

Outline

6 Text Indexing

- 6.1 Motivation
- 6.2 Suffix Trees
- 6.3 Applications
- 6.4 Longest Common Extensions
- 6.5 Suffix Arrays
- 6.6 Linear-Time Suffix Sorting
- 6.7 The LCP Array

6.1 Motivation

Text indexing

- **•** *Text indexing* (also: *offline text search*):
 - ▶ case of string matching: find *P*[0..*m*) in *T*[0..*n*)
 - **b** but with *fixed* text \rightsquigarrow preprocess *T* (instead of *P*)
 - \rightsquigarrow expect many queries *P*, answer them without looking at all of *T*
 - \rightsquigarrow essentially a data structuring problem: "building an *index* of *T*"

Latin: "one who points out"

- application areas
 - web search engines
 - online dictionaries
 - online encyclopedia
 - DNA/RNA data bases
 - ... searching in any collection of text documents (that grows only moderately)

Inverted indices

same as "indexes"

▶ original indices in books: list of (key) words → page numbers where they occur

► assumption: searches are only for whole (key) words

→ often reasonable for natural language text

Inverted indices

▶ original indices in books: list of (key) words → page numbers where they occur

- ► assumption: searches are only for whole (key) words
- $\rightsquigarrow\,$ often reasonable for natural language text

same as "indexes"

Inverted index:

- \blacktriangleright collect all words in *T*
 - can be as simple as splitting T at whitespace
 - ► actual implementations typically support stemming of words goes → go, cats → cat

store mapping from words to a list of occurrences ~ how?
BSTD
but O(log n)
like a dichionary!
keys = words
Hime
values = list of occurrence,

Tries

- efficient dictionary data structure for strings
- N. free name from retrieval, but pronounced "try"
- tree based on symbol comparisons
- Assumption: stored strings are *prefix-free_* (no string is a prefix of another) some character $\notin \Sigma$
 - strings of same length
 - strings have "end-of-string" marker \$

Suppose we have a trie that stores *n* strings over $\Sigma = \{A, \dots, Z\}$. Each stored string consists of *m* characters. $(q \leq m)$ We now search for a query string *Q* with |Q| = q. How many **nodes** in the trie are **visited** during this **query**? $\Theta(\log n)$ $\Theta(\log m)$ $\Theta(\log(nm))$ **G** $\Theta(q)$ $\Theta(m \cdot \log n)$ **H** $\Theta(\log q)$ **D** $\Theta(m + \log n)$ $\Theta(q \cdot \log n)$ $\Theta(q + \log n)$ $\Theta(m)$

sli.do/comp526

sli.do/comp526

Compact tries

=1 child

- compress paths of unary nodes into single edge
- nodes store index of next character

- → searching slightly trickier, but same time complexity as in trie
- O(n)▶ all nodes \geq 2 children \rightsquigarrow #nodes \leq #leaves = #strings \rightsquigarrow linear space

Tries as inverted index

- simple fast lookup
- C cannot handle more general queries:
 - search part of a word
 - search phrase (sequence of words)

Tries as inverted index

imple fast lookup

- 💭 cannot handle more general queries:
 - search part of a word
 - search phrase (sequence of words)

What if the 'text' does not even have words to begin with?!

biological sequences

binary streams

→ need new ideas

6.2 Suffix Trees

Suffix trees – A 'magic' data structure

Appetizer: Longest common substring problem

- Given: strings S_1, \ldots, S_k Example: $S_1 = \text{superiorcalifornialives}, S_2 = \text{sealiver}$
- ▶ Goal: find the longest substring that occurs in all *k* strings

Suffix trees – A 'magic' data structure

Appetizer: Longest common substring problem

- Given: strings S_1, \ldots, S_k Example: $S_1 = \text{superiorcalifornialives}, S_2 = \text{sealiver}$
- ► Goal: find the longest substring that occurs in all *k* strings → alive

Can we do this in time $O(|S_1| + \cdots + |S_k|)$? How??

Suffix trees – A 'magic' data structure

Appetizer: Longest common substring problem

- Given: strings S_1, \ldots, S_k Example: $S_1 = \text{superiorcalifornialives}, S_2 = \text{sealiver}$
- ► Goal: find the longest substring that occurs in all *k* strings → alive

Can we do this in time $O(|S_1| + \cdots + |S_k|)$? How??

Enter: *suffix trees*

- versatile data structure for index with full-text search
- ▶ linear time (for construction) and linear space
- allows efficient solutions for many advanced string problems

"Although the longest common substring problem looks trivial now, given our knowledge of suffix trees, it is very interesting to note that in 1970 Don Knuth conjectured that a linear-time algorithm for this problem would be impossible." [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

▶ suffix tree \mathcal{T} for text T = T[0..n) = compact trie of all suffixes of T\$ (set T[n] := \$)

Example:

T = bananaban\$

suffixes: {bananaban\$, ananaban\$, nanaban\$, anaban\$, naban\$, aban\$, ban\$, an\$, n\$, \$}

	0	1	2	3	4	5	6	7	8	9
T =	b	а	n	а	n	а	b	а	n	\$

▶ suffix tree T for text T = T[0..n) = compact trie of all suffixes of T\$ (set T[n] := \$)

• except: in leaves, store *start index* (instead of actual string)

Example:

T = bananaban\$suffixes: {bananaban\$, ananaban\$, nanaban\$, ananaban\$, ananaban\$, anaban\$, anaban\$, ban\$, an\$, n\$, \$} $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$ $T = \begin{bmatrix} b & a & n & a & n & a & b & a & n & s \end{bmatrix}$

▶ suffix tree T for text T = T[0..n) = compact trie of all suffixes of T\$ (set T[n] := \$)

• except: in leaves, store *start index* (instead of actual string)

Example:

T = bananaban\$suffixes: {bananaban\$, ananaban\$, nanaban\$, anaban\$, anaban\$, aban\$, aban\$, ban\$, an\$, n\$, \$} $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$ $T = \begin{bmatrix} b & a & n & a & b & a & n & s \end{bmatrix}$

- ▶ also: edge labels like in compact trie
- (more readable form on slides to explain algorithms)

Suffix trees – Construction

- ► T[0..n] has n + 1 suffixes (starting at character $i \in [0..n]$)
- ► We can build the suffix tree by inserting each suffix of *T* into a compressed trie. But that takes time Θ(n²). → not interesting!

Suffix trees – Construction

- ► T[0..n] has n + 1 suffixes (starting at character $i \in [0..n]$)
- We can build the suffix tree by inserting each suffix of *T* into a compressed trie. But that takes time Θ(n²). → not interesting!

same order of growth as reading the text! **Amazing result:** Can construct the suffix tree of *T* in $\Theta(n)$ time!

- algorithms are a bit tricky to understand
- but were a theoretical breakthrough
- and they are efficient in practice (and heavily used)!

→ for now, take linear-time construction for granted. What can we do with them?

6.3 Applications

Applications of suffix trees

• In this section, always assume suffix tree T for T given.

▶ Moreover: assume internal nodes store pointer to *leftmost leaf in subtree*.

