ALGORITHMICS\$APPLI ED APPLIEDALGORITHMICS $\$$ CS \$ APPLIEDALGORITHMI DALGORITHMICS C APPRIE EDALGORITHMICS\$APPLI GORITHMICS\$APPLIEDAL HMICS \$APPLIEDALGORIT

Efficient Sorting

24 February 2021
Sebastian Wild

Outline

3 Efficient Sorting

3.1 Mergesort
3.2 Quicksort
3.3 Comparison-Based Lower Bound
3.4 Integer Sorting
3.5 Parallel computation
3.6 Parallel primitives
3.7 Parallel sorting

Why study sorting?

- fundamental problem of computer science that is still not solved
- building brick of many more advanced algorithms
- for preprocessing
- as subroutine
- playground of manageable complexity to practice algorithmic techniques

Here:

- "classic" fast sorting method
- parallel sorting

Part I

The Basics

Rules of the game

- Given:
- array $A[0 . . n-1]$ of n objects
- a total order relation $\leq \operatorname{among} A[0], \ldots, A[n-1]$
(a comparison function) (omparotor (Java) \quad coupareTo (y) $<=0$
- Goal: rearrange (=permute) elements within A, so that A is sorted, i. e., $A[0] \leq A[1] \leq \cdots \leq A[n-1]$
- for now: A stored in main memory (internal sorting) single processor (sequential sorting)

Clicker Question

What is the complexity of sorting? Type you answer, e.g., as
"Theta(sqrt(n))"

3.1 Mergesort

Clicker Question

How does mergesort work?
(A) Split elements around median, then recurse on small / large elements.
(B) Recurse on left / right half, then combine sorted halves.
(C) Grow sorted part on left, repeatedly add next element to sorted range.
(D) Repeatedly choose 2 elements and swap them if they are out of order.
(E) Don't know.

Clicker Question

How does mergesort work?
(A) Splitelements around medion, then-reuron-mall/ large elements.
(B) Recurse on left / right half, then combine sorted halves. $\sqrt{ }$
(C) Grow sorted parton left, repeatedly add next element to serted range.
(D) Pepeatedly choose 2 elements and wap them if they areout eforder.
(E) Den't know.

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

tun1
run2
result

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Merging sorted lists

Clicker Question

What is the worst-case running time of mergesort?
(A) $\Theta(1)$
(G) $\Theta(n \log n)$
(B) $\Theta(\log n)$
(H) $\Theta\left(n \log ^{2} n\right)$
(C) $\Theta(\log \log n)$
(I) $\Theta\left(n^{1+\epsilon}\right)$
(D) $\Theta(\sqrt{n})$
(J) $\Theta\left(n^{2}\right)$
(E) $\Theta(n)$
(K) $\Theta\left(n^{3}\right)$
(F) $\Theta(n \log \log n)$
(L) $\Theta\left(2^{n}\right)$

Clicker Question

What is the worst-case running time of mergesort?
(A)
(G) $\Theta(n \log n) \checkmark$
(B)
(H)

(1) $-(4+\epsilon)$
(D)
(J) $B\left(44^{2}\right)$
(E) ©(n)
(K) $\left(-n^{3}\right)$
(F) Ane
(L)

> sli.do/comp526

Mergesort

```
procedure mergesort( \(A[l . . r]\) )
    \(n:=r-l+1\)
    if \(n \geq 1\) return
    \(m:=l+\left\lfloor\frac{n}{2}\right\rfloor\)
    mergesort( \(A[\) l..m-1])
    mergesort( \(A[m . . r]\) )
    merge(A[l..m-1], \(A[m . . r]\), buf)
    copy buf to \(A[l . . r]\)
```

- recursive procedure; divide \mathcal{E} conquer
- merging needs
- temporary storage for result of same size as merged runs
- to read and write each element twice (once for merging, once for copying back)

Mergesort

```
procedure mergesort( \(A[l . . r]\) )
    \(n:=r-l+1\)
    if \(n \geq 1\) return
    \(m:=l+\left\lfloor\frac{n}{2}\right\rfloor\)
    mergesort( \(A[\) l..m-1])
    mergesort( \(A[m . . r]\) )
    merge(A[l..m-1], \(A[m . . r]\), buf)
    copy buf to \(A[l . . r]\)
```

- recursive procedure; divide \mathcal{E} conquer
- merging needs
- temporary storage for result of same size as merged runs
- to read and write each element twice (once for merging, once for copying back)

Analysis: count "element visits" (read and/or write)
$C(n)= \begin{cases}0 & n \leq 1 \\ \underline{C(\lfloor n / 2\rfloor)}+\underline{C(\lceil n / 2\rceil)}+\underline{2 n} & n \geq 2\end{cases}$
same for best and worst case!

