=

) Q€A H [H]
)N = H < -
1HOTD A A
T HBEA A RO
LA EHA<CHU
8 e ol o0 517 S
1OV QA<
A HUNO A O
)N MO - <[
)OO0 < H =65
1HUAQAZE T 0N
b i i e ol SR O Jal
VD <LHBEHRHQ
IFPFAdHE S <
1 [QMO TEs
1EHAOU RV
OV 1HU
U AR <@ -
AN A0 =
F<CCOAQAMU T

= | |

Parallel

String Matching

10 March 2021

Sebastian Wild

version 2021-63-16 10:51

Outline

5 Parallel String Matching

5.1 Elementary Tricks
5.2 Periodicity
5.3 String Matching by Duels

Parallelizing string matching

»> We have seen a plethora of string matching methods

> But all efficient methods seem inherently sequential

Indeed, they became efficient only after building on knowledge from previous steps!

Sounds like the opposite of parallel!

~> This unit:
» How well can we parallelize string matching?

»> What new ideas can help?

Here: string matching = find all occurrences of P in T
always assume m < n

(more natural problem for parallel)

5.1 Elementary Tricks

Embarrassingly Parallel

» A problem is called “embarrassingly parallel”

if it can immediately be split into many, small subtasks
that can be solved completely independently of each other

> Typical example: sum of two large matrices (all entries independent)

~~ best case for parallel computation (simply assign each processor one subtask)

» Sorting is not embarrassingly parallel
» no obvious way to define many small (=efficiently solvable) subproblems

> but: some subtasks of our algorithms are, e. g., comparing all elements with pivot

Clicker Question

Is the string-matching problem “embarrassingly parallel”?

Yes
No
Only for n > m

@ Only for n = m

sli. dO/ Comp526 Click on “Polls” tab

Elementary parallel string matching
Subproblems in string matching:
» string matching = check all guessesi =0,...,n—m —1

» checking one guess is a subtask!

Elementary parallel string matching

Subproblems in string matching:
» string matching = check all guessesi =0,...,n—m —1
» checking one guess is a subtask!

Approach 1:
» Check all guesses in parallel o guesses

~» Time: ©(m) using sequential checks
O(logm) on CREW-PRAM (~ see tutorials)
(1) on CRCW-PRAM (~~ see tutorials)

~» Work: ©((n —m)m) ~» notgreat...

Elementary parallel string matching

Subproblems in string matching:
» string matching = check all guessesi =0,...,n—m —1
» checking one guess is a subtask!

Approach 1:
» Check all guesses in parallel

~» Time: ©(m) using sequential checks
O(log m) on CREW-PRAM (~~ see tutorials)
(1) on CRCW-PRAM (~ see tutorials)

~» Work: ©((n —m)m) ~» notgreat... Tz -
{ {

Approach 2: A
> Divide T into overlapping blocks of 2 characters:
T[0..2m), T[m..3m), T|[2m..4m), T[3m..5m). ..

» Find matches inside blocks in parallel, using efficient sequential method
~ O@2m + m) = ©(m) each

~+ Time: ©(m) Work: O(L -m) = 0O(n)

m
<

Clicker Question

Is the string-matching problem “embarrassingly parallel”?

Yes
No
Only for n > m

@ Only for n = m

sli. dO/ Comp526 Click on “Polls” tab

Clicker Question

(Is the string-matching problem “embarrassingly parallel”?)
N
Ne
Only for n > m \/
© (o)
Oyttt
- J

sli. dO/ Comp526 Click on “Polls” tab

Elementary parallel matching — Discussion

[& very simple methods

[b could even run distributed with access to part of T

E@ parallel speedup only for m < n

Goal:
> work-efficient methods with better parallel time? ~higher speedup
~» must genuinely parallelize the matching process! (and the preprocessing of the pattern)

~ need new ideas

5.2 Periodicity

Periodicity of Strings
» S =5[0..n —1] has period p iff Vi e [0..n —p):S[i] = S[i+ p]
» p =0and any p > n are trivial periods

Examples:
»> S = baaababaaab has period 6:

Sbaaaba.baaab
p T TR TR T
P= S|lb a a a b a b a a a b

> S = abaabaabaaba has period 3:

Sla b a.a b a a b a a b a
T T O O T T 1
Sla b a a b a a b a a b a

p=3

but these are not very interesting . . .

Periodicity and KMP

Lemma 5.1 (Periodicity = Longest Overlap)
P € [1..n] is the shortest period in S = S[0..n — 1]
iff S[0..n — p) is the longest prefix that is also a suffix of S[p..n).

Periodicity and KMP
Lemma 5.1 (Periodicity = Longest Overlap)

p € [1..n] is the shortest period in S = S[0..n — 1]
iff S[0..n — p) is the longest prefix that is also a suffix of S[p..n).

