

Outline

7 Compression

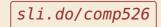
- 7.1 Context
- 7.2 Character Encodings
- 7.3 Huffman Codes
- 7.4 Run-Length Encoding
- 7.5 Lempel-Ziv-Welch
- 7.6 Move-to-Front Transformation
- 7.7 Burrows-Wheeler Transform

7.1 Context

Overview

- ▶ Unit 4–6: How to *work* with strings
 - finding substrings
 - finding approximate matches
 - finding repeated parts
 - ► ...
 - assumed character array (random access)!
- ▶ Unit 7–8: How to *store/transmit* strings
 - computer memory: must be binary
 - (how to compress strings (save space)
 - ▶ how to robustly transmit over noisy channels → Unit 8

Clicker Question



Click on "Polls" tab

Terminology

► source text: string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet

- ► coded text: encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts $S \rightarrow C$
- ▶ decoding: algorithm mapping coded texts back to original source text S ← C

Terminology

► source text: string $S \in \Sigma_S^*$ to be stored / transmitted Σ_S is some alphabet

- ► coded text: encoded data $C \in \Sigma_C^*$ that is actually stored / transmitted usually use $\Sigma_C = \{0, 1\}$
- encoding: algorithm mapping source texts to coded texts
- **b** decoding: algorithm mapping coded texts back to original source text
- ► Lossy vs. Lossless $S \rightarrow C \rightarrow S' \approx S$
 - lossy compression can only decode approximately; the exact source text S is lost
 - lossless compression always decodes S exactly
- ▶ For media files, lossy, logical compression is useful (e.g. JPEG, MPEG)
- We will concentrate on *lossless* compression algorithms. These techniques can be used for any application.

What is a good encoding scheme?

- Depending on the application, goals can be
 - efficiency of encoding/decoding
 - resilience to errors/noise in transmission
 - security (encryption)
 - integrity (detect modifications made by third parties)
 - ► size

What is a good encoding scheme?

- Depending on the application, goals can be
 - efficiency of encoding/decoding
 - resilience to errors/noise in transmission
 - security (encryption)
 - integrity (detect modifications made by third parties)
 - size
- ► Focus in this unit: **size** of coded text

Encoding schemes that (try to) minimize the size of coded texts perform *data compression*.

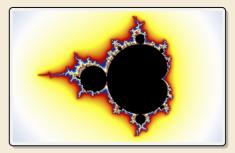
- ▶ We will measure the *compression ratio*:
 - < 1 means successful compression
 - = 1 means no compression
 - > 1 means "compression" made it bigger!?

(yes, that happens . . .)

 $\frac{|C| \cdot \lg |\Sigma_C|}{|S| \cdot \lg |\Sigma_S|} \stackrel{\Sigma_C = \{0,1\}}{=} \frac{|C|}{|S| \cdot \lg |\Sigma_S|}$

source lencth

Is this image compressible?



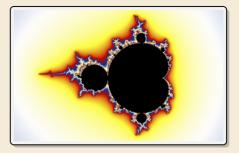
Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.

▶ but:

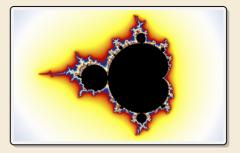
- completely defined by mathematical formula
- $\rightsquigarrow~$ can be generated by a very small program!



Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- ▶ but:
 - completely defined by mathematical formula
 - $\rightsquigarrow~$ can be generated by a very small program!

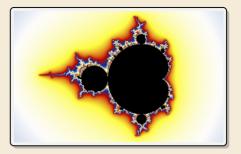


- \rightsquigarrow Kolmogorov complexity
 - C = any program that outputs S
 - self-extracting archives!
 - Kolmogorov complexity = length of smallest such program

Is this image compressible?

visualization of Mandelbrot set

- Clearly a complex shape!
- ▶ Will not compress (too) well using, say, PNG.
- ▶ but:
 - completely defined by mathematical formula
 - → can be generated by a very small program!