• Notation:
$$T_i = T[i..n]$$
 (including \$)

sli.do/comp526

Application 1: Text Indexing / String Matching

- P occurs in $T \iff \underline{P}$ is a prefix of a <u>suffix</u> of T
- ▶ we have all suffixes in T!

Application 1: Text Indexing / String Matching

- $\blacktriangleright P \text{ occurs in } T \iff P \text{ is a prefix of a suffix of } T$
- ▶ we have all suffixes in T!
- \rightsquigarrow (try to) follow path with label *P*, until
 - **1**. we get stuck

at internal node (no node with next character of P) $\bowtie \Box$ or inside edge (mismatch of next characters) $\Box \Box \Box$

- \rightsquigarrow *P* does not occur in *T*
- 2. we run out of pattern $a \wedge a$ ba reach end of *P* at internal node *v* or inside edge towards *v* $\rightarrow P$ occurs at all leaves in subtree of *v*
- **3.** we run out of tree

reach a leaf ℓ with part of *P* left \rightsquigarrow compare *P* to ℓ .

 \wedge

- This cannot happen when testing edge labels since $\$ \notin \Sigma$, but needs check(s) in compact trie implementation!
- ► Finding first match (or NO_MATCH) takes *O*(|*P*|) time!

Application 1: Text Indexing / String Matching

- P occurs in $T \iff P$ is a prefix of a suffix of T
- ▶ we have all suffixes in T!
- \rightsquigarrow (try to) follow path with label *P*, until
 - **1**. we get stuck

at internal node (no node with next character of *P*) or *inside edge* (mismatch of next characters)

- \rightsquigarrow *P* does not occur in *T*
- 2. we run out of pattern

reach end of P at internal node v or inside edge towards v

 \rightsquigarrow *P* occurs at all leaves in subtree of *v*

3. we run out of tree

reach a leaf ℓ with part of *P* left \rightsquigarrow compare *P* to ℓ .

This cannot happen when testing edge labels since $\$ \notin \Sigma$, but needs check(s) in compact trie implementation!

► Finding first match (or NO_MATCH) takes *O*(|*P*|) time!

Examples:

- $\blacktriangleright P = ann$
- ▶ *P* = ana
- ▶ P = briar

▶ **Goal:** Find longest substring $T[i..i + \ell)$ that occurs also at $j \neq i$: $T[j..j + \ell) = T[i..i + \ell)$.

e.g. for compression \rightsquigarrow Unit 7 ? How can we efficiently check *all possible substrings*?

Generalized suffix trees

- ▶ longest *repeated* substring (of one string) feels very similar to longest *common* substring of several strings $T^{(1)}, \ldots, T^{(k)}$ with $T^{(j)} \in \Sigma^{n_j}$
- can we solve that in the same way?
- could build the suffix tree for each $T^{(j)}$... but doesn't seem to help

Generalized suffix trees

- ▶ longest *repeated* substring (of one string) feels very similar to longest *common* substring of several strings $T^{(1)}, \ldots, T^{(k)}$ with $T^{(j)} \in \Sigma^{n_j}$
- can we solve that in the same way?
- could build the suffix tree for each $T^{(j)}$... but doesn't seem to help
- → need a *single/joint* suffix tree for *several* texts

Generalized suffix trees

- ► longest *repeated* substring (of one string) feels very similar to longest *common* substring of several strings $T^{(1)}, \ldots, T^{(k)}$ with $T^{(j)} \in \Sigma^{n_j}$
- can we solve that in the same way?
- could build the suffix tree for each $T^{(j)}$... but doesn't seem to help
- \rightsquigarrow need a *single/joint* suffix tree for *several* texts

Enter: generalized suffix tree

- Define $T := T^{(1)}$ $T^{(2)}$ $T^{(k)}$ for k new end-of-word symbols
- Construct suffix tree \mathcal{T} for T

 \rightsquigarrow \$j-edges always leads to leaves $\rightsquigarrow \exists \text{ leaf } (j, i) \text{ for each suffix } T_i^{(j)} = T^{(j)}[i..n_j]$

What is the longest common substring of the strings bcabcac, aabca and bcaa?

Application 3: Longest common substring

- With that new idea, we can find longest common superstrings:
 - **1.** Compute generalized suffix tree \mathcal{T} .
 - 2. Store with each node the *subset of strings* that contain its path label:
 - **2.1.** Traverse T bottom-up.
 - **2.2.** For a leaf (j, i), the subset is $\{j\}$.
 - 2.3. For an internal node, the subset is the union of its children.
 - 3. In top-down traversal, compute *string depths* of nodes. (as above)
 - **4.** Report deepest node (by string depth) whose subset is $\{1, \ldots, k\}$.

```
Stores set of
j so that there
is a leaf (j,i)
in the subfree
```

• Each step takes time $\Theta(n)$ for $n = n_1 + \cdots + n_k$ the total length of all texts.

"Although the longest common substring problem looks trivial now, given our knowledge of suffix trees, it is very interesting to note that in 1970 Don Knuth conjectured that a linear-time algorithm for this problem would be impossible." [Gusfield: Algorithms on Strings, Trees, and Sequences (1997)]

Longest common substring – Example

 $T^{(1)} = bcabcac$, $T^{(2)} = aabca$, $T^{(3)} = bcaa$

6.4 Longest Common Extensions

Application 4: Longest Common Extensions

• We implicitly used a special case of a more general, versatile idea:

The *longest common extension (LCE)* data structure:

- **Given:** String T[0..n)
- ► Goal: Answer LCE queries, i. e., given positions *i*, *j* in *T*, how far can we read the same text from there? formally: LCE(*i*, *j*) = max{*l* : *T*[*i*..*i* + *l*) = *T*[*j*..*j* + *l*)}

Application 4: Longest Common Extensions

• We implicitly used a special case of a more general, versatile idea:

The *longest common extension (LCE)* data structure:

- **Given:** String T[0..n)
- ► Goal: Answer LCE queries, i. e., given positions *i*, *j* in *T*, how far can we read the same text from there? formally: LCE(*i*, *j*) = max{*l* : *T*[*i*..*i* + *l*) = *T*[*j*..*j* + *l*)}

 \rightsquigarrow use suffix tree of *T*!

► In \mathcal{T} : LCE(i, j) = LCP (T_i, T_j) \rightsquigarrow same thing, different name! = string depth of *lowest common ancester (LCA)* of leaves [i] and [j]

• in short: $LCE(i, j) = LCP(T_i, T_j) = stringDepth(LCA(\underline{i}, \underline{i}))$

Efficient LCA

How to find lowest common ancestors?

- Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case
- ► Could store all LCAs in big table $\rightsquigarrow \Theta(n^2)$ space and preprocessing \square

Efficient LCA

How to find lowest common ancestors?

- ► Could walk up the tree to find LCA $\rightsquigarrow \Theta(n)$ worst case
- ▶ Could store all LCAs in big table $\rightsquigarrow \Theta(n^2)$ space and preprocessing \square

Amazing result: Can compute data structure in $\Theta(n)$ time and space that finds any LCA is **constant(!) time**.

- a bit tricky to understand
- but a theoretical breakthrough
- and useful in practice

and suffix tree construction inside ...