5[0..n — 1] has minimal period p <= fail[n]=n—-p

2_345673
a ab aab aab a

o |~

Sla

p=3

Sla b a a b a a b a a b a

Periodicity Lemma

Lemma 5.2 (Periodicity Lemma)
If string S = S[0..n — 1] has periods p and g with p + g < n,
then it has also period ged(p, q).

greatest common divisor

PT’OOf.‘ see tutorials; hint: recall Euclid’s algorithm

Periodic strings 777 = -Im

»> What does the smallest period p tell us about a string S[0..1)? (I

> Two distinct regimes:
1. Sis periodic: p <%
More precisely: S is totally determined by a string F = F[0..p) = S[0..p)
S keeps repeating F until 7 characters are filled
~ S is highly repetitive! (=5 hedps v sbdua wmakekivg)
[A S
2. S is aperiodic (also non-periodic): p > 5
S cannot be written as S = F* - Y with k > 2 and Y a prefix of F

Clicker Question

Is S = aaaaaaaaaaab a periodic string?

Yes
No

sli.do/comp526

Click on “Polls” tab

Clicker Question
1

Is S = aaaaaaaaaaab a periodic string?

¥e§ C\Goc(o__[_s
\/ caa . O e b
No

~ “looking repetitive” is not enough for periodic!

sli. dO/ Comp526 Click on “Polls” tab

5.3 String Matching by Duels

Periods and Matching

Witnesses for non-periodicity: P e T, . w\> \%
E=——"3 \//i/
P w

» Assume, P[0..m — 1] does not have period p
- —

~ Jwitness against periodicity: position w € [0..m —p) : Plw] # Plw + p]

Periods and Matching

Witnesses for non-periodicity:
» Assume, P[0..m — 1] does not have period p

~ Jwitness against periodicity: position w € [0..m —p) : Plw] # Plw + p]

Dueling via witnesses: F/T‘/j;w—ft,_d/j
» If P[0..m — 1] does not have period p, then < Vlfpﬁ

at most one of positions i and i + p can be (the first position of) an occurrence of P.

Proof: Cannot have T[(i + p) +] = Plw] # Plw + p] = T[i + (w + p)]. fj

~_

Periods and Matching

Witnesses for non-periodicity:
» Assume, P[0..m — 1] does not have period p

~ Jwitness against periodicity: position w € [0..m —p) : Plw] # Plw + p]

Dueling via witnesses:
» If P[0..m — 1] does not have period p, then

at most one of positions i and i + p can be (the first position of) an occurrence of P.
Proof: Cannot have T[(i + p) + w] = P[w] # Plw + p] = T[i + (w + p)].
‘1
» Duel between guess i and i + p: 4 o-
compare text character overlapped with witness @ I ‘ '\

Dueling example (P apeloded

1. Compute witnesses against periodicity for P = ababaca

@1 2 3 4 s
1ababaca
T

b a b a c a

10

Dueling example

1. Compute witnesses against periodicity for P = ababaca

o 1 2 (3) 4is 6
—=2/la b a b a c a
p=2 p
H
a b ab a c a a)[p]

10

Dueling example

1. Compute witnesses against periodicity for P = ababaca

P4 5 6

] 2 3
p=3 |2 a b a c a

b
H
a2 c a wlp]

a b ab

Dueling example

1. Compute witnesses against periodicity for P = ababaca

p=4 a

10

Dueling example

1. Compute witnesses against periodicity for P = ababaca

4 5 6

142 3
b a b a c a

0
a
H
C a

i
p 1 2 3 /4 5\
wpl 0 3 1(1 o)

10

Dueling example

1. Compute witnesses against periodicity for P = ababaca

4 5 6

142 3
b a b a c a

0
a
H
C a

2. Duel! T = abababaaaca

10

Dueling example

1. Compute witnesses against periodicity for P = ababaca

o
6 1 2 3 4 516
a b ab a c a
(l)ﬂ p 1 2 3 4 5
2 b abac a w[p] 0 3 1 1 0
] ;Z 3 4 5 6 7 8 9 10
T:la b a b ab a aac a|
2. Duel! T = abababaaaca

> Ovs. 1
p=1Lw=0 ~ T[l]=b#Plw] ~» No occurrence at 1! N T

10

Dueling example

1. Compute witnesses against periodicity for P = ababaca

1 2 3 415 6
—=2/a b a b a c a
p=2 p
H
a b ab a c a wlp]
0 1 3 4 '§7 9 10
T=|a b a b a b a a a c a I
2. Duel! T = abababaaaca
> 0vs. 1
p=1Lw=0 ~ T[l]=b#Plw] ~» No occurrence at 1!
> 0vs.2

p=2,w0=3 ~ T[5]=b#c=Plw+p] ~ Nooccurrence at0!

