums

Before we come to parallel sorting, we study some useful building blocks.

Prefix-sum problem (also: cumulative sums, running totals)

- ▶ Given: array A[0..n-1] of numbers
- ► Goal: compute all prefix sums $A[0] + \cdots + A[i]$ for $i = 0, \ldots, n-1$ may be done "in-place", i. e., by overwriting A

Example:

ကွ

What is the $\ensuremath{\textit{sequential}}$ running time achievable for prefix sums?

 \bigcirc $O(n^3)$

 \mathbf{D} O(n)

 $O(n^2)$

 $lackbox{\bf E}$ $O(\sqrt{n})$

 $O(n \log n)$

 $\overline{\mathbf{F}}$ $O(\log n)$

sli.do/comp526

%

What is the *sequential* running time achievable for prefix sums?

 $O(n^3)$

O(n)

 $\mathbf{B} \quad \Theta(n^2)$

E) ⊖(√n)

F) O(log n)

sli.do/comp526

Prefix sums – Sequential

- ightharpoonup sequential solution does n-1 additions
- but: cannot parallelize them!data dependencies!
- → need a different approach

```
procedure prefixSum(A[0..n-1])
for i := 1, ..., n-1 do
A[i] := A[i-1] + A[i]
```

Prefix sums – Sequential

- ightharpoonup sequential solution does n-1 additions
- but: cannot parallelize them!data dependencies!

→ need a different approach

Let's try a simpler problem first.

Excursion: Sum

- ▶ Given: array A[0..n-1] of numbers
- ► Goal: compute $A[0] + A[1] + \cdots + A[n-1]$ (solved by prefix sums)

```
procedure prefixSum(A[0..n-1])
for i := 1, ..., n-1 do
A[i] := A[i-1] + A[i]
```

Prefix sums – Sequential

- ightharpoonup sequential solution does n-1 additions
- but: cannot parallelize them!data dependencies!
- → need a different approach

Let's try a simpler problem first.

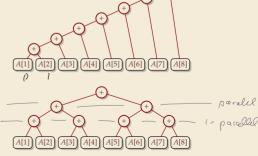
Excursion: Sum

- ▶ Given: array A[0..n-1] of numbers
- ► Goal: compute $A[0] + A[1] + \cdots + A[n-1]$ (solved by prefix sums)

Any algorithm must do n-1 binary additions

→ Height of tree = parallel time!

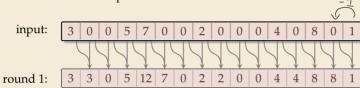
procedure prefixSum(A[0..n-1])
for i := 1, ..., n-1 do A[i] := A[i-1] + A[i]

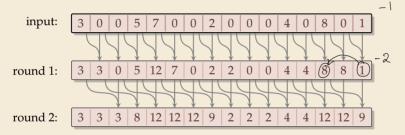


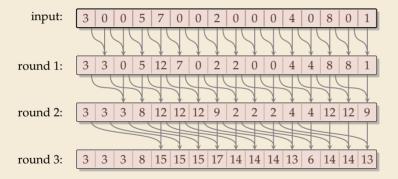
Parallel prefix sums

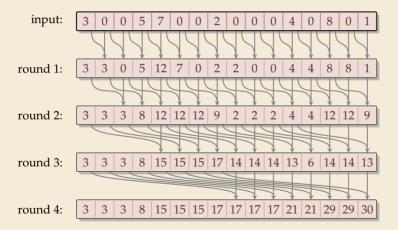
► Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse

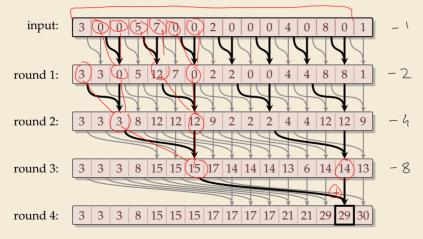
input: 3 | 0 | 0 | 5 | 7 | 0 | 0 | 2 | 0 | 0 | 0 | 4 | 0 | 8 | 0 | 1











Parallel prefix sums – Code

► can be realized in-place (overwriting *A*)

PRAM assumption: in each parallel step, all reads precede all writes = synchronous fixe procedure parallelPrefixSums(A[0..n-1]) for $r := 1, \ldots \lceil \lg n \rceil$ do 6c() step := 2^{r-1} for $i := step, \dots n-1$ do in parallel $0(1)_{6}$ $0(1)_{7}$ x := A[i] + A[i - step] A[i] := xdependencies) end for

Parallel prefix sums – Analysis

► Time:

- ▶ all additions of one round run in parallel
- ightharpoonup [lg n] rounds
- $\rightarrow \Theta(\log n)$ time best possible! (from som)

- $ightharpoonup \geq \frac{n}{2}$ additions in all rounds (except maybe last round)
- $\rightsquigarrow \Theta(n \log n)$ work
- ▶ more than the $\Theta(n)$ sequential algorithm!