Simplification $n=2^{k} \quad k \in \mathbb{N} \quad k=l_{s} n$
$C\left(2^{k}\right)=\left\{\begin{array}{ll}0 & k \leq 0 \\ 2 \cdot C\left(2^{k-1}\right)+\underline{2 \cdot 2^{k}} & k \geq 1\end{array} \quad \stackrel{k^{k-1}}{=} \underline{2^{k}+2^{2} \cdot 2^{k-1}+2^{3} \cdot 2^{k-2}+\cdots+2^{k} \cdot 2^{1}}=\frac{2 k \cdot 2^{k}}{k \text { sumands }} 2^{k+1}\right.$
$C(n)=2 n \lg (n)=\Theta(n \log n)$

Mergesort - Discussion

0
optimal time complexity of $\Theta(n \log n)$ in the worst case

0
stable sorting method i. e., retains relative order of equal-key items

0
memory access is sequential (scans over arrays)
\square
requires $\Theta(n)$ extra space
there are in-place merging methods,
but they are substantially more complicated and not (widely) used

3.2 Quicksort

Clicker Question

How does quicksort work?
(A) split elements around median, then recurse on small / large elements.
(B) recurse on left / right half, then combine sorted halves.
C. grow sorted part on left, repeatedly add next element to sorted range.
(D) repeatedly choose 2 elements and swap them if they are out of order.
(E) Don't know.

Clicker Question

How does quicksort work?
(A) split elements around median, then recurse on small / large elements.
(B) eurse on left/right half, thencombine serted halvecs
(C) grow sorted parton left, repentedly add nextelement to serted range.
(D) epeatedly choose 2 elements and owp them if they areout eforder.
(E) Den't knew

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

Partitioning around a pivot

\uparrow

Partitioning around a pivot

Partitioning around a pivot

- no extra space needed
- visits each element once
- returns rank/position of pivot

Partitioning - Detailed code

```
Beware: details easy to get wrong; use this code!
```

```
procedure partition \((A, b)\)
    // input: array \(A[0 . . n-1]\), position of pivot \(b \in[0 . . n-1]\)
    \(\operatorname{swap}(A[0], A[b])\)
    \(i:=0, \quad j:=n\)
    while true do
        do \(i:=i+1\) while \(i<n\) and \(A[i]<A[0]\)
        do \(j:=j-1\) while \(j \geq 1\) and \(A[j]>A[0]\)
        if \(i \geq j\) then break (goto 8)
        else \(\operatorname{swap}(A[i], A[j])\)
    end while
    \(\operatorname{swap}(A[0], A[j])\)
    return \(j\)
```

Loop invariant (5-10):

A| p | $\leq p$ | $?$ | $\geq p$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| i | | | | | j |

Quicksort

```
procedure quicksort( \(A[l . . r]\) )
    if \(l \geq r\) then return
    \(b:=\operatorname{choosePivot}(A[l . . r])\)
    \(j:=\operatorname{partition}(A[l . . r], b)\)
    quicksort(A[l..j - 1])
    quicksort( \(A[j+1 . . r])\)
```

- recursive procedure; divide \mathcal{E} conquer
- choice of pivot can be
- fixed position \rightsquigarrow dangerous!
- random
- more sophisticated, e. g., median of 3

Clicker Question

What is the worst-case running time of quicksort?
(A) $\Theta(1)$
(G) $\Theta(n \log n)$
(B) $\Theta(\log n)$
(H) $\Theta\left(n \log ^{2} n\right)$
(C) $\Theta(\log \log n)$
(I) $\Theta\left(n^{1+\epsilon}\right)$
(D) $\Theta(\sqrt{n})$
(J) $\Theta\left(n^{2}\right)$
(E) $\Theta(n)$
(K) $\Theta\left(n^{3}\right)$
(F) $\Theta(n \log \log n)$
(L) $\Theta\left(2^{n}\right)$

Clicker Question

What is the worst-case running time of quicksort?
(A)
(G) Entoget
(B)
(H)
(C)
(1) $-(4+\epsilon)$
(D)
(E)
(K) $\left(-n^{3}\right)$
(F)
(L)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Quicksort \& Binary Search Trees

Quicksort

(7)	4	2	9	1	3	8	5	6

Quicksort \& Binary Search Trees

Quicksort

| 7 | 4 | 2 | 9 | 1 | 3 | 8 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 4 | 2 | 1 | 3 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 9 | 8 | |

Quicksort \& Binary Search Trees

Quicksort

| 7 | 4 | 2 | 9 | 1 | 3 | 8 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 4 | 2 | 1 | 3 | 5 | 6 | 7 | 9 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6
4	4 2 1 3 5 6 7 9							