 \rightsquigarrow for now, use O(1) LCA as black box.

 \rightarrow After linear preprocessing (time & space), we can find LCEs in O(1) time.

Application 5: Approximate matching

k-mismatch matching:

- or NO_MATCH if there is no such i
- $\rightsquigarrow\,$ searching with typos
- Assume longest common extensions in T_{p}^{2} can be found in O(1)
 - \rightsquigarrow generalized suffix tree \mathcal{T} has been built
 - $\rightsquigarrow\,$ string depths of all internal nodes have been computed
 - $\rightsquigarrow\$ constant-time LCA data structure for ${\mathbb T}$ has been built

Recap: Check all correct statements about suffix tree T of T[0..n). We require *T* to end with \$. The size of \mathcal{T} can be $\Omega(n^2)$ in the worst case. T is a standard trie of all suffixes of T\$. \mathcal{T} is a compact trie of all suffixes of T\$. D The leaves of T store (a copy of) a suffix of T\$. 0 Naive construction of \mathcal{T} takes $\Omega(n^2)$ (worst case). F \mathcal{T} can be computed in O(n) time (worst case). T has *n* leaves.

sli.do/comp526

sli.do/comp526

Kangaroo Algorithm for approximate matching

easy in O(u.m)

- Analysis: $\Theta(n+m)$ preprocessing + $O(n \cdot k)$ matching
- \rightsquigarrow very efficient for small k
- State of the art
 - $O(n \frac{k^2 \log k}{m})$ possible with complicated algorithms
 - extensions for edit distance $\leq k$ possible

Application 6: Matching with wildcards

- Allow a wildcard character in pattern stands for arbitrary (single) character
- ▶ similar algorithm as for *k*-mismatch \rightsquigarrow $O(n \cdot k + m)$ when *P* has *k* wildcards

Application 6: Matching with wildcards

- Allow a wildcard character in pattern stands for arbitrary (single) character
- ▶ similar algorithm as for *k*-mismatch \rightsquigarrow $O(n \cdot k + m)$ when *P* has *k* wildcards

* * *

Many more applications, in particular for problems on biological sequences

20+ described in Gusfield, Algorithms on strings, trees, and sequences (1999)

Suffix trees – Discussion

Suffix trees were a threshold invention

linear time and space

suddenly many questions efficiently solvable in theory

Suffix trees – Discussion

Suffix trees were a threshold invention

linear time and space

suddenly many questions efficiently solvable in theory

construction of suffix trees: linear time, but significant overhead

construction methods fairly complicatedmany pointers in tree incur large space overhead

6.5 Suffix Arrays

Putting suffix trees on a diet

Putting suffix trees on a diet

- Observation: order of leaves in suffix tree = suffixes lexicographically sorted
- ▶ Idea: only store list of leaves *L*[0..*n*]
- Enough to do efficient string matching!
 - **1**. Use binary search for pattern *P*
 - 2. check if *P* is prefix of suffix after position found
- ► Example: P = ana \$

all occurrences: 2 binary seavelus ana# #> a e E

Putting suffix trees on a diet

- Observation: order of leaves in suffix tree
 = suffixes lexicographically sorted
 - ▶ Idea: only store list of leaves *L*[0..*n*]
 - Enough to do efficient string matching!
 - **1**. Use binary search for pattern *P*
 - 2. check if *P* is prefix of suffix after position found
 - Example: P = ana
- \rightsquigarrow *L*[0..*n*] is called *suffix array*:

L[r] = (start index of) *r*th suffix in sorted order

• using *L*, can do string matching with $\leq (\lg n + 2) \cdot m$ character comparisons

Check all correct statements about suffix array L[0..n] and suffix tree T of text T[0..n).

- A) L[0..n] lists the start indices of leaves of T in left-to-right order.
- လွ
- **B** T[L[r]..n] is the path label in T to the leaf storing r.
- **C** T[L[r]..n] is the path label to the *r*th leaf in \mathcal{T} .
- **D** $T_{L[r]}$ is the *r*th smallest suffix of *T* (lexicographic order).
- **E** In terms of Θ -classes, \mathcal{T} needs more space than *L*.
- **F**) L (and T) suffice to solve the text indexing problem.

sli.do/comp526

Check all correct statements about suffix array L[0..n] and suffix tree T of text T[0..n).

- A L[0..n] lists the start indices of leaves of T in left-to-right order.
 -) T[L[r]...n] is the path label in T to the leaf storing r.
- **C** T[L[r]..n] is the path label to the *r*th leaf in \mathcal{T} .
- **D** $T_{L[r]}$ is the *r*th smallest suffix of *T* (lexicographic order). \checkmark
 - In terms of Θ classes, $\mathbb T$ needs more space than L.
 - L (and T) suffice to solve the text indexing problem. \checkmark

sli.do/comp526

Suffix arrays – Construction

How to compute L[0..n]?

- ► from suffix tree
 - possible with traversal . . .
 - D but we are trying to avoid constructing suffix trees!
- sorting the suffixes of *T* using general purpose sorting method
 trivial to code!
 - ▶ but: comparing two suffixes can take $\Theta(n)$ character comparisons $\bigcirc \Theta(n^2 \log n)$ time in worst case

Suffix arrays – Construction

How to compute L[0..n]?

- ► from suffix tree
 - possible with traversal . . .
 - D but we are trying to avoid constructing suffix trees!
- sorting the suffixes of *T* using general purpose sorting method
 trivial to code!
 - ▶ but: comparing two suffixes can take $\Theta(n)$ character comparisons $\bigcirc \Theta(n^2 \log n)$ time in worst case

► We do better!

Fat-pivot radix quicksort – Example (corrected version)

<mark>s</mark> he			
sells			
<pre>seashells</pre>			
by			
the			
sea			
shore			
the			
s hells			
she			
sells			
are			
<pre>surely</pre>			
<pre>seashells</pre>			

she		by	
<mark>s</mark> ells		<mark>a</mark> re	
<mark>s</mark> eashells		she	
by		s <mark>e</mark> lls	
t he		s e ashells	
<mark>s</mark> ea		sea	
<mark>s</mark> hore		shore	
t he		s <mark>h</mark> ells	
<mark>s</mark> hells		she	
<mark>s</mark> he		sells	
<mark>s</mark> ells		surely	
are		s e ashells	
<mark>s</mark> urely		t he	
<pre>seashells</pre>		t he	

she	by	are
<mark>s</mark> ells	<mark>a</mark> re	by
<pre>seashells</pre>	she	
b y	s e lls	
t he	s e ashells	
sea	sea	
<mark>s</mark> hore	s h ore	
t he	s h ells	
<mark>s</mark> hells	she	
s he	s e lls	
<mark>s</mark> ells	s <mark>u</mark> rely	
are	s e ashells	
surely	t he	
<pre>seashells</pre>	t he	

she	by	are	
<mark>s</mark> ells	are	by	
<pre>seashells</pre>	she	sells	sells
by	sells	s e ashells	se a shells
t he	s e ashells	sea	sea
sea	sea	s e lls	sells
s hore	shore	s e ashells	se a shells
t he	shells	she	she \$
<mark>s</mark> hells	s he	sh ore	she lls
<mark>s</mark> he	s <mark>e</mark> lls	sh ells	she \$
<mark>s</mark> ells	s <mark>u</mark> rely	sh e	shore
are	s <mark>e</mark> ashells	surely	
<mark>s</mark> urely	the	the	the
<pre>seashells</pre>	the	the	th e