- \rightsquigarrow Kolmogorov complexity
 - C = any program that outputs S self-extracting archives!
 - Kolmogorov complexity = length of smallest such program
 - **Problem:** finding smallest such program is *uncomputable*.
 - → No optimal encoding algorithm is possible!
 - \rightsquigarrow must be inventive to get efficient methods

What makes data compressible?

Lossless compression methods mainly exploit two types of redundancies in source texts:

1. uneven character frequencies

some characters occur more often than others $~~\rightarrow$ Part I

2. repetitive texts

different parts in the text are (almost) identical \rightarrow Part II

What makes data compressible?

- Lossless compression methods mainly exploit two types of redundancies in source texts:
 - 1. uneven character frequencies

some characters occur more often than others $\quad \rightarrow Part \ I$

2. repetitive texts

different parts in the text are (almost) identical \rightarrow Part II

There is no such thing as a free lunch! Not *everything* is compressible (→ tutorials) → focus on versatile methods that often work

Part I Exploiting character frequencies

7.2 Character Encodings

Character encodings

- ▶ Simplest form of encoding: Encode each source character individually
- \rightsquigarrow encoding function $E: \Sigma_S \to \Sigma_C^{\star}$
 - typically, $|\Sigma_S| \gg |\Sigma_C|$, so need several bits per character
 - for $c \in \Sigma_S$, we call E(c) the *codeword* of c
- **• fixed-length code:** |E(c)| is the same for all $c \in \Sigma_C$
- ▶ variable-length code: not all codewords of same length

Fixed-length codes

- fixed-length codes are the simplest type of character encodings
- Example: ASCII (American Standard Code for Information Interchange, 1963)

0000000	NUL	0010000	DLE	0100000		0110000	0	1000000	0	1010000	Р	1100000	1	1110000	р
0000001	SOH	0010001	DC1	0100001 !		0110001	1	1000001	Α	1010001	Q	1100001	а	1110001	q
0000010	STX	0010010	DC2	0100010 "		0110010	2	1000010	В	1010010	R	1100010	b	1110010	r
0000011	ETX	0010011	DC3	0100011 #	ŧ	0110011	3	1000011	С	1010011	S	1100011	с	1110011	s
0000100	EOT	0010100	DC4	0100100 \$	5	0110100	4	1000100	D	1010100	Т	1100100	d	1110100	t
0000101	ENQ	0010101	NAK	0100101 %	5	0110101	5	1000101	E	1010101	U	1100101	e	1110101	u
0000110	ACK	0010110	SYN	0100110 &		0110110	6	1000110	F	1010110	V	1100110	f	1110110	v
0000111	BEL	0010111	ETB	0100111 '		0110111	7	1000111	G	1010111	W	1100111	g	1110111	w
0001000	BS	0011000	CAN	0101000 (0111000	8	1001000	н	1011000	Х	1101000	h	1111000	х
0001001	нт	0011001	EM	0101001)		0111001	9	1001001	I	1011001	Y	1101001	i	1111001	у
0001010	LF	0011010	SUB	0101010 *	¢	0111010	:	1001010	J	1011010	Z	1101010	j	1111010	z
0001011	VT	0011011	ESC	0101011 +	-	0111011	;	1001011	К	1011011	[1101011	k	1111011	{
0001100	FF	0011100	FS	0101100 ,		0111100	<	1001100	L	1011100	\	1101100	ι	1111100	1
0001101	CR	0011101	GS	0101101 -		0111101	=	1001101	М	1011101]	1101101	m	1111101	}
0001110	S0	0011110	RS	0101110 .		0111110	>	1001110	Ν	1011110	^	1101110	n	1111110	~
0001111	SI	0011111	US	0101111 /	,	0111111	?	1001111	0	1011111		1101111	0	1111111	DEL

▶ 7 bit per character

▶ just enough for English letters and a few symbols (plus control characters)

Fixed-length codes – Discussion

Lencoding & Decoding as fast as it gets & allows raw down access

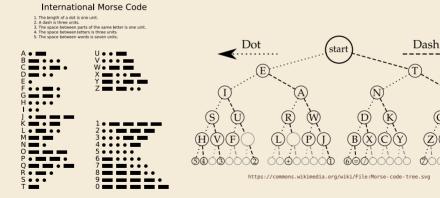
Unless all characters equally likely, it wastes a lot of space

(how to support adding a new character?)