Parallel prefix sums – Analysis

► Time:

- all additions of one round run in parallel
- ightharpoonup [lg n] rounds
- $\rightsquigarrow \Theta(\log n)$ time best possible!

- $ightharpoonup \geq \frac{n}{2}$ additions in all rounds (except maybe last round)
- $\rightsquigarrow \Theta(n \log n)$ work
- ightharpoonup more than the $\Theta(n)$ sequential algorithm!
- ▶ Typical trade-off: greater parallelism at the expense of more overall work

Parallel prefix sums – Analysis

► Time:

- all additions of one round run in parallel
- ightharpoonup [lg n] rounds
- $\rightsquigarrow \Theta(\log n)$ time best possible!

- $ightharpoonup \geq \frac{n}{2}$ additions in all rounds (except maybe last round)
- $\rightsquigarrow \Theta(n \log n)$ work
- ▶ more than the $\Theta(n)$ sequential algorithm!
- ▶ Typical trade-off: greater parallelism at the expense of more overall work
- ► For prefix sums:
 - ightharpoonup can actually get $\Theta(n)$ work in *twice* that time!
 - → algorithm is slightly more complicated
 - ▶ instead here: linear work in *thrice* the time using "blocking trick"

Work-efficient parallel prefix sums

standard trick to improve work: compute small blocks sequentially

- **1.** Set $b := \lceil \lg n \rceil$
- **2.** For blocks of b consecutive indices, i. e., A[0..b), A[b..2b), . . . do in parallel: compute local prefix sums sequentially
- **3.** Use previous work-inefficient algorithm only on <u>rightmost elements</u> of block, i. e., to compute prefix sums of A[b-1], A[2b-1], A[3b-1], ...
- **4.** For blocks A[0..b), A[b..2b), ... do in parallel: Add block-prefix sums to local prefix sums

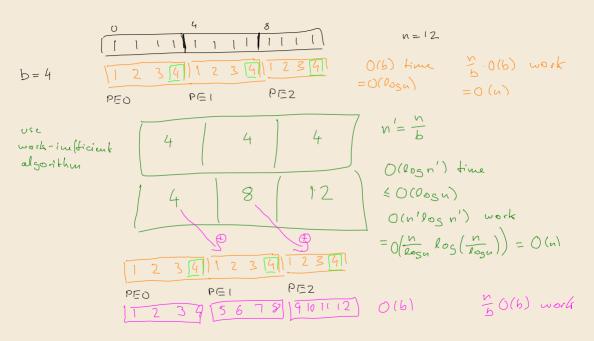
Analysis:

- ► Time:
 - ▶ 2. & 4.: $\Theta(b) = \Theta(\log n)$ time
 - ▶ 3. $\Theta(\log(n/b)) = \Theta(\log n)$ times

O(Deg ~)

- ► Work:
 - ▶ 2. & 4.: $\Theta(b)$ per block $\times \lceil \frac{n}{b} \rceil$ blocks $\rightsquigarrow \Theta(n)$
 - ▶ 3. $\Theta\left(\frac{n}{h}\log(\frac{n}{h})\right) = \Theta(n)$

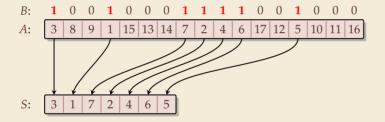
O(u) work



Compacting subsequences

How do prefix sums help with sorting? one more step to go \dots

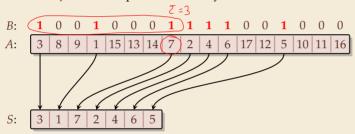
Goal: Compact a subsequence of an array



Compacting subsequences

How do prefix sums help with sorting? one more step to go \dots

Goal: Compact a subsequence of an array



Use prefix sums on bitvector B

 \rightarrow offset of selected cells in S

- parallelPrefixSums(B)
- ² for $j := 0, \ldots, n-1$ do in parallel
- if B[j] == 1 then S[B[j] 1] := A[j]
- 4 end parallel for

Clicker Question

What is the parallel time and work achievable for *compacting* a subsequence of an array of size *n*?

- \bigcirc O(1) time, O(n) work
- **B** $O(\log n)$ time, O(n) work
- \mathbf{C} $O(\log n)$ time, $O(n \log n)$ work
- $O(\log^2 n)$ time, $O(n^2)$ work
- O(n) time, O(n) work

sli.do/comp526

Click on "Polls" tab

Clicker Question

What is the parallel time and work achievable for *compacting* a subsequence of an array of size *n*?