Fat-pivot radix quicksort

details in §5.1 of Sedgewick, Wayne Algorithms 4th ed. (2011), Pearson

▶ **partition** based on *d***th** character only (initially *d* = 0)

- \sim 3 segments: smaller, equal, or larger than *d*th symbol of pivot
- recurse on smaller and large with same d, on equal with d + 1
 - $\rightsquigarrow\,$ never compare equal prefixes twice

Fat-pivot radix quicksort

details in §5.1 of Sedgewick, Wayne Algorithms 4th ed. (2011), Pearson

- ▶ **partition** based on *d***th** character only (initially *d* = 0)
- \sim 3 segments: smaller, equal, or larger than *d*th symbol of pivot
- recurse on smaller and large with same d, on equal with d + 1

for random strings \sim can show: $\sim 2 \ln(2) \cdot n \lg n \approx 1.39n \lg n$ character comparisons on average

> choice of pirot and random strings

random string

WG TEGRORE \$

efficient for sorting many lists of strings

simple to code

→ never compare equal prefixes twice

• fat-pivot radix quicksort finds suffix array in $O(n \log n)$ expected time

Fat-pivot radix quicksort

details in §5.1 of Sedgewick, Wayne Algorithms 4th ed. (2011), Pearson

▶ **partition** based on *d***th** character only (initially *d* = 0)

 \sim 3 segments: smaller, equal, or larger than *d*th symbol of pivot

• recurse on smaller and large with same d, on equal with d + 1

 $\rightsquigarrow\,$ never compare equal prefixes twice

for random strings \sim can show: $\sim 2 \ln(2) \cdot n \lg n \approx 1.39n \lg n$ character comparisons on average

🖒 simple to code

efficient for sorting many lists of strings

random string

• fat-pivot radix quicksort finds suffix array in $O(n \log n)$ expected time

but we can do O(n) time worst case!

6.6 Linear-Time Suffix Sorting

Inverse suffix array: going left & right

• to understand the fastest algorithm, it is helpful to define the *inverse suffix array*:

 $R[i] = r \iff L[r] = i \qquad L = leaf array \\ \iff \text{ there are } r \text{ suffixes that come before } T_i \text{ in sorted order}$

 \iff T_i has (0-based) *rank* $r \rightsquigarrow$ call R[0..n] the *rank array*

Linear-time suffix sorting

DC3 / Skew algorithm

1. Compute rank array $R_{1,2}$ for suffixes T_i starting at $i \neq 0 \pmod{3}$ recursively.

not a multiple of 3

- **2.** Induce rank array R_3 for suffixes $T_0, T_3, T_6, T_9, \ldots$ from $R_{1,2}$.
- **3.** Merge $R_{1,2}$ and R_0 using $R_{1,2}$.
 - \rightsquigarrow rank array *R* for entire input

Linear-time suffix sorting

DC3 / Skew algorithm

1. Compute rank array $R_{1,2}$ for suffixes T_i starting at $i \neq 0 \pmod{3}$ recursively.

not a multiple of 3

- **2.** Induce rank array R_3 for suffixes $T_0, T_3, T_6, T_9, \ldots$ from $R_{1,2}$.
- **3.** Merge $R_{1,2}$ and R_0 using $R_{1,2}$. \rightarrow rank array *R* for entire input

- We will show that steps 2. and 3. take $\Theta(n)$ time .
- $\xrightarrow{} \text{ Total complexity is } \underbrace{n + \frac{2}{3}n + \left(\frac{2}{3}\right)^2 n + \left(\frac{2}{3}\right)^3 n + \cdots}_{i \ge 0} \le n \cdot \sum_{i \ge 0} \left(\frac{2}{3}\right)^i = 3n = \Theta(n)$

(5-2

Linear-time suffix sorting

DC3 / Skew algorithm

1. Compute rank array $R_{1,2}$ for suffixes T_i starting at $i \neq 0 \pmod{3}$ recursively.

not a multiple of 3

- **2.** Induce rank array R_3 for suffixes $T_0, T_3, T_6, T_9, \ldots$ from $R_{1,2}$.
- **3.** Merge $R_{1,2}$ and R_0 using $R_{1,2}$. \rightarrow rank array R for entire input

- We will show that steps 2. and 3. take $\Theta(n)$ time
- \rightsquigarrow Total complexity is $n + \frac{2}{3}n + \left(\frac{2}{3}\right)^2 n + \left(\frac{2}{3}\right)^3 n + \cdots \leq n \cdot \sum_{i \ge 0} \left(\frac{2}{3}\right)^i = 3n = \Theta(n)$
- Note: L can easily be computed from R in one pass, and vice versa.
 ~~ Can use whichever is more convenient.

DC3 / Skew algorithm – Step 2: Inducing ranks

Assume: rank array $R_{1,2}$ known:

$$\blacktriangleright R_{1,2}[i] = \begin{cases} \text{rank of } T_i \text{ among } T_1, T_2, T_4, T_5, T_7, T_8, \dots & \text{for } i = 1, 2, 4, 5, 7, 8, \dots \\ \text{undefined} & \text{for } i = 0, 3, 6, 9, \dots \end{cases}$$

Task: sort the suffixes T_0 , T_3 , T_6 , T_9 , ... in linear time (!)

DC3 / Skew algorithm – Step 2: Inducing ranks

Assume: rank array $R_{1,2}$ known:

$$R_{1,2}[i] = \begin{cases} \text{rank of } T_i \text{ among } T_1, T_2, T_4, T_5, T_7, T_8, \dots & \text{for } i = 1, 2, 4, 5, 7, 8, \dots \\ \text{undefined} & \text{for } i = 0, 3, 6, 9, \dots \end{cases}$$

- **Task:** sort the suffixes $T_0, T_3, T_6, T_9, \ldots$ in linear time (!)
- Suppose we want to compare T_0 and T_3 .
 - Characterwise comparisons too expensive
 - **b** but: after removing first character, we obtain T_1 and T_4
 - these two can be compared in *constant time* by comparing $R_{1,2}[1]$ and $R_{1,2}[4]!$

 T_0 comes before T_3 in lexicographic order iff pair (T[0], $R_{1,2}[1]$) comes before pair (T[3], $R_{1,2}[4]$) in lexicographic order

T = hannahbansbananasman

- hannahbansbananasman\$\$\$ nahbansbananasman\$\$\$
- $T_0 \\ T_3 \\ T_6 \\ T_9 \\ T_{12}$ bansbananasman\$\$\$
- sbananasman\$\$\$
- nanasman\$\$\$
- T_{15} asman\$\$\$
- T₁₈ an\$\$\$
- T_{21} \$\$

