

Outline

5 Parallel String Matching

- 5.1 Elementary Tricks
- 5.2 Periodicity
- 5.3 String Matching by Duels

Parallelizing string matching

- ▶ We have seen a plethora of string matching methods
- But all efficient methods seem inherently sequential Indeed, they became efficient only after building on knowledge from previous steps!

Sounds like the *opposite* of parallel!

 \rightsquigarrow This unit:

- How well can we parallelize string matching?
- What new ideas can help?

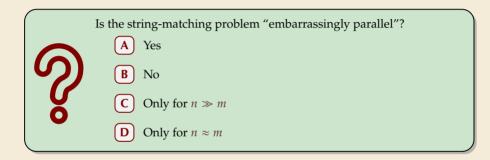
Here: string matching = find *all* occurrences of *P* in *T* always assume $m \le n$ (more natural problem for parallel)

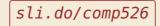
5.1 Elementary Tricks

Embarrassingly Parallel

- A problem is called <u>"embarrassingly parallel</u>" if it can immediately be split into many, small subtasks that can be solved completely independently of each other
- ► Typical example: sum of two large matrices (all entries independent)
- \rightsquigarrow best case for parallel computation (simply assign each processor one subtask)
- Sorting is not embarrassingly parallel
 - ▶ no obvious way to define many *small* (=efficiently solvable) subproblems
 - ▶ but: some subtasks of our algorithms are, e.g., comparing all elements with pivot

Clicker Question





Click on "Polls" tab

Elementary parallel string matching

Subproblems in string matching:

- string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Elementary parallel string matching

Subproblems in string matching:

- string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Approach 1:

► Check all guesses in parallel all n - m guesses \rightarrow Time: $\Theta(m)$ using sequential checks $\Theta(\log m)$ on CREW-PRAM ($\sim see$ tutorials) $\Theta(1)$ on CRCW-PRAM ($\sim see$ tutorials) \sim Work: $\Theta((n - m)m) \sim not great ...$

3

Elementary parallel string matching

Subproblems in string matching:

- string matching = check all guesses i = 0, ..., n m 1
- checking one guess is a subtask!

Approach 1:

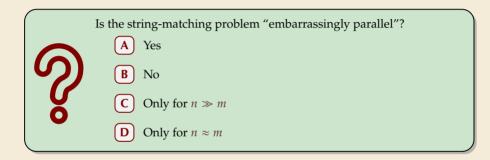
- Check all guesses in parallel
- \rightsquigarrow Work: $\Theta((n-m)m) \rightsquigarrow$ not great . . .

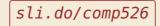
Approach 2:

- Divide *T* into **overlapping** blocks of 2m characters: T[0..2m), T[m..3m), T[2m..4m), T[3m..5m)...
- Find matches inside blocks in parallel, using efficient sequential method $\rightarrow \Theta(2m + m) = \Theta(m)$ each

$$\rightsquigarrow$$
 Time: $\underline{\Theta(m)}$ **Work**: $\Theta(\underline{n}_m \cdot m) = \Theta(n)$

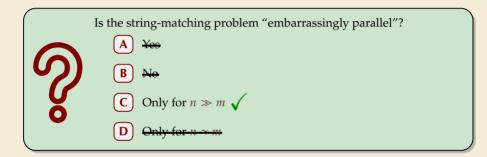
Clicker Question

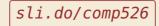




Click on "Polls" tab

Clicker Question





Click on "Polls" tab

Elementary parallel matching – Discussion

very simple methods

 \bigcirc could even run distributed with access to part of *T*

 \bigcirc parallel speedup only for $m \ll n$

Goal:

work-efficient methods with better parallel time?

- $\rightsquigarrow\,$ must genuinely parallelize the matching process!
- $\rightsquigarrow need new ideas$

- → higher speedup
- (and the preprocessing of the pattern)

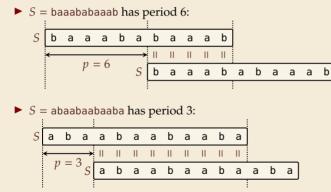
5.2 Periodicity

Periodicity of Strings

- ► S = S[0..n-1] has period p iff $\forall i \in [0..n-p) : S[i] = S[i+p]$
- ▶ p = 0 and any $p \ge n$ are trivial periods

but these are not very interesting . . .

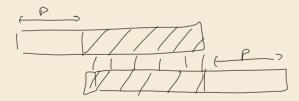
Examples:



Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)

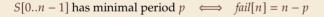
 $p \in [1..n]$ is the <u>shortest period in</u> S = S[0..n - 1]iff S[0..n - p) is the longest prefix that is also a suffix of S[p..n).



Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)

 $p \in [1..n]$ is the *shortest* period in S = S[0..n - 1]iff S[0..n - p) is the longest prefix that is also a suffix of S[p..n).



Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)

If string S = S[0..n - 1] has periods p and q with $p + q \le n$, then it has also period gcd(p, q).

greatest common divisor

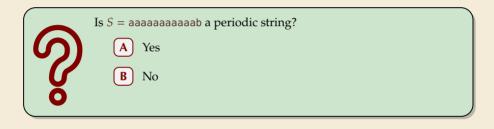
Proof: see tutorials; hint: recall Euclid's algorithm

-

Periodic strings

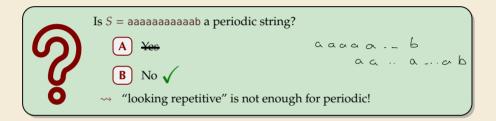
- ▶ What does the smallest period *p* tell us about a string *S*[0..*n*)?
- ► Two distinct regimes:
 - **1.** *S* is *periodic*: $p \le \frac{n}{2}$ More precisely: *S* is totally determined by a string F = F[0..p) = S[0..p)*S* keeps repeating *F* until *n* characters are filled
 - ~ S is highly repetitive! (=> helps in string matching)
 - **2.** *S* is *aperiodic* (also *non-periodic*): $p > \frac{n}{2}$ *S* cannot be written as $S = F^k \cdot Y$ with $k \ge 2$ and *Y* a prefix of *F*

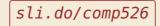
Clicker Question



Click on "Polls" tab

Clicker Question





Click on "Polls" tab

5.3 String Matching by Duels

Periods and Matching

Witnesses for non-periodicity:

Pell'...n)

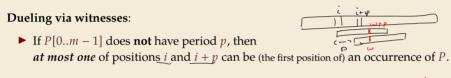
Assume, P[0..m-1] does **not** have period p

 $\rightsquigarrow \exists$ witness against periodicity: position $\omega \in [0..m - p)$: $P[\omega] \neq P[\omega + p]$

Periods and Matching

Witnesses for non-periodicity:

- Assume, P[0..m 1] does **not** have period p
- $\rightsquigarrow \exists witness against periodicity: position <math>\omega \in [0..m p) : P[\omega] \neq P[\omega + p]$



Proof: Cannot have $T[(i + p) + \omega] = P[\omega] \neq P[\omega + p] = T[i + (\omega + p)].$

Periods and Matching

Witnesses for non-periodicity:

- Assume, P[0..m 1] does **not** have period p
- $\rightsquigarrow \exists$ witness against periodicity: position $\omega \in [0..m p) : P[\omega] \neq P[\omega + p]$

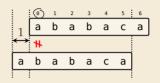
Dueling via witnesses:

► If P[0..m - 1] does not have period p, then at most one of positions i and i + p can be (the first position of) an occurrence of P.

Proof: Cannot have $T[(i + p) + \omega] = P[\omega] \neq P[\omega + p] = T[i + (\omega + p)]$.

Duel between guess *i* and *i* + *p*: compare text character overlapped with witness ω

Dueling example (Paperiodie)



wid	tues,	table
р	1	
$\omega[p]$	0	

р	1	2
$\omega[p]$	0	3,

$$p = 3$$

$$p =$$

p	1	2	3	
$\omega[p]$	0	3	1	

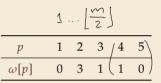
$$p = 4$$

$$p =$$

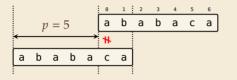
р	1	2	3	4	
$\omega[p]$	0	3	1	1	

$$p = 5$$

$$p =$$



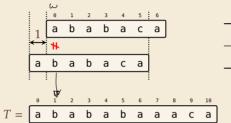
1. Compute witnesses against periodicity for P = ababaca



р	1	2	3	4	5
$\omega[p]$	0	3	1	1	0

2. Duel! T = abababaaaca

1. Compute witnesses against periodicity for P = ababaca



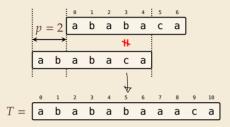
р	1	2	3	4	5
$\omega[p]$	0	3	1	1	0

51

2. Duel! T = abababaaaca

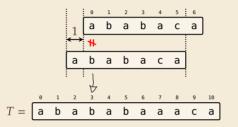
▶ 0 vs. 1

$$p = 1, \omega = 0 \implies T[1] = b \neq P[\omega] \implies$$
 No occurrence at 1!