Variable-length codes

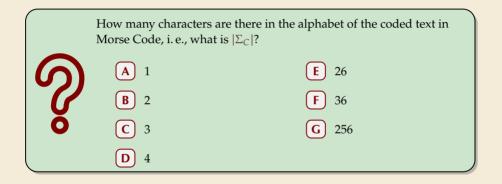
▶ to gain more flexibility, have to allow different lengths for codewords

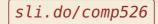
actually an old idea: Morse Code



https://commons.wikimedia.org/wiki/File: International Morse Code.svg ത്ത്ര്ത്ത

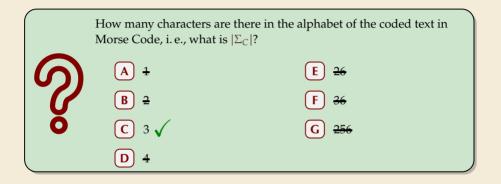
Clicker Question

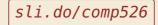




Click on "Polls" tab

Clicker Question





Click on "Polls" tab

Variable-length codes – UTF-8

Modern example: UTF-8 encoding of Unicode:

default encoding for text-files, XML, HTML since 2009

- Encodes any Unicode character (137 994 as of May 2019, and counting)
- uses 1–4 bytes (codeword lengths: 8, 16, 24, or 32 bits)
- ▶ Every ASCII character is encoded in 1 byte with leading bit 0, followed by the 7 bits for ASCII
- Non-ASCII characters start with 1–4 1s indicating the total number of bytes, followed by a 0 and 3–5 bits.

The remaining bytes each start with 10 followed by 6 bits.

Char. number range	UTF-8 octet sequence						
(hexadecimal)	(binary)						
0000 0000 - 0000 007F	Øxxxxxx						
0000 0080 - 0000 07FF	110xxxxx 10xxxxxx						
0000 0800 - 0000 FFFF	1110xxxx 10xxxxxx 10xxxxxx						
$0001 \ 0000 - 0010 \ FFFF$	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx						

For English text, most characters use only 8 bit, but we can include any Unicode character, as well.

Pitfall in variable-length codes

- Suppose we have the following code: $\frac{c}{E(c)} = \frac{1}{0} \frac{1}{10} \frac{1}{10$
- Happily encode text S = banana with the coded text $C = \underbrace{1100100100}_{b a n a n a}$

Pitfall in variable-length codes

- Suppose we have the following code: $\begin{array}{c|c} c & a & n & b & s \\ \hline E(c) & 0 & 10 & 110 & 100 \end{array}$
- Happily encode text S = banana with the coded text C = 110|0|100|100
- 7 C = 1100100100 decodes **both** to banana and to bass: $\frac{1100100100}{b} \frac{100100}{a}$
- \rightsquigarrow not a valid code . . . (cannot tolerate ambiguity)

but how should we have known?

Pitfall in variable-length codes

- Suppose we have the following code: $\begin{array}{c|c} c & a & n & b & s \\ \hline E(c) & 0 & 10 & 110 & 100 \end{array}$
- Happily encode text S = banana with the coded text $C = \underbrace{1100100100}_{b a n a n a}$
- f C = 1100100100 decodes **both** to banana and to bass: $\frac{1100100100}{b a s s}$
- \rightsquigarrow not a valid code . . . (cannot tolerate ambiguity)

but how should we have known?