T_1	annahbansbananasman\$\$\$	$R_{12}[22] = 0 T_{22}$	\$
T_2	nnahbansbananasman\$\$\$	$R_{1,2}[20] = 1 T_{20}$	\$\$\$
T_4	ahbansbananasman\$\$\$	$R_{1,2}[4] = 2 T_4$	ahbansbananasman\$\$\$
T_5	hbansbananasman\$\$\$	$R_{1,2}[11] = 3 T_{11}$	ananasman\$\$\$
T_7	ansbananasman\$\$\$	$R_{1,2}[13] = 4 T_{13}$	anasman\$\$\$
T_8	nsbananasman\$\$\$	$R_{1,2}[1] = 5 T_1$	annahbansbananasman\$\$\$
T_{10}	bananasman\$\$\$	$R_{1,2}[7] = 6 T_7$	ansbananasman\$\$\$
T_{11}	ananasman\$\$\$	$R_{1,2}[10] = 7 T_{10}$	bananasman\$\$\$
T_{13}	anasman\$\$\$	$R_{1,2}[5] = 8 T_5$	hbansbananasman\$\$\$
T_{14}	nasman\$\$\$	$R_{1,2}[17] = 9 T_{17}$	man\$\$\$
T_{16}	sman\$\$\$	$R_{1,2}[19] = 10 T_{19}$	n\$\$\$
T_{17}	man\$\$\$	$R_{1,2}[14] = 11 T_{14}$	nasman\$\$\$
T_{19}	n\$\$\$	$R_{1,2}[2] = 12 T_2$	nnahbansbananasman\$\$\$
T_{20}	\$\$\$	$R_{1,2}[8] = 13 T_8$	nsbananasman\$\$\$
T_{22}	\$	$R_{1,2}[16] = 14 T_{16}$	sman\$\$\$
	$R_{1,2}$ (known)		

T = hannahbansbananasman

T = hannahbansbananasman

T = hannahbansbananasman

T = hannahbansbananasman

Clicker Question

0

Recap: Check all correct statements about suffix array L[0..n], inverse suffix array R[0..n], and suffix tree T of text T.

-) *L* lists the leaves of \mathcal{T} in left-to-right order.
- *R* lists the leaves of \mathcal{T} in right-to-left order.
- *R* lists starting indices of suffixes in lexciographic order.
- L lists starting indices of suffixes in lexciographic order.

$$\int L[r] = i \text{ iff } R[i] = r$$

L stands for leaf

D

- L stands for left
- *R* stands for rank
- *R* stands for right

sli.do/comp526

Click on "Polls" tab

Clicker Question

T ₂₁	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_9	sbananasman\$\$\$

 $T_{22} \\ T_{20} \\ T_4 \\ T_{11} \\ T_{13}$ \$\$\$ ahbansbananasman\$\$\$ ananasman\$\$\$ anasman\$\$\$ $T_1 T_7 T_{10}$ annahbansbananasman\$\$\$ ansbananasman\$\$\$ bananasman\$\$\$ $T_5 T_{17} T_{19} T_{14} T_2 T_8 T_{16}$ hbansbananasman\$\$\$ man\$\$\$ n\$\$\$ nasman\$\$\$ nnahbansbananasman\$\$\$ nsbananasman\$\$\$ sman\$\$\$

► Have:

▶ sorted 1,2-list:

 $T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$

► sorted 0-list:

```
T_0, T_3, T_6, T_9, \ldots
```

- Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using *R*_{1,2}

T ₂₁	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_9	sbananasman\$\$\$

- $T_{22} \\ T_{20} \\ T_4 \\ T_{11} \\ T_{13}$ \$\$\$ ahbansbananasman\$\$\$ ananasman\$\$\$ anasman\$\$\$ $T_1 T_7 T_{10}$ annahbansbananasman\$\$\$ ansbananasman\$\$\$ bananasman\$\$\$ $T_5 \\ T_{17} \\ T_{19} \\ T_{14} \\ T_2 \\ T_8 \\ T_{16}$ hbansbananasman\$\$\$ man\$\$\$ n\$\$\$ nasman\$\$\$ nnahbansbananasman\$\$\$ nsbananasman\$\$\$
 - sman\$\$\$

 $\begin{array}{ccc} T_{22} & \$ \\ T_{21} & \$\$ \\ T_{20} & \$\$\$ \\ T_4 & ahba \end{array}$ ahbansbananasman\$\$\$ T_{18} an\$\$\$

► Have:

▶ sorted 1.2-list:

 $T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$

▶ sorted 0-list:

```
T_0, T_3, T_6, T_9, \ldots
```

- Task: Merge them!
 - use standard merging method from Mergesort
 - but speed up comparisons using $R_{1,2}$

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_9	sbananasman\$\$\$

\$\$\$ ahbansbananasman\$\$\$ ananasman\$\$\$ anasman\$\$\$ T13 $T_1 \\ T_7 \\ T_{10}$ annahbansbananasman\$\$\$ ansbananasman\$\$\$ bananasman\$\$\$ $T_5 \\ T_{17} \\ T_{19} \\ T_{14} \\ T_2 \\ T_8 \\ T_{16}$ hbansbananasman\$\$\$ man\$\$\$ n\$\$\$ nasman\$\$\$ nnahbansbananasman\$\$\$ nsbananasman\$\$\$ sman\$\$\$

 $\begin{array}{lll} T_{22} & \$ \\ T_{21} & \$\$ \\ T_{20} & \$\$ \\ T_4 & ahbansbananasman\$\$\$ \\ T_{18} & an\$\$\$ \end{array}$

► Have:

► sorted 1,2-list:

 $T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$

- sorted 0-list:
 - $T_0, T_3, T_6, T_9, \ldots$
- Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using *R*_{1,2}

T ₂₁	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_9	sbananasman\$\$\$

\$\$\$ ahbansbananasman\$\$\$ ananasman\$\$\$ anasman\$\$\$ T13 T_1 annahbansbananasman\$\$\$ $T_{7}^{T_{10}}$ ansbananasman\$\$\$ bananasman\$\$\$ $T_5 \\ T_{17} \\ T_{19} \\ T_{14} \\ T_2 \\ T_8 \\ T_{16}$ hbansbananasman\$\$\$ man\$\$\$ n\$\$\$ nasman\$\$\$ nnahbansbananasman\$\$\$ nsbananasman\$\$\$ sman\$\$\$

 $\begin{array}{lll} T_{22} & \$ \\ T_{21} & \$\$ \\ T_{20} & \$\$ \\ T_4 & ahbansbananasman\$\$\$ \\ T_{18} & an\$\$\$ \end{array}$

 $\begin{array}{l} \mbox{Compare T_{15} to T_{11}} \\ \mbox{Idea: try same trick as before} \\ T_{15} = asman$$$$ asman$$$$$ = aT_{16} \\ mbox{and T_{12} either!} \\ \mbox{T}_{11} = ananasman$$$$$ = ananasman$$$$$ = aT_{12} \\ \end{array}$

► Have:

sorted 1,2-list:

 $T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$

- ► sorted 0-list:
 - $T_0, T_3, T_6, T_9, \ldots$
- Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using *R*_{1,2}

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_9	sbananasman\$\$\$

► Have:

- ▶ sorted 1.2-list: $T_1, T_2, T_4, T_5, T_7, T_8, T_{10}, T_{11}, \ldots$
- ▶ sorted 0-list: $T_0, T_3, T_6, T_9, \ldots$
- Task: Merge them!
 - use standard merging method from Mergesort
 - but speed up comparisons using $R_{1,2}$

\$\$\$ ahbansbananasman\$\$\$ ananasman\$\$\$ anasman\$\$\$ T13 annahbansbananasman\$\$\$ T_1 $T_7 T_{10}$ ansbananasman\$\$\$ bananasman\$\$\$ $T_5 \\ T_{17} \\ T_{19} \\ T_{14} \\ T_2 \\ T_8 \\ T_{16}$ hbansbananasman\$\$\$ man\$\$\$ n\$\$\$ nasman\$\$\$ nnahbansbananasman\$\$\$ nsbananasman\$\$\$ sman\$\$\$

\$ T_{21} \$\$ T_{20} \$\$\$ T_4 ahbansbananasman\$\$\$ T_{18} an\$\$\$

Compare T_{15} to T_{11} Idea: try same trick as before $T_{15} = \operatorname{asman}$ = asman\$\$\$ can't compare T_{16} $= aT_{16}$ and T12 either! $T_{11} = ananasman$$$ n\$\$\$

$$=$$
 ananasma
 $=$ a T_{12}

$$\rightsquigarrow$$
 Compare T_{16} to T_{12}

$$= sman$$

$$= sT_{17}$$

$$T_{12} = nanasman$$

 $= aT_{13}$

 $T_{13} T_1$

 $T_7 T_{10}$

 $T_5 \\ T_{17} \\ T_{19} \\ T_{14} \\ T_2 \\ T_8 \\ T_{16}$

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
To	shananasman\$\$\$

► Have:

- sorted 1,2-list:
 T1, T2, T4, T5, T7, T8, T10, T11,...
- sorted 0-list: $T_0, T_3, T_6, T_9, \ldots$
- Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using *R*_{1,2}

Compare T_{15} to T_{11} Idea: try same trick as before $T_{15} = asman$$$ = asman\$\$\$ can't compare T_{16} $= aT_{16}$ and T₁₂ either! $T_{11} = ananasman$ \$\$\$ = ananasman\$\$\$ $= aT_{12}$ \rightarrow Compare T_{16} to T_{12} $T_{16} = sman$ \$\$\$ always at most 2 steps = sman\$\$\$ then can use $R_{1,2}!$ $= sT_{17}$ $T_{12} = nanasman$ \$\$\$ = aanasman\$\$\$ $= aT_{13}$

T_{21}	\$\$
T_{18}	an\$\$\$
T_{15}	asman\$\$\$
T_6	bansbananasman\$\$\$
T_0	hannahbansbananasman\$\$\$
T_3	nahbansbananasman\$\$\$
T_{12}	nanasman\$\$\$
T_9	sbananasman\$\$\$

► Have:

- sorted 1,2-list: *T*₁, *T*₂, *T*₄, *T*₅, *T*₇, *T*₈, *T*₁₀, *T*₁₁,
- sorted 0-list: $T_0, T_3, T_6, T_9, \ldots$
- Task: Merge them!
 - use standard merging method from Mergesort
 - ▶ but speed up comparisons using *R*_{1,2}
 - $\sim O(n)$ time for merge

T_{22}	\$
T_{20}	\$\$\$
T_4	ahbansbananasman\$\$\$
T_{11}	ananasman\$\$\$
T_{13}	anasman\$\$\$
T_1	annahbansbananasman\$\$\$
T_7	ansbananasman\$\$\$
T_{10}	bananasman\$\$\$
T_5	hbansbananasman\$\$\$
T_{17}	man\$\$\$
T_{19}	n\$\$\$
T_{14}	nasman\$\$\$
T_2	nnahbansbananasman\$\$\$
T_8	nsbananasman\$\$\$
T_{16}	sman\$\$\$

```
\begin{array}{ccc} T_{22} & \$ \\ T_{21} & \$\$ \\ T_{20} & \$\$\$ \end{array}
T_4
      ahbansbananasman$$$
T_{18}
      an$$$
T.
Compare T_{15} to T_{11}
 Idea: try same trick as before
 T_{15} = asman$$
      = asman$$$
                               can't compare T_{16}
      = aT_{16}
                               and T<sub>12</sub> either!
 T_{11} = ananasman$$$
      = ananasman$$$
     = aT_{12}
```

DC3 / Skew algorithm – Fix recursive call

▶ both step 2. and 3. doable in *O*(*n*) time!

DC3 / Skew algorithm – Fix recursive call

- ▶ both step 2. and 3. doable in *O*(*n*) time!
- ▶ But: we cheated in 1. step! *"compute rank array* R_{1,2} *recursively"*
 - ▶ Taking a *subset* of suffixes is *not* an instance of the same problem!

DC3 / Skew algorithm – Fix recursive call

- ▶ both step 2. and 3. doable in *O*(*n*) time!
- ▶ But: we cheated in 1. step! *"compute rank array* R_{1,2} *recursively"*
 - ▶ Taking a *subset* of suffixes is *not* an instance of the same problem!
 - → Need a single *string* T' to recurse on, from which we can deduce $R_{1,2}$.
 - How can we make T' "skip" some suffixes?

DC3 / Skew algorithm – Fix recursive call

- ▶ both step 2. and 3. doable in *O*(*n*) time!
- ▶ But: we cheated in 1. step! *"compute rank array* R_{1,2} *recursively"*
 - ▶ Taking a *subset* of suffixes is *not* an instance of the same problem!

 \rightsquigarrow Need a single *string* T' to recurse on, from which we can deduce $R_{1,2}$.

? ? ? How can we make *T'* "skip" some suffixes?

$$T = bananaban\$\$\$$$

$$\rightarrow T^{\square} = bananaban\$\$\$$$
(ana)ban\\$\$\$
(ban)\$\$\$
(ban)\$\$\$

- redefine alphabet to be *triples of characters* abc

 \rightsquigarrow Can call suffix sorting recursively on *T*' and map result to $R_{1,2}$

DC3 / Skew algorithm – Fix alphabet explosion

Still does not quite work!

DC3 / Skew algorithm – Fix alphabet explosion

- Still does not quite work!
 - Each recursive step *cubes* σ by using triples!
 - \rightsquigarrow (Eventually) cannot use linear-time sorting anymore!

5

DC3 / Skew algorithm – Fix alphabet explosion

- Still does not quite work!
 - Each recursive step *cubes* σ by using triples!
 - \rightsquigarrow (Eventually) cannot use linear-time sorting anymore!
- But: Have at most $\frac{2}{3}n$ different triples **abc** in T'!
- \rightsquigarrow Before recursion:
 - **1.** Sort all occurring triples. (using counting sort in O(n))
 - **2.** Replace them by their *rank* (in Σ).
- → Maintains $\sigma \leq n$ without affecting order of suffixes.