Quicksort \& Binary Search Trees

Quicksort

| 7 | 4 | 2 | 9 | 1 | 3 | 8 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 4 | 2 | 1 | 3 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 7 | 9 | 8 | | |

| 2 | 1 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

| 4 | 2 | 1 | 3 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | | 9 | 8 |
| :--- | :--- | :--- |

| 2 | 1 | 3 |
| :--- | :--- | :--- | | 5 | 6 |
| :--- | :--- |

Quicksort \& Binary Search Trees

Quicksort

7 4 2 9 1 3 8 5 6 4 2 1 3 5 6 7 9
2 1 3 4 5 6

Quicksort \& Binary Search Trees

Quicksort

Quicksort \& Binary Search Trees

Quicksort

| 7 | 4 | 2 | 9 | 1 | 3 | 8 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 4 | 2 | 1 | 3 | 5 | 6 | 7 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Quicksort \& Binary Search Trees

Quicksort

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)
$\begin{array}{lllllllll}7 & 4 & 2 & 9 & 1 & 3 & 8 & 5 & 6\end{array}$

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

$$
\begin{array}{lllllllll}
7 & 4 & 2 & 9 & 1 & 3 & 8 & 5 & 6
\end{array}
$$

(7)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

$$
\text { (4) } 29913 \begin{array}{llll}
\hline
\end{array}
$$

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

Quicksort \& Binary Search Trees

Quicksort

7	4	2	9	1	3	8	5	6

Binary Search Tree (BST)

$$
\begin{array}{lllllllll}
7 & 4 & 2 & 9 & 1 & 3 & 8 & 5 & 6
\end{array}
$$

- recursion tree of quicksort $=$ binary search tree from successive insertion
- comparisons in quicksort $=$ comparisons to built BST
comparisons in quicksort \approx comparisons to search each element in BST

Quicksort - Worst Case

- Problem: BSTs can degenerate
- Cost to search for k is $k-1$
\rightsquigarrow Total cost $\sum_{k=1}^{n}(k-1)=\frac{n(n-1)}{2} \sim \frac{1}{2} n^{2}$
\rightsquigarrow quicksort worst-case running time is in $\Theta\left(n^{2}\right)$

(6)

But, we can fix this:

Randomized quicksort:

- choose a random pivot in each step
\rightsquigarrow same as randomly shuffling input before sorting

Randomized Quicksort - Analysis

- $C(n)=$ element visits (as for mergesort)
\rightsquigarrow quicksort needs $\sim 2 \ln (2) \cdot n \lg n \approx 1.39 n \lg n$ in expectation

$$
\text { Mersesoot } 2 n \lg n
$$

- also: very unlikely to be much worse:
e. g., one can prove: $\operatorname{Pr}[$ cost $>10 n \lg n]=O\left(n^{-2.5}\right)$ distribution of costs is "concentrated around mean"
- intuition: have to be constantly unlucky with pivot choice

Quicksort - Discussion

0
fastest general-purpose method
$\Theta(n \log n)$ average case

0
works in-place (no extra space required)
0
memory access is sequential (scans over arrays)
ゆ
$\Theta\left(n^{2}\right)$ worst case (although extremely unlikely)
ゅ
not a stable sorting method

Open problem: Simple algorithm that is fast, stable and in-place.
3.3 Comparison-Based Lower Bound

Lower Bounds

- Lower bound: mathematical proof that no algorithm can do better.
- very powerful concept: bulletproof impossibility result
\approx conservation of energy in physics
- (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound
\rightsquigarrow can speak of "optimal algorithms"

Lower Bounds

- Lower bound: mathematical proof that no algorithm can do better.
- very powerful concept: bulletproof impossibility result
\approx conservation of energy in physics
- (unique?) feature of computer science:
for many problems, solutions are known that (asymptotically) achieve the lower bound
\rightsquigarrow can speak of "optimal algorithms"
- To prove a statement about all algorithms, we must precisely define what that is!
- already know one option: the word-RAM model
- Here: use a simpler, more restricted model.

The Comparison Model

- In the comparison model data can only be accessed in two ways:
- comparing two elements
- moving elements around (e.g. copying, swapping)
- Cost: number of these operations.

The Comparison Model

- In the comparison model data can only be accessed in two ways:
- comparing two elements
- moving elements around (e.g. copying, swapping)
- Cost: number of these operations.

That's good!
/Keeps algorithms general!

- This makes very few assumptions on the kind of objects we are sorting.
- Mergesort and Quicksort work in the comparison model.

The Comparison Model

- In the comparison model data can only be accessed in two ways:
- comparing two elements
- moving elements around (e.g. copying, swapping)
- Cost: number of these operations.

That's good!
Keeps algorithms general!