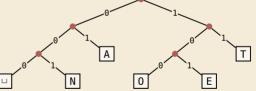
- E(n) = 10 is a (proper) prefix of E(s) = 100
 - $\rightsquigarrow~$ Leaves decoder wondering whether to stop after reading 10 or continue!
 - → Require a *prefix-free* code: No codeword is a prefix of another.
 prefix-free ⇒ instantaneously decodable

Code tries

From now on only consider prefix-free codes *E*: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a **(code)** trie (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)



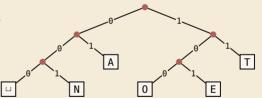
- Encode AN_ANT ບເບບາບດວດເ

Code tries

From now on only consider prefix-free codes *E*: E(c) is not a prefix of E(c') for any $c, c' \in \Sigma_S$.

Any prefix-free code corresponds to a *(code) trie* (trie of codewords) with characters of Σ_S at **leaves**.

no need for end-of-string symbols \$ here (already prefix-free!)



- ► Encode $AN_{\sqcup}ANT \rightarrow 010010000100111$
- ▶ Decode 111000001010111 \rightarrow T0_EAT

Who decodes the decoder?

- Depending on the application, we have to **store/transmit** the **used code**!
- We distinguish:
 - ▶ fixed coding: code agreed upon in advance, not transmitted (e.g., Morse, UTF-8)
 - ► static coding: code depends on message, but stays same for entire message; it must be transmitted (e. g., Huffman codes → next)
 - ► adaptive coding: code depends on message and changes during encoding; implicitly stored withing the message (e.g., LZW → below)

7.3 Huffman Codes

Character frequencies

- **Goal:** Find character encoding that produces short coded text
- Convention here: fix $\Sigma_C = \{0, 1\}$ (binary codes), abbreviate $\Sigma = \Sigma_S$,
- **• Observation:** Some letters occur more often than others.

e	12.70%	d	4.25%		р	1.93%	
t	9.06%	1	4.03%	-	b	1.49%	•
а	8.17%	с	2.78%	-	v	0.98%	•
0	7.51%	u	2.76%	-	k	0.77%	•
i	6.97%	m	2.41%	-	j	0.15%	1
n	6.75%	w	2.36%	-	x	0.15%	1
s	6.33%	f	2.23%	-	q	0.10%	1
h	6.09%	g	2.02%	-	Z	0.07%	1
r	5.99%	у	1.97%				

Typical English prose:

 \rightsquigarrow Want shorter codes for more frequent characters!

Huffman coding

e.g. frequencies / probabilities

- **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{\geq 0}$
- **• Goal:** prefix-free code *E* (= code trie) for Σ that minimizes coded text length

 $c \in \Sigma$

1

i.e., a code trie minimizing $\sum w(c) \cdot |E(c)|$

Huffman coding

e.g. frequencies / probabilities

- **Given:** Σ and weights $w : \Sigma \to \mathbb{R}_{\geq 0}$
- **Coal:** prefix-free code E (= code trie) for Σ that minimizes coded text length

i.e., a code trie minimizing $\sum_{c \in \Sigma} w(c) \cdot |E(c)|$

If we use w(c) = #occurrences of c in S, this is the character encoding with smallest possible |C|

```
\rightsquigarrow best possible character-wise encoding
```

Quite ambitious! Is this efficiently possible?

Huffman's algorithm

► Actually, yes! A greedy/myopic approach succeeds here.

Huffman's algorithm:

- 1. Find two characters a, b with lowest weights.
 - ► We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (*u* to be determined)
- 2. (Conceptually) replace a and b by a single character "ab" with w(ab) = w(a) + w(b).
- Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).

Huffman's algorithm

• Actually, yes! A greedy/myopic approach succeeds here.

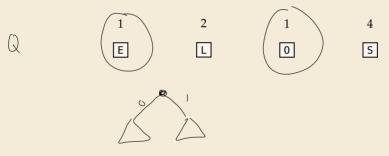
Huffman's algorithm:

ambiguous parts

- 1. Find two characters a, b with lowest weights. 🌾 which?
 - ► We will encode them with the same prefix, plus one distinguishing bit, i. e., E(a) = u0 and E(b) = u1 for a bitstring $u \in \{0, 1\}^*$ (*u* to be determined)
- 2. (Conceptually) replace a and b by a single character "ab" w = w(a) + w(b).
- **3.** Recursively apply Huffman's algorithm on the smaller alphabet. This in particular determines u = E(ab).
- efficient implementation using a (min-oriented) priority queue
 - start by inserting all characters with their weight as key
 - step 1 uses two deleteMin calls
 - step 2 inserts a new character with the sum of old weights as key