 $T' = T[1..n)^{\Box} \text{ sss} T[2..n)^{\Box} \text{ sss}$

 \blacktriangleright T = hannahbansbananasman\$

 $T' = T[1..n)^{\Box}$ (\$\$\$) $T[2..n)^{\Box}$ (\$\$\$)

- ▶ T = hannahbansbananasman $1 > T_2 = nnahbansbananasman$
 - T' = annahbansibananasman\$\$ \$\$\$ nnahbansibananasman\$\$\$

 $T' = T[1..n)^{\Box}$ (\$\$\$) $T[2..n)^{\Box}$ (\$\$\$)

- ▶ T = hannahbansbananasman\$ $T_2 = nnahbansbananasman$ \$
 - T' = annahbansibananasman\$\$ \$\$\$ nnahbansibananasman\$\$\$
- Occurring triples:

annahbansbananasman\$\$ \$\$\$ nnahbansb nasman

 $T' = T[1..n)^{\Box}$ (\$\$\$) $T[2..n)^{\Box}$ (\$\$\$)

- ▶ T = hannahbansbananasman\$ $T_2 = nnahbansbananasman$ \$
 - T' = annahbansibananasman\$\$ \$\$\$ nnahbansibananasman\$\$\$
- Occurring triples:

annahbansbananasman\$\$ \$\$\$ nnahbansb nasman

Sorted triples with ranks:

Rank	00	01	02	03	04	05	06	07	08	09	10	11	12
Triple	\$\$\$	ahb	ana	ann	ans	ban	hba	man	n\$\$	nas	nna	nsb	(sma)

 $T' = T[1..n)^{\Box} \text{SS} T[2..n)^{\Box} \text{SSS}$

- ▶ T = hannahbansbananasman\$ $T_2 = nnahbansbananasman$ \$
 - $T' = ann ahb ans) ban ana sma n \ ($$) (nna hba nsb ana nas) man \ ($$$)$
- ► Occurring triples:

annahbansbananasman\$\$ \$\$\$ nnahbansb nasman

Sorted triples with ranks:

Suffix array – Discussion

sleek data structure compared to suffix tree simple and fast $O(n \log n)$ construction (on random shine) more involved but optimal O(n) construction

🖒 supports efficient string matching

 \bigcirc string matching takes $O(m \log n)$, not optimal O(m)

Cannot use more advanced suffix tree features e.g., for longest repeated substrings

6.7 The LCP Array

Clicker Question

sli.do/comp526

Click on "Polls" tab

Clicker Question

sli.do/comp526

Click on "Polls" tab

String depths of internal nodes

- ▶ Recall algorithm for longest repeated substring in **suffix tree**
 - 1. Compute *string depth* of nodes
 - 2. Find *path label to node* with maximal string depth
- ► Can we do this using **suffix** *arrays*?

String depths of internal nodes

- ▶ Recall algorithm for longest repeated substring in **suffix tree**
 - 1. Compute *string depth* of nodes
 - 2. Find *path label to node* with maximal string depth
- Can we do this using **suffix** *arrays*?

• Yes, by enhancing the suffix array with the <u>LCP array!</u> LCP[1..n] <u>LCP[r]</u> = LCP($T_{L[r]}, T_{L[r-1]}$)

length of longest common prefix of suffixes of rank r and r - 1

 \rightarrow longest repeated substring = find maximum in LCP[1..*n*]

 \rightarrow Leaf array L[0..n] plus LCP array LCP[1..n] encode full tree!

- ▶ computing LCP[1..*n*] naively too expensive
 - each value could take $\Theta(n)$ time

 $\Theta(n^2)$ in total

- computing LCP[1..n] naively too expensive
 each value could take Θ(n) time
 □ Θ(n²) in total
- ▶ but: seeing one large (=costly) LCP value → can find another large one!
- Example: T = Buffalo_buffalo_buffalos
 - first few suffixes in sorted order:

```
\begin{array}{l} T_{L[0]} = \$ \\ T_{L[1]} = \texttt{alo\_buffalo} \$ \\ T_{L[2]} = \texttt{alo\_buffalo\_buffalo} \$ \\ \texttt{alo\_buffalo\_buffalo} & \rightsquigarrow \ \mathrm{LCP[3]} = \texttt{19} \\ T_{L[3]} = \texttt{alo\_buffalo\_buffalo\_buffalo} \$ \end{array}
```

- computing LCP[1..n] naively too expensive
 each value could take Θ(n) time
 □ Θ(n²) in total
 - (n^2) in total
- ▶ but: seeing one large (=costly) LCP value → can find another large one!
- Example: T = Buffalo_buffalo_buffalo\$
 - first few suffixes in sorted order:

```
\begin{array}{l} T_{L[0]} = \$ \\ T_{L[1]} = alo\_buffalo\$ \\ T_{L[2]} = alo\_buffalo\_buffalo\$ \\ & alo\_buffalo\_buffalo \\ T_{L[3]} = alo\_buffalo\_buffalo\_buffalo\$ \end{array} \rightarrow \ \mathrm{LCP}[3] = \mathbf{19} \end{array}
```

 \rightsquigarrow **Removing first character** from $T_{L[2]}$ and $T_{L[3]}$ gives two new suffixes:

```
\begin{split} T_{L[?]} &= \text{lo_ubuffalo_ubuffalos} \\ & \text{lo_ubuffalo_ubuffalo} & \rightsquigarrow & \text{LCP[?]} = 18 \\ T_{L[?]} &= \text{lo_ubuffalo_ubuffalo_ubuffalos} & & & \\ & \text{unclear where...} \end{split}
```

computing LCP[1..n] naively too expensive
 each value could take Θ(n) time

 $\Theta(n^2)$ in total

- ▶ but: seeing one large (=costly) LCP value → can find another large one!
- Example: T = Buffalo_buffalo_buffalo\$
 - first few suffixes in sorted order:

```
\begin{split} T_{L[0]} &= \$ \\ T_{L[1]} &= \texttt{alo_ubuffalo} \$ \\ T_{L[2]} &= \texttt{alo_ubuffalo_ubuffalo} \$ \\ & \texttt{alo_ubuffalo_ubuffalo} & \rightsquigarrow & \texttt{LCP[3] = 19} \\ T_{L[3]} &= \texttt{alo_ubuffalo_ubuffalo} \$ \end{split}
```

→ **Removing first character** from $T_{L[2]}$ and $T_{L[3]}$ gives two new suffixes:

$$T_{L[?]} = lo_{u}buffalo_{u}buffalos$$

$$lo_{u}buffalo_{u}buffalo \rightarrow LCP[?] = 18$$

$$T_{L[?]} = lo_{u}buffalo_{u}buffalo_{u}buffalos$$

$$(unclear where...)$$

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r]	$T_{L[r]}$	LCP[r]
0	6^{th}	bananaban\$	0	9	\$	-
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	$9^{ ext{th}}$	nanaban\$	2	7	an\$	
3	3^{th}	anaban\$	3	3	anaban\$	
4	$8^{ ext{th}}$	naban\$	4	1	ananaban\$	
5	$1^{ ext{th}}$	aban\$	5	6	ban\$	
6	5^{th}	ban\$	6	0	bananaban\$	
7	2^{th}	an\$	7	8	n\$	
8	7^{th}	n\$	8	4	naban\$	
9	0^{th}	\$	9	2	nanaban\$	