- This makes very few assumptions on the kind of objects we are sorting.
- Mergesort and Quicksort work in the comparison model.
\rightsquigarrow Every comparison-based sorting algorithm corresponds to a decision tree.
- only model comparisons \rightsquigarrow ignore data movement
- nodes = comparisons the algorithm does
- next comparisons can depend on outcomes
- child links = outcomes of comparison

- leaf $=$ unique initial input permutation compatible with comparison outcomes

Comparison Lower Bound

Example: Comparison tree for a sorting method for $A[0 . .2]$:

Comparison Lower Bound
Example: Comparison tree for a sorting method for $A[0 . .2]$:

Comparison Lower Bound

Example: Comparison tree for a sorting method for $A[0 . .2]$:

- Execution = follow a path in comparison tree.
\rightsquigarrow height of comparison tree $=$ worst-case \# comparisons
- comparison trees are binary trees
$\rightsquigarrow \ell$ leaves \rightsquigarrow height $\geq\lceil\lg (\ell)\rceil$
- comparison trees for sorting method must have $\geq n$! leaves
\rightsquigarrow height $\geq \lg (n!) \sim n \lg n$ more precisely: $\lg (n!)=n \lg n-\lg (e) n+O(\log n)$
- Mergesort achieves $\sim n \lg n$ comparisons \rightsquigarrow asymptotically comparison-optimal!
- Open (theory) problem: Sorting algorithm with $n \lg n-\lg (e) n+o(n)$ comparisons?

Clicker Question

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?
(A) Yes
(B) No

Clicker Question

Does the comparison-tree from the previous slide correspond to a worst-case optimal sorting method?
(A) Yes $\sqrt{\text { B }}$

3.4 Integer Sorting

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- Not necessarily; only in the comparison model!
\rightsquigarrow Lower bounds show where to change the model!

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- Not necessarily; only in the comparison model!
\rightsquigarrow Lower bounds show where to change the model!
- Here: sort n integers
- can do a lot with integers: add them up, compute averages, ...
(full power of word-RAM)
\rightsquigarrow we are not working in the comparison model
\rightsquigarrow above lower bound does not apply!

How to beat a lower bound

- Does the above lower bound mean, sorting always takes time $\Omega(n \log n)$?
- Not necessarily; only in the comparison model!
\rightsquigarrow Lower bounds show where to change the model!
- Here: sort n integers
- can do a lot with integers: add them up, compute averages, ...
\rightsquigarrow we are not working in the comparison model
\rightsquigarrow above lower bound does not apply!
- but: a priori unclear how much arithmetic helps for sorting ...

Counting sort

- Important parameter: size/range of numbers
- numbers in range $[0 . . U)=\{0, \ldots, U-1\} \quad$ typically $U=2^{b} \rightsquigarrow b$-bit binary numbers

Counting sort

- Important parameter: size/range of numbers
- numbers in range $[0 . . U)=\{0, \ldots, U-1\} \quad$ typically $U=2^{b} \rightsquigarrow b$-bit binary numbers
- We can sort n integers in $\Theta(n+U)$ time and $\Theta(U)$ space when $b \leq w$:

Counting sort

```
procedure countingSort(A[0..n - 1])
```

$2 \quad / /$ A contains integers in range [0..U).
$\Theta(U) \quad \mid C[0 . . U-1]:=$ new integer array, initialized to 0 4 // Count occurrences
${ }_{6}^{5}\left|\begin{array}{c|c}\text { for } i:=0, \ldots, n-1 \\ \text { o(1) } & C[A[i]]:=C[A[i]]+1\end{array}\right|$ (D) $i:=\sigma / /$ Produce sorted list
$\theta(n+U)$
$E_{k} C[k]=n$
$s \cup \mid$ for $k:=0, \ldots U-1$
${ }^{9}([k) \mid$ for $j:=1, \ldots C[k]$
${ }^{10} \quad$ O(1) $A[i]:=k ; i:=i+1$

Can sort n integers in range $[0 . . U)$ with $U=O(n)$ in time and space $\Theta(n)$.

Integer Sorting - State of the art

- $O(n)$ time sorting also possible for numbers in range $U=O\left(n^{c}\right)$ for constant c.
- radix sort with radix $2^{w w}$
- Algorithm theory

$$
\left(U_{n i t} 1: \omega=\epsilon(\overline{\log n))}\right.
$$

- suppose $U=2^{w}$, but w can be an arbitrary function of n
- how fast can we sort n such w-bit integers on a w-bit word-RAM?
- for $w=O(\log n)$: linear time (radix/counting sort)

- for $w=\Omega\left(\log ^{2+\varepsilon} n\right)$: linear time (signature sort)
- for w in between: can do $O(n \sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!