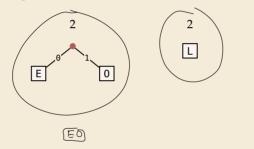
• Example text: $S = LOSSLESS \longrightarrow \Sigma_S = \{E, L, 0, S\}$

• Character frequencies: E : 1, L : 2, 0 : 1, S : 4



• Example text: S = LOSSLESS $\rightsquigarrow \Sigma_S = \{E, L, 0, S\}$

• Character frequencies: E:1, L:2, 0:1, S:4



• Example text: S = LOSSLESS \rightsquigarrow $\Sigma_S = \{E, L, 0, S\}$

• Character frequencies: E:1, L:2, 0:1, S:4

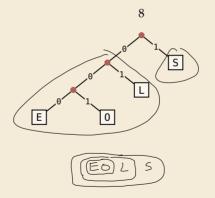


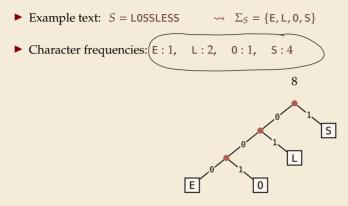
4

S

• Example text: S = LOSSLESS \rightsquigarrow $\Sigma_S = \{E, L, 0, S\}$

• Character frequencies: E:1, L:2, 0:1, S:4

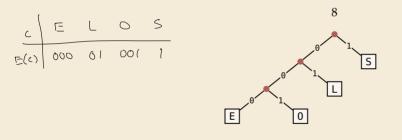




→ *Huffman tree* (code trie for Huffman code)

• Example text: $S = LOSSLESS \longrightarrow \Sigma_S = \{E, L, 0, S\}$

• Character frequencies: E: 1, L: 2, 0: 1, S: 4



→ *Huffman tree* (code trie for Huffman code)

 $LOSSLESS \rightarrow \underbrace{01001110100011}_{(but : would also have b shore trie)} compression ratio: \frac{14}{8 \cdot \log 4} = \frac{14}{16} \approx \underbrace{88\%}_{(but : would also have b shore trie)}$

Huffman tree - tie breaking

- ► The above procedure is ambiguous:
 - which characters to choose when weights are equal?
 - which subtree goes left, which goes right?
- ► For COMP 526: always use the following rule:
 - 1. To break ties when selecting the two characters, first use the smallest letter according to the alphabetical order, or the tree containing the smallest alphabetical letter.
 - 2. When combining two trees of <u>different values</u>, place the lower-valued tree on the left (corresponding to a 0-bit).
 - 3. When combining trees of equal value, place the one containing the smallest letter to the left.

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w : \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E : \Sigma \to \{0, 1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Huffman code – Optimality

Theorem 7.1 (Optimality of Huffman's Algorithm)

Given Σ and $w : \Sigma \to \mathbb{R}_{\geq 0}$, Huffman's Algorithm computes codewords $E : \Sigma \to \{0, 1\}^*$ with minimal expected codeword length $\ell(E) = \sum_{c \in \Sigma} w(c) \cdot |E(c)|$ among all prefix-free codes for Σ .

Proof sketch: by induction over $\sigma = |\Sigma|$

- ▶ Given any optimal prefix-free code *E*^{*} (as its code trie).
- ▶ code trie \rightarrow ∃ two sibling leaves *x*, *y* at largest depth *D*
- swap characters in leaves to have two lowest-weight characters a, b in x, y (that can only make ℓ smaller, so still optimal)
- Any optimal code for Σ' = Σ \ {a, b} ∪ {ab} yields optimal code for Σ by replacing leaf ab by internal node with children a and b.
- $\stackrel{\rightsquigarrow}{\longrightarrow} \text{ recursive call yields optimal code for } \Sigma' \text{ by inductive hypothesis,} \\ \text{ so Huffman's algorithm finds optimal code for } \Sigma.$