%0

10

Dueling example

1. Compute witnesses against periodicity for P = ababaca

6 1 2 3 4 516
1ababaca p 1 2 3 4 5
(_)‘H~
a b a b a c a wp] 03 1 10
1 2 Y} 4 5 6 9 10
T=|a b a b a b a a a c a
2. Duel! T = abababaaaca
> 0vs. 1
p=1Lw=0 ~ T[l]=b#Plw] ~» No occurrence at 1!
> Qvs.2
p=2,w0=3 ~ T[5]=b#c=Plw+p] ~ Nooccurrence at0!
> 2vs. 3

p=1,w=0 ~ T[3]=b#a=P[lw] ~ No occurrence at 3! A z

10

String Matching by Duels — Sequential

[Assume that pattern P is aperiodic.] (can deal with periodic case separately; details omitted)

el

Algorithm:)jj

1,
2.
3.

< J
Set = [%] ==
A

Compute witnesses w[1..u] against periodicity for all p < 7.

For each block of i consecutive indices [0..u), [p..2u), [2p..3u), . ..
run i — 1 duels to eliminate all but one guesses in the block

check remaining [2] = O(n/m) guesses naivel
8l g y

11

String Matching by Duels — Sequential

[Assume that pattern P is aperiodic.] (can deal with periodic case separately; details omitted)
Algorithm: Analysis:
1. Sety := %] 1. O(1)
2. Compute witnesses w[1..u] against periodicity for all p < 7. 2. O(m) ~ later
3. For each block of u consecutive indices [0..u), [..21), [2p..31), . . . 3. O(Z)blocks
run p — 1 duels to eliminate all but one guesses in the block O(m) duels each
4. check remaining |’;—i'| = O(n/m) guesses naively 4. O(L%),

~» another worst-case O(n + m) string matching method!

< m cmps each

11

String Matching by Duels — Parallel

[Assume that pattern P is aperiodic.] (can deal with periodic case separately; details omitted)

Algorithm:
1. Sety := %]
2. Compute witnesses w|[1..u] against periodicity for all p < 7.

3. For each block of p consecutive indices [0..41), [i..2u), [2p..34), . . .
run i — 1 duels to eliminate all but one guesses in the block

4. check remaining [ﬁ] = O(n/m) guesses naively

12

String Matching by Duels — Parallel

[Assume that pattern Pis uperiodic.] (can deal with periodic case separately; details omitted)
Algorithm: How to parallelize:

1. Sety := %] 1. —

2. Compute witnesses w|[1..u] against periodicity for all p < 7. 2. O(log?(m)) ~ later

3. For each block of u consecutive indices [0..u), [u..21), [2p..3p), ... 3. blocks in parallel (indep.),

run ¢ — 1 duels to eliminate all but one guesses in the block tournament of [lg 1] rounds
4. check remaining [ﬁ] = O(n/m) guesses naively 4. check in parallel
- on ” \MJ(%\,\J(- & collect result (like prefix sum)
Tournament of duals: i
- Ot | T—parsS
» each dual eliminates one guess o, P \p . . A . e
g 2. de S 0 =K
~+ declare other guess winner Ao 12 I 0 S

0
> conceptually like (prefix) sum! \, @{ @{

12

String Matching by Duels — Parallel

[Assume that pattern Pis uperiodic.] (can deal with periodic case separately; details omitted)
Algorithm: How to parallelize:
1. Sety := %] 1. —

2. Compute witnesses w|[1..u] against periodicity for all p < 7. 2. O(log?(m)) ~ later

3. For each block of u consecutive indices [0..u), [u..21), [2p..3p), ... 3. blocks in parallel (indep.),
run ¢ — 1 duels to eliminate all but one guesses in the block tournament of [lg 1] rounds

4. check remaining [ﬁ] = O(n/m) guesses naively 4. check in parallel

collect result (like prefix sum)
b4

Tournament of duals: Ly
+ '/$ ll\' .

8
» each dual eliminates one guess P d
b d

T2 7 S S N
39 dbd b

~~ Matching part can be done in O(log 1) parallel time and O(n) work!
S~}

~ declare other guess winner

12
» conceptually like (prefix) sum! @{

12

Computing witnesses

It remains to find the witnesses w[1..u].

sequentially:
> an elementary procedure is similar in spirit to KMP failure array
» can be computed in O(m) time

parallel:

o

» much more complicated ~» beyond scope of the module
> first O(logz(m)) time on CREW-RAM

» later O(log m) time and O(m) work using pseudoperiod method

13

Parallel Matching — State of the art

> O(logm) time & work-efficient parallel string matching
» this is optimal for CREW-PRAM

» on CRCW-PRAM: matching part even in O(1) time (~» tutorials)
but preprocessing requires ©(loglog 717) time

} C@ e wﬁoh"t(/

14