Integer Sorting - State of the art

- $O(n)$ time sorting also possible for numbers in range $U=O\left(n^{c}\right)$ for constant c.
- radix sort with radix 2^{w}
- Algorithm theory
- suppose $U=2^{w}$, but w can be an arbitrary function of n
- how fast can we sort n such w-bit integers on a w-bit word-RAM?
- for $w=O(\log n)$: linear time (radix/counting sort)
- for $w=\Omega\left(\log ^{2+\varepsilon} n\right)$: linear time (signature sort)
- for w in between: can do $O(n \sqrt{\lg \lg n})$ (very complicated algorithm) don't know if that is best possible!
* * *
- for the rest of this unit: back to the comparisons model!

Clicker Question

Which statements are correct? Select all that apply.
My computer has 64-bit words, so an int has 64 bits. Hence I can sort any int [] of length $n \ldots$
(A) in time proportional to n.
(B) in $O(n)$ time.
(C) in $O(n \log n)$ time.
(D) in constant time.
(E) some time, but not possible to say from given information.

Clicker Question

Which statements are correct? Select all that apply.
My computer has 64-bit words, so an int has 64 bits. Hence I can sort any int [] of length $n \ldots$
?

Part II

Sorting with of many processors

3.5 Parallel computation

Clicker Question

Have you ever written a concurrent program (explicit threads, job pools library, or using a framework for distributed computing)?
(A) Yes
(B) No
(C) Concur. . . what?

Clicker Question

Have you ever written a concurrent program (explicit threads, job pools library, or using a framework for distributed computing)?
(A) Yes
(B) N
(C) Coneur...what?

Types of parallel computation

$£ £ £$ can't buy you more time . . . but more computers!
\rightsquigarrow Challenge: Algorithms for parallel computation.

Types of parallel computation

$£ £ £$ can't buy you more time . . . but more computers!
\rightsquigarrow Challenge: Algorithms for parallel computation.
There are two main forms of parallelism:

1. shared-memory parallel computer \leftarrow focus of today

- p processing elements (PEs, processors) working in parallel
- single big memory, accessible from every PE
- communication via shared memory
- think: a big server, 128 CPU cores, terabyte of main memory

2. distributed computing

- p PEs working in parallel
- each PE has private memory
- communication by sending messages via a network
- think: a cluster of individual machines

PRAM - Parallel RAM

- extension of the RAM model (recall Unit 1)
- the p PEs are identified by ids $0, \ldots, p-1$
- like \underline{w} (the word size), \underline{p} is a parameter of the model that can grow with n
- $p=\Theta(n)$ is not unusual maaany processors!
the same
- the PEs all independently run RAM-style program (they can use their id there)
- each PE has its own registers, but MEM is shared among all PEs
- computation runs in synchronous steps:
in each time step, every PE executes one instruction

PRAM - Conflict management

Problem: What if several PEs simultaneously overwrite a memory cell?

- EREW-PRAM (exclusive read, exclusive write) any parallel access to same memory cell is forbidden (crash if happens)
- CREW-PRAM (concurrent read, exclusive write) parallel write access to same memory cell is forbidden, but reading is fine
- CRCW-PRAM (concurrent read, concurrent write) concurrent access is allowed, need a rule for write conflicts:
- common CRCW-PRAM:
all concurrent writes to same cell must write same value
- arbitrary CRCW-PRAM: some unspecified concurrent write wins closest to CPUS
- (more exist ...)

```
race
coaditions
```

- no single model is always adequate, but our default is CREW

PRAM - Execution costs

Cost metrics in PRAMs

- space: total amount of accessed memory
- time: number of steps till all PEs finish assuming sufficiently many PEs! sometimes called depth or span
- work: total \#instructions executed on all PEs

PRAM - Execution costs

Cost metrics in PRAMs

- space: total amount of accessed memory
- time: number of steps till all PEs finish assuming sufficiently many PEs! sometimes called depth or span
- work: total \#instructions executed on all PEs

$$
\text { sequential: work }=\text { time }
$$

Holy grail of PRAM algorithms:

- minimal time (and space) ofthiwant poly log time $\theta\left(\log ^{c} n\right)$
- work (asymptotically) no worse than running time of best sequential algorithm
\rightsquigarrow "work-efficient" algorithm: work in same $\underline{\Theta \text {-class as best sequential }}$

Clicker Question

Does every computational problem allow a work-efficient algorithm?
(A) Yes
(B) No

> sli.do/comp526

Clicker Question

Does every computational problem allow a work-efficient algorithm?
(A) Yes
(B)

> sli.do/comp526

The number of processors

Hold on, my computer does not have $\Theta(n)$ processors! Why should I care for span and work!?

Theorem 3.1 (Brent's Theorem:)

If an algorithm has span T and work W (for an arbitrarily large number of processors), it can be run on a PRAM with p PEs in time $O\left(T+\frac{W}{p}\right)$ (and using $O(W)$ work).

Proof: schedule parallel steps in round-robin fashion on the p PEs.