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i	r	L[r]] $T_{L[r]}$	LCP[r]
\rightarrow	0	6 th	bananaban\$	0	9	\$	-
	1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
	2	9^{th}	nanaban\$	2	7	an\$	
	3	3^{th}	anaban\$	3	3	anaban\$	
	4	8^{th}	naban\$	4	1	ananaban\$	
	5	1^{th}	aban\$	5	6	ban\$	
	6	5^{th}	ban\$	6	0	bananaban\$	
	7	2^{th}	an\$	7	8	n\$	
	8	7^{th}	n\$	8	4	naban\$	
	9	0^{th}	\$	9	2	nanaban\$	

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r]	$T_{L[r]}$	LCP[r]
0	6^{th}	bananaban\$	0	9	\$	_
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	$9^{ ext{th}}$	nanaban\$	2	7	an\$	
3	3^{th}	anaban\$	3	3	anaban\$	
4	$8^{ ext{th}}$	naban\$	4	1	ananaban\$	
5	$1^{ ext{th}}$	aban\$	5	6	b <mark>an</mark> \$	
6	5^{th}	ban\$	6	0	b <mark>an</mark> anaban\$	3
7	2^{th}	an\$	7	8	n\$	
8	7^{th}	n\$	8	4	naban\$	
9	0^{th}	\$	9	2	nanaban\$	

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- ► Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r]	$T_{L[r]}$	LCP[r]
0	6^{th}	bananaban\$	0	9	\$	-
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	$9^{ ext{th}}$	nanaban\$	2	7	an\$	
3	3^{th}	anaban\$	3	3	a <mark>na</mark> ban\$	
4	$8^{ ext{th}}$	naban\$	4	1	a <mark>na</mark> naban\$	3
5	$1^{ ext{th}}$	aban\$	5	6	ban\$	
6	5^{th}	ban\$	6	0	bananaban\$	3
7	2^{th}	an\$	7	8	n\$	
8	$7^{ ext{th}}$	n\$	8	4	naban\$	
9	0^{th}	\$	9	2	nanaban\$	

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r]	$T_{L[r]}$	LCP[r]
0	6^{th}	bananaban\$	0	9	\$	-
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	$9^{ ext{th}}$	nanaban\$	2	7	an\$	
3	3^{th}	anaban\$	3	3	anaban\$	
4	$8^{ ext{th}}$	naban\$	4	1	ananaban\$	3
5	$1^{ ext{th}}$	aban\$	5	6	ban\$	
6	$5^{ ext{th}}$	ban\$	6	0	bananaban\$	3
7	$2^{ ext{th}}$	an\$	7	8	n\$	
8	$7^{ ext{th}}$	n\$	8	4	n <mark>a</mark> ban\$	
9	0^{th}	\$	9	2	n <mark>a</mark> naban\$	2

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

	i	R[i]	T_i	r	L[r]] $T_{L[r]}$	LCP[r]
	0	6^{th}	bananaban\$	0	9	\$	_
	1	4^{th}	ananaban\$	1	5	aban\$	
	2	9^{th}	nanaban\$	2	7	an\$	
\rightarrow	3	3 th	anaban\$	3	3	anaban\$	
	4	$8^{ ext{th}}$	naban\$	4	1	ananaban\$	3
	5	$1^{ ext{th}}$	aban\$	5	6	ban\$	
	6	5^{th}	ban\$	6	0	bananaban\$	3
	7	2^{th}	an\$	7	8	n\$	
	8	$7^{ ext{th}}$	n\$	8	4	n <mark>a</mark> ban\$	
	9	0^{th}	\$	9	2	n <mark>a</mark> naban\$	2

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

i	R[i]	T_i	r	L[r]	$T_{L[r]}$	LCP[r]
0	6^{th}	bananaban\$	0	9	\$	-
1	$4^{ ext{th}}$	ananaban\$	1	5	aban\$	
2	$9^{ ext{th}}$	nanaban\$	2	7	a <mark>n</mark> \$	
3	3^{th}	anaban\$	3	3	a <mark>n</mark> aban\$	2
4	$8^{ ext{th}}$	naban\$	4	1	ananaban\$	3
5	$1^{ ext{th}}$	aban\$	5	6	ban\$	
6	$5^{ ext{th}}$	ban\$	6	0	bananaban\$	3
7	$2^{ ext{th}}$	an\$	7	8	n\$	
8	$7^{ m th}$	n\$	8	4	naban\$	
9	0^{th}	\$	9	2	nanaban\$	2

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

- Kasai et al. used above observation systematically
- ▶ Key idea: *compute* LCP values in *text order*
- Dropping first character of adjacent suffixes might not lead to *adjacent* shorter suffixes, but LCP entry can only be *longer*.

Kasai's algorithm – Code

```
<sup>1</sup> procedure computeLCP(T[0..n], L[0..n], R[0..n])
       // Assume T[n] = $, L and R are suffix array and inverse
2
       \ell := 0
3
       for i := 0, \ldots, n-1 // look at T_i
4
           r := R[i]
5
           // compute LCP[r]; note that r > 0 since R[n] = 0
6
         i_{-1} := L[r-1]
7
        while T[i + \ell] = T[i_{-1} + \ell] do
8
                \ell := \ell + 1
9
        LCP[r] := \ell
10
           \ell := \max\{\ell - 1, 0\}
11
       return LCP[1..n]
12
```

• remember length ℓ of induced common prefix

use L to get start index of suffixes

Kasai's algorithm – Code

¹ **procedure** computeLCP(*T*[0..*n*], *L*[0..*n*], *R*[0..*n*]) *// Assume* T[n] =\$, *L* and *R* are suffix array and inverse 2 $\ell := 0$ 3 **for** i := 0, ..., n-14 r := R[i]5 *// compute* LCP[r]; note that r > 0 since R[n] = 06 $i_{-1} := L[r-1]$ 7 while $T[i + \ell] = T[i_{-1} + \ell]$ do 8 $\ell := \ell + 1 \quad \Bbbk$ 9 $LCP[r] := \ell$ 10 $\ell := \max\{\ell - 1, 0\}$ 11 **return** LCP[1..*n*] 12

- remember length ℓ of induced common prefix
- use L to get start index of suffixes

Analysis:

- dominant operation:
 character comparisons
 - Separately count those with outcomes "=" resp. "≠"
 - each \neq ends iteration of for-loop $\rightsquigarrow \leq n \text{ cmps}$
 - each = implies increment of ℓ, but ℓ ≤ n and decremented ≤ n times
 → ≤ 2n cmps

$$\rightsquigarrow \Theta(n)$$
 overall time

Back to suffix trees

We can finally look into the black box of linear-time suffix-array construction!

- **1.** Compute suffix array for *T*.
- **2.** Compute LCP array for *T*.
- **3.** Construct \mathcal{T} from suffix array and LCP array.

Conclusion

▶ (Enhanced) Suffix Arrays are the modern version of suffix trees

C can be harder to reason about

can support same algorithms as suffix trees

but use much less space

simpler linear-time construction