- A O(1) time, O(n) work
- **B** $O(\log n)$ time, O(n) work \checkmark
- C O(log n) time, O(n log n) work
- E O(n) time, O(n) work

sli.do/comp526

Click on "Polls" tab

3.7 Parallel sorting

Parallel quicksort

Let's try to parallelize quicksort

- our sequential partitioning algorithm seems hard to parallelize

et's try to parallelize quicksort

recursive calls can run in parallel (data independent)

only this in pavallel

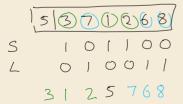
can only enduce time

h ⊕(n)

Parallel quicksort

Let's try to parallelize quicksort

- recursive calls can run in parallel (data independent)
- our sequential partitioning algorithm seems hard to parallelize
- but can split partitioning into *rounds*:
 - 1. comparisons: compare all elements pivot (in parallel), store bitvector
 - 2. compute prefix sums of bit vectors (in parallel as above)
 - 3. compact subsequences of small and large elements (in parallel as above)



Parallel quicksort – Code

```
1 procedure parQuicksort(A[l..r])
       b := \text{choosePivot}(A[l..r])
      i := parallelPartition(A[l..r], b)
3
      in parallel { parQuicksort(A[l..j-1]), parQuicksort(A[j+1..r]) }
6 procedure parallelPartition(A[l..r], b)
      swap(A[n-1], A[b]); p := A[n-1]
      for i = 0, ..., n-2 do in parallel
                                                       [pred] = { pred frue
           S[i] := [A[i] \le p] // S[i] is 1 or 0
           L[i] := 1 - S[i]
10
11
      end parallel for
      in parallel { parallelPrefixSum(S[0..n-2]); parallelPrefixSum(L[0..n-2]) }
12
      i := S[n-2] + 1
13
      for i = 0, \dots, n-2 do in parallel
14
           x := A[i]
15
           if x \le p then A[S[i] - 1] := x
16
           else A[i + L[i]] := x
17
      end parallel for
18
      A[i] := p
19
      return j
20
```

Parallel quicksort – Analysis

► Time:

- ▶ partition: all O(1) time except prefix sums $\longrightarrow \Theta(\log n)$ time
- quicksort: expected depth of recursion tree is $\Theta(\log n)$
- \rightsquigarrow total time $O(\log^2(n))$ in expectation

vork:

▶ partition:
$$O(n)$$
 time except prefix sums $\longrightarrow \Theta(n \log n)$ work

- \rightsquigarrow quicksort $O(n \log^2(n))$ work in expectation
- ▶ using a work-efficient prefix-sums algorithm yields (expected) work-efficient sorting!

Parallel mergesort

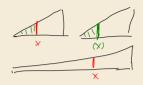
► As for quicksort, recursive calls can run in parallel

Parallel mergesort

- ► As for quicksort, recursive calls can run in parallel
- ▶ how about merging sorted halves A[l..m-1] and A[m..r]?
- ► Must treat elements independently.

Parallel mergesort

- ► As for quicksort, recursive calls can run in parallel
- ▶ how about merging sorted halves A[l..m-1] and A[m..r]?
- Must treat elements independently.
- /#elements $\leq x$
- ightharpoonup correct position of x in sorted output = rank of x breaking ties by position in A
- # elements $\leq x =$ # elements from A[l..m-1] that are $\leq x$ + # elements from A[m..r] that are $\leq x$
- ightharpoonup Note: rank in own run is simply the index of x in that run
- ▶ find rank in *other* run by binary search
- → can move it to correct position



Parallel mergesort – Analysis

► Time:

- ▶ merge: $\Theta(\log n)$ from binary search, rest O(1)
- ▶ mergesort: depth of recursion tree is $\Theta(\log n)$

```
\rightsquigarrow total time O(\log^2(n))
```

```
▶ merge: n binary searches \rightsquigarrow \Theta(n \log n)
```

$$\rightsquigarrow$$
 mergesort: $O(n \log^2(n))$ work

Parallel mergesort – Analysis

► Time:

- ▶ merge: $\Theta(\log n)$ from binary search, rest O(1)
- ▶ mergesort: depth of recursion tree is $\Theta(\log n)$
- \rightsquigarrow total time $O(\log^2(n))$

- ▶ merge: n binary searches \rightsquigarrow $\Theta(n \log n)$
- \rightsquigarrow mergesort: $O(n \log^2(n))$ work
- ▶ work can be reduced to $\Theta(n)$ for merge
 - b do full binary searches only for regularly sampled elements
 - ranks of remaining elements are sandwiched between sampled ranks
 - use a sequential method for small blocks, treat blocks in parallel
 - ▶ (detailed omitted)

Parallel sorting – State of the art

- ▶ more sophisticated methods can sort in $O(\log n)$ parallel time on CREW-RAM
- practical challenge: small units of work add overhead
- \blacktriangleright need a lot of PEs to see improvement from $O(\log n)$ parallel time
- → implementations tend to use simpler methods above
 - check the Java library sources for interesting examples! java.util.Arrays.parallelSort(int[])