PRAM execution PEO PE1. PE2 PE? PEL

$$
T=5 \quad W=19
$$

\rightsquigarrow span and work give guideline for any number of processors

PRAM

$$
\begin{aligned}
& P=k p+1 \quad \square \cdots P
\end{aligned}
$$

3.6 Parallel primitives

Prefix sums

Before we come to parallel sorting, we study some useful building blocks.

Prefix-sum problem (also: cumulative sums, running totals)

- Given: array $A[0 . . n-1]$ of numbers
- Goal: compute all prefix sums $A[0]+\cdots+A[i]$ for $i=0, \ldots, n-1$ may be done "in-place", i. e., by overwriting A

Example:

input:

3	0	0	5	7	0	0	2	0	0	0	4	0	8	0	1

Σ
output:

3	3	3	8	15	15	15	17	17	17	17	21	21	29	29	30

Clicker Question

What is the sequential running time achievable for prefix sums?
(A) $O\left(n^{3}\right)$
(D) $O(n)$
(B) $O\left(n^{2}\right)$
(E) $O(\sqrt{n})$
(C) $O(n \log n)$
(F) $O(\log n)$

Clicker Question

What is the sequential running time achievable for prefix sums?

Q
(A) $\left(-4 \pi^{3}\right)$
(B) $\because\left(n^{2}\right)$
(C) $\theta(x \log$
(D) $O(n) \sqrt{ }$
(E) $8(\sqrt{4}$
(F) $8(\log -4)$

> sli.do/comp526

Prefix sums - Sequential

- sequential solution does $n-1$ additions
- but: cannot parallelize them!

4 data dependencies!

$$
\begin{gathered}
\text { procedure prefixSum }(A[0 . . n-1]) \\
\text { for } i:=1, \ldots, n-1 \text { do } \\
A[i]:=A[i-1]+A[i]
\end{gathered}
$$

\rightsquigarrow need a different approach

Prefix sums - Sequential

- sequential solution does $n-1$ additions
- but: cannot parallelize them!

4 data dependencies!

$$
\begin{gathered}
\text { procedure prefixSum }(A[0 . . n-1]) \\
\text { for } i:=1, \ldots, n-1 \text { do } \\
A[i]:=A[i-1]+A[i]
\end{gathered}
$$

\rightsquigarrow need a different approach
Let's try a simpler problem first.

Excursion: Sum

- Given: array $A[0 . . n-1]$ of numbers
- Goal: compute $A[0]+A[1]+\cdots+A[n-1]$
(solved by prefix sums)

Prefix sums - Sequential

- sequential solution does $n-1$ additions
- but: cannot parallelize them!

4 data dependencies!

```
procedure prefixSum(A[0..n - 1])
2 for }i:=1,\ldots,n-1 d
        A[i]:= A[i-1]+A[i]
```

\rightsquigarrow need a different approach
Let's try a simpler problem first.

Excursion: Sum

- Given: array $A[0 . . n-1]$ of numbers
- Goal: compute $A[0]+A[1]+\cdots+A[n-1]$ (solved by prefix sums)

Any algorithm must do $n-1$ binary additions
\rightsquigarrow Height of tree $=$ parallel time!

Parallel prefix sums

- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse
input:

3	0	0	5	7	0	0	2	0	0	0	4	0	8	0	1

Parallel prefix sums

- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse
round 1 :

3	3	0	5	12	7	0	2	2	0	0	4	4	8	8	1

Parallel prefix sums

- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse
round 1 :

Parallel prefix sums

- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse

Parallel prefix sums

- Idea: Compute all prefix sums with balanced trees in parallel Remember partial results for reuse
input:
round 1 :

3	0	0	5	7	0	0	2	0	0	0	4	0	8	0	1

round

round 2 :

3	3	3	8	12	12	12	9	2	2	2	4	4	12	12	9

round 4 :

3	3	3	8	15	15	15	17	17	17	17	21	21	29	29	30

Parallel prefix sums

- Idea: Compute all prefix sums with balanced trees in parallel

Remember partial results for reuse
round 1 :

input:
round
round 2 :

round 4:

3	3	3	8	15	15	15	17	17	17	17	21	21	29	29	30

Parallel prefix sums - Code

- can be realized in-place (overwriting A)
assumption: in each parallel step, all reads precede all writes
PRAM
= synchronous time

Parallel prefix sums - Analysis

- Time:
- all additions of one round run in parallel
- $\lceil\lg n\rceil$ rounds
$\rightsquigarrow \Theta(\log n)$ time best possible! (from sum)
- Work:
- $\geq \frac{n}{2}$ additions in all rounds (except maybe last round)
$\rightsquigarrow \Theta(n \log n)$ work
- more than the $\Theta(n)$ sequential algorithm!