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1, \dots, p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right) = \mathbb{E}\left[\lg \frac{1}{p}\right]$$

$$\operatorname{Pair} \operatorname{die} \quad \text{with } 6 \text{ foces}$$

$$1 - \dots 6 \quad \text{with } \frac{1}{6}$$

$$\mathcal{H}\left(\frac{1}{6} \dots , \frac{1}{6}\right) = \frac{-\frac{6}{1}}{\sum_{i=1}^{6}} \frac{1}{6} \lg \left(\frac{1}{\frac{1}{6}}\right) = 1 \cdot \lg(6) \approx 2.$$

$$\operatorname{fair} \operatorname{coin} \quad \operatorname{heads} / \operatorname{fails} \quad \mathrm{wl} \quad p \circ 5 \quad \frac{1}{2}$$

$$\mathcal{H}\left(\frac{1}{2}, \frac{1}{2}\right) = 1$$

Definition 7.2 (Entropy)

Ω

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution

▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

-

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution

▶ "20 *Questions on* [0, 1)": Land inside my interval by halving.

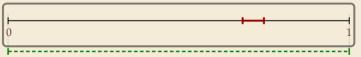
-

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution

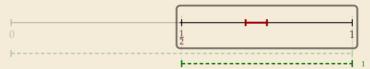


Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution

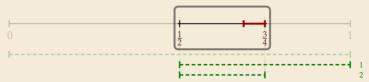


Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution

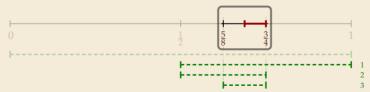


Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution



Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

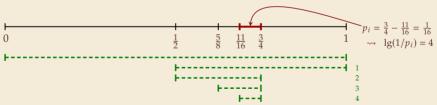
• entropy is a **measure** of **information** content of a distribution

Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution

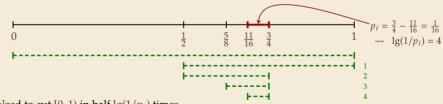


Definition 7.2 (Entropy)

Given probabilities p_1, \ldots, p_n (for outcomes $1, \ldots, n$ of a random variable), the *entropy* of the distribution is defined as

$$\mathcal{H}(p_1,\ldots,p_n) = -\sum_{i=1}^n p_i \lg p_i = \sum_{i=1}^n p_i \lg \left(\frac{1}{p_i}\right)$$

• entropy is a **measure** of **information** content of a distribution



- \rightsquigarrow Need to cut [0, 1) in half $\lg(1/p_i)$ times
- more precisely: the expected number of bits (Yes/No questions) required to nail down the random value

Entropy and Huffman codes

• would ideally encode value *i* using $lg(1/p_i)$ bits _______not for single code; but possible on average! not always possible; cannot use codeword of 1.5 bits ...

Entropy and Huffman codes

Theorem 7.3 (Entropy bounds for Huffman codes) For any $\Sigma = \{a_1, \dots, a_{\sigma}\}$ and $\underline{w} : \Sigma \to \mathbb{R}_{>0}$ and its Huffman code *E*, we have $\overline{\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1}$ where $\mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_{\sigma})}{W}\right)$ and $W = w(a_1) + \dots + w(a_{\sigma})$.

Entropy and Huffman codes

would ideally encode value *i* using lg(1/*p_i*) bits ______not for single code; but possible on average! not always possible; cannot use codeword of 1.5 bits ... but:

Theorem 7.3 (Entropy bounds for Huffman codes) For any $\Sigma = \{a_1, \ldots, a_n\}$ and $w: \Sigma \to \mathbb{R}_{>0}$ and its Huffman code *E*, we have $\mathcal{H} \leq \ell(E) \leq \mathcal{H} + 1$ where $\mathcal{H} = \mathcal{H}\left(\frac{w(a_1)}{W}, \dots, \frac{w(a_{\sigma})}{W}\right)$ and $W = w(a_1) + \dots + w(a_{\sigma})$. $\frac{11}{P_{c}} \qquad \frac{1}{P_{e}} \qquad \frac{c}{E(c)} \qquad \frac{c}{l} \qquad \frac{c}{000} \qquad 01$ *Proof sketch:* $\blacktriangleright \ell(E) > \mathcal{H}$ Any prefix-free code *E* induces weights $q_i = 2^{-|E(a_i)|}$. 9. 1. 1. 1. By *Kraft's Inequality*, we have $q_1 + \cdots + q_{\sigma} \leq 1$. Hence we can apply *Gibb's Inequality* to get $\mathcal{H} = \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{p_i}\right) \leq \sum_{i=1}^{\sigma} p_i \lg \left(\frac{1}{q_i}\right) = \ell(E).$ 0 6) for any g: e[0,1) Iq; ≤ 1 $4_{6} = \frac{1}{2}$ 21

Entropy and Huffman codes [2]

E9:51

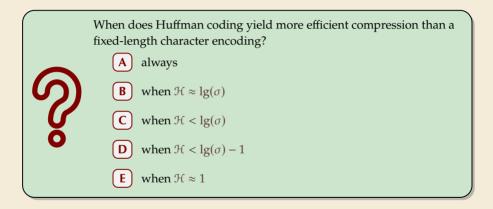
We construct a code *E'* for Σ with $|E'(a_i)| \leq \lg(1/q_i)$ as follows; The l's ('/pi)] is is w.l.o.g. assume $q_1 \leq q_2 \leq \cdots \leq q_{\sigma}$

- If $\sigma = 2$, E' uses a single bit each. Here, $a_i \le 1/2$, so $\lg(1/a_i) \ge 1 = |E'(a_i)| \checkmark$
- If $\sigma \geq 3$, we merge a_1 and a_2 to a_1a_2 , assign it weight $2q_2$ and recurse. If $q_1 = q_2$, this is like Huffman; otherwise, q_1 is a unique smallest value and $q_2 + q_2 + \dots + q_{\sigma} \leq 1.$

By the inductive hypothesis, we have $|E'(\overline{a_1a_2})| \leq \lg\left(\frac{1}{2a_2}\right) = \lg\left(\frac{1}{a_2}\right) - 1.$ By construction, $|E'(a_1)| = |E'(a_2)| = |E'(\overline{a_1a_2})| + 1$, so $|E'(a_1)| \le \lg(\frac{1}{a_1})$ and $|E'(a_2)| \le \lg(\frac{1}{a_2})$.

By optimality of *E*, we have $\ell(E) \leq \ell(E') \leq \sum_{i=1}^{\sigma} p_i \lg\left(\frac{1}{q_i}\right) \leq \mathcal{H} + 1.$

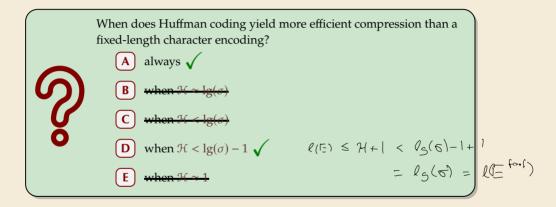
Clicker Question



sli.do/comp526

Click on "Polls" tab

Clicker Question



sli.do/comp526

Click on "Polls" tab

Encoding with Huffman code

- ▶ The overall encoding procedure is as follows:
 - ▶ Pass 1: Count character frequencies in *S*
 - Construct Huffman code E (as above)
 - ► Store the Huffman code in C (details omitted) _ Sed Sewick Wayne
 - ▶ Pass 2: Encode each character in *S* using *E* and append result to *C*
- Decoding works as follows:
 - ► Decode the Huffman code *E* from *C*. (details omitted)
 - Decode *S* character by character from *C* using the code trie.
- ▶ Note: Decoding is much simpler/faster!

Huffman coding – Discussion

- running time complexity: $O(\sigma \log \sigma)$ to construct code
 - build PQ + σ · (2 deleteMins and