р	1	2	3	4	5
$\omega[p]$	0	3	1	1	0

- **2.** Duel! T = abababaaaca
 - ▶ 0 vs. 1 $p = 1, \omega = 0 \implies T[1] = b \neq P[\omega] \implies No \text{ occurrence at } 1!$ ▶ 0 vs. 2 $p = 2, \omega = 3 \implies T[5] = b \neq c = P[\omega + p] \implies No \text{ occurrence at } 0!$



р	1	2	3	4	5
$\omega[p]$	0	3	1	1	0

- **2.** Duel! T = abababaaaca
 - ▶ 0 vs. 1 $p = 1, \omega = 0 \quad \rightsquigarrow \quad T[1] = b \neq P[\omega] \quad \rightsquigarrow \quad \text{No occurrence at } 1!$ ▶ 0 vs. 2 $p = 2, \omega = 3 \quad \rightsquigarrow \quad T[5] = b \neq c = P[\omega + p] \quad \rightsquigarrow \quad \text{No occurrence at } 0!$ ▶ 2 vs. 3 $p = 1, \omega = 0 \quad \rightsquigarrow \quad T[3] = b \neq a = P[\omega] \quad \rightsquigarrow \quad \text{No occurrence at } 3! \quad \stackrel{+}{\frown} \quad \stackrel{?}{\frown}$

String Matching by Duels - Sequential

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

1. Set $\mu := \lfloor \frac{m}{2} \rfloor$

- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- **3.** For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, ... run $\mu 1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

O(m) duels each

4. $O(\frac{n}{m})$, $\leq m$ cmps each

2. $O(m) \rightsquigarrow \text{later}$

3. $O(\frac{n}{m})$ blocks

Assume that pattern *P* is *aperiodic*.

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- 2. Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.

String Matching by Duels – Sequential

- **3.** For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, ... run μ – 1 duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{n} \rceil = O(n/m)$ guesses naively
- another worst-case O(n + m) string matching method! \rightarrow

11

(can deal with periodic case separately; details omitted)

Analysis:

1. O(1)

String Matching by Duels - Parallel

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- **3.** For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, ... run $\mu 1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

String Matching by Duels – Parallel

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- 2. Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- **3.** For each block of μ consecutive indices $[0..\mu)$, $[\mu...2\mu)$, $[2\mu...3\mu)$, ... run μ – 1 duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively lgn height

Tournament of duals:

- each dual eliminates one guess
- → declare other guess *winner*
- conceptually like (prefix) sum!

How to parallelize:

1. —

- **2.** $O(\log^2(m)) \rightsquigarrow \text{later}$
- **3.** blocks in parallel (indep.), tournament of $\lceil \lg \mu \rceil$ rounds
- **4.** check in parallel collect result (like prefix sum)

M=8

String Matching by Duels – Parallel

Assume that pattern *P* is *aperiodic*.

(can deal with periodic case separately; details omitted)

Algorithm:

- **1.** Set $\mu := \lfloor \frac{m}{2} \rfloor$
- **2.** Compute witnesses $\omega[1..\mu]$ against periodicity for all $p \leq \frac{m}{2}$.
- **3.** For each block of μ consecutive indices $[0..\mu)$, $[\mu..2\mu)$, $[2\mu..3\mu)$, ... run $\mu 1$ duels to eliminate all but one guesses in the block
- **4.** check remaining $\lceil \frac{n}{\mu} \rceil = O(n/m)$ guesses naively

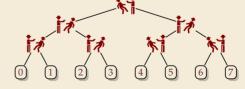
Tournament of duals:

- each dual eliminates one guess
- \rightsquigarrow declare other guess *winner*
- conceptually like (prefix) sum!

- 1.
 - **2.** $O(\log^2(m)) \rightsquigarrow \text{later}$

How to parallelize:

- 3. blocks in parallel (indep.), tournament of $\lceil \lg \mu \rceil$ rounds
- check in parallel collect result (like prefix sum)



 \rightsquigarrow Matching part can be done in $O(\log m)$ parallel time and O(n) work!

Computing witnesses

It remains to find the witnesses $\omega[1..\mu]$.

sequentially:

- ▶ an elementary procedure is similar in spirit to KMP failure array
- can be computed in $\Theta(m)$ time

parallel:

- ▶ much more complicated → beyond scope of the module
 - ▶ first *O*(log²(*m*)) time on CREW-RAM
 - ▶ later *O*(log *m*) time and *O*(*m*) work using *pseudoperiod method*

Parallel Matching - State of the art

- ► *O*(log *m*) time & work-efficient parallel string matching
 - this is optimal for CREW-PRAM
- on CRCW-PRAM: matching part even in O(1) time (\rightsquigarrow tutorials) but preprocessing requires $\Theta(\log \log m)$ time