Parallel prefix sums - Analysis

- Time:
- all additions of one round run in parallel
- $\lceil\lg n\rceil$ rounds
$\rightsquigarrow \Theta(\log n)$ time best possible!
- Work:
- $\geq \frac{n}{2}$ additions in all rounds (except maybe last round)
$\rightsquigarrow \Theta(n \log n)$ work
- more than the $\Theta(n)$ sequential algorithm!
- Typical trade-off: greater parallelism at the expense of more overall work

Parallel prefix sums - Analysis

- Time:
- all additions of one round run in parallel
- $\lceil\lg n\rceil$ rounds
$\rightsquigarrow \Theta(\log n)$ time best possible!
- Work:
- $\geq \frac{n}{2}$ additions in all rounds (except maybe last round)
$\rightsquigarrow \Theta(n \log n)$ work
- more than the $\Theta(n)$ sequential algorithm!
- Typical trade-off: greater parallelism at the expense of more overall work
- For prefix sums:
- can actually get $\Theta(n)$ work in twice that time!
\rightsquigarrow algorithm is slightly more complicated
- instead here: linear work in thrice the time using "blocking trick"

Work-efficient parallel prefix sums

standard trick to improve work: compute small blocks sequentially

1. Set $b:=\lceil\lg n\rceil$
2. For blocks of b consecutive indices, i.e., $A[0 . . b), A[b . .2 b), \ldots$ do in parallel: compute local prefix sums sequentially
3. Use previous work-inefficient algorithm only on rightmost elements of block, i. e., to compute prefix sums of $A[b-1], A[2 b-1], A[3 b-1], \ldots$
4. For blocks $A[0 . . b), A[b . .2 b), \ldots$ do in parallel:

Add block-prefix sums to local prefix sums

Analysis:

- Time:
- 2. \& 4.: $\Theta(b)=\Theta(\log n)$ time
- 3. $\Theta(\log (n / b))=\Theta(\log n)$ times

$$
O(\log n)
$$

- Work:
- 2. \& 4.: $\Theta(b)$ per block $\times\left\lceil\frac{n}{b}\right\rceil$ blocks $\rightsquigarrow \Theta(n)$
- 3. $\Theta\left(\frac{n}{b} \log \left(\frac{n}{b}\right)\right)=\Theta(n)$ $O(n)$ works

$$
\begin{aligned}
& n=12 \\
& O(b) \text { time } \frac{n}{b} O(b) \text { woik } \\
& =O(n) \\
& \begin{array}{l}
\text { use } \\
\text { work-inefficient }
\end{array} \\
& \text { algorithm } \\
& n^{\prime}=\frac{n}{b} \\
& O\left(\log n^{\prime}\right) \text { time } \\
& \leqslant O(\operatorname{Oog} n) \\
& O\left(n^{\prime} \log n^{\prime}\right) \text { work } \\
& =O\left(\frac{n}{\log n} \log \left(\frac{n}{\log n}\right)\right)=O(n) \\
& \begin{array}{llllll}
1 & 2 & 3 \\
\hline 4 & 2 & 3 \boxed{4} 1123 \sqrt[41]{1} \\
\hline
\end{array} \\
& \text { PEO PE1 PE2 } \\
& \begin{array}{lllll}
1 & 2 & 3 & 5 & 6 \\
\hline
\end{array} 8101112 \quad O(b) \\
& \frac{n}{b} O(b) \text { worls }
\end{aligned}
$$

Compacting subsequences

How do prefix sums help with sorting? one more step to go ...
Goal: Compact a subsequence of an array

Compacting subsequences

How do prefix sums help with sorting? one more step to go ...
Goal: Compact a subsequence of an array

Use prefix sums on bitvector B
\rightsquigarrow offset of selected cells in S

$$
\begin{aligned}
& { }^{1} \text { parallelPrefixSums }(B) \\
& { }_{2} \text { for } j:=0, \ldots, n-1 \text { do in parallel } \\
& { }_{3} \quad \text { if } B[j]==1 \text { then } S[B[j]-1]:=A[j] \\
& { }_{4} \text { end parallel for }
\end{aligned}
$$

Clicker Question

What is the parallel time and work achievable for compacting a subsequence of an array of size n ?
(A) $O(1)$ time, $O(n)$ work
(B) $O(\log n)$ time, $O(n)$ work
(C) $O(\log n)$ time, $O(n \log n)$ work
(D) $O\left(\log ^{2} n\right)$ time, $O\left(n^{2}\right)$ work
(E) $O(n)$ time, $O(n)$ work

Clicker Question

What is the parallel time and work achievable for compacting a subsequence of an array of size n ?

(B) $O(\log n)$ time, $O(n)$ work
(C) $Q(\log 4)$ time, $\theta(4$ leg in) work
(D) $e(40)^{2}$ n) time, $\Theta\left(42^{2}\right)$ werk
(E) ©(n) time, $\odot(n)$ work

> sli.do/comp526

3.7 Parallel sorting

Parallel quicksort

Let's try to parallelize quicksort

- recursive calls can run in parallel (data independent) ho $\theta(n)$ acduce time
- our sequential partitioning algorithm seems hard to parallelize

Parallel quicksort

Let's try to parallelize quicksort

- recursive calls can run in parallel (data independent)
- our sequential partitioning algorithm seems hard to parallelize
- but can split partitioning into rounds:

1. comparisons: compare all elements pivot (in parallel), store bitvector
2. compute prefix sums of bit vectors (in parallel as above)
3. compact subsequences of small and large elements (in parallel as above)

Parallel quicksort - Code

```
procedure parQuicksort(A[l..r])
    \(b\) := choosePivot(A[l..r])
    \(j:=\) parallelPartition(A[l..r], b)
    in parallel \(\{\) parQuicksort \((A[l . . j-1])\), parQuicksort \((A[j+1 . . r])\}\)
procedure parallelPartition \((A[1 . . r], b)\)
    \(\operatorname{swap}(A[n-1], A[b]) ; p:=A[n-1]\)
    for \(i=0, \ldots, n-2\) do in parallel
        \(S[i]:=[A[i] \leq p] \quad / / S[i]\) is 1 or 0
        \(L[i]:=1-S[i]\)
    end parallel for
    in parallel \{ parallelPrefixSum(S[0..n-2]); parallelPrefixSum(L[0..n-2]) \}
    \(j:=S[n-2]+1\)
    for \(i=0, \ldots, n-2\) do in parallel
        \(x:=A[i]\)
        if \(x \leq p\) then \(A[S[i]-1]:=x\)
        else \(A[j+L[i]]:=x\)
    end parallel for
    \(A[j]:=p\)
    return \(j\)
```


Parallel quicksort - Analysis

- Time:
- partition: all $O(1)$ time except prefix sums $\rightsquigarrow \Theta(\log n)$ time
- quicksort: expected depth of recursion tree is $\Theta(\log n)$
\rightsquigarrow total time $O\left(\log ^{2}(n)\right)$ in expectation
- Work:
- partition: $O(n)$ time except prefix sums $\rightsquigarrow O(n)$ with bloching
\rightsquigarrow quicksort $O\left(n \log ^{2}(n)\right)$ work in expectation
- using a work-efficient prefix-sums algorithm yields (expected) work-efficient sorting!

Parallel mergesort

- As for quicksort, recursive calls can run in parallel

Parallel mergesort

- As for quicksort, recursive calls can run in parallel
- how about merging sorted halves $A[l . . m-1]$ and $A[m . . r]$?
- Must treat elements independently.

Parallel mergesort

- As for quicksort, recursive calls can run in parallel $\sqrt{ }$
- how about merging sorted halves $A[l . . m-1]$ and $A[m . . r]$?
- Must treat elements independently.

- correct position of x in sorted output $=$ rank of x
breaking ties by position in A
- \# elements $\leq x=$ \# elements from A[l..m-1] that are $\leq x$ + \# elements from $A[m . . r]$ that are $\leq x$
- Note: rank in own run is simply the index of x in that run
- find rank in other run by binary search
$\rightsquigarrow ~ c a n ~ m o v e ~ i t ~ t o ~ c o r r e c t ~ p o s i t i o n ~$

Parallel mergesort - Analysis

- Time:
- merge: $\Theta(\log n)$ from binary search, rest $O(1)$
- mergesort: depth of recursion tree is $\Theta(\log n)$
\rightsquigarrow total time $O\left(\log ^{2}(n)\right)$
- Work:
- merge: n binary searches $\rightsquigarrow \Theta(n \log n)$
\rightsquigarrow mergesort: $O\left(n \log ^{2}(n)\right)$ work

Parallel mergesort - Analysis

- Time:
- merge: $\Theta(\log n)$ from binary search, rest $O(1)$
- mergesort: depth of recursion tree is $\Theta(\log n)$
\rightsquigarrow total time $O\left(\log ^{2}(n)\right)$
- Work:
- merge: n binary searches $\rightsquigarrow \Theta(n \log n)$
\rightsquigarrow mergesort: $O\left(n \log ^{2}(n)\right)$ work
- work can be reduced to $\Theta(n)$ for merge
- do full binary searches only for regularly sampled elements
- ranks of remaining elements are sandwiched between sampled ranks
- use a sequential method for small blocks, treat blocks in parallel
- (detailed omitted)

Parallel sorting - State of the art

- more sophisticated methods can sort in $O(\log n)$ parallel time on CREW-RAM
- practical challenge: small units of work add overhead
- need a lot of PEs to see improvement from $O(\log n)$ parallel time
\rightsquigarrow implementations tend to use simpler methods above
- check the Java library sources for interesting examples! java.util.Arrays.parallelSort(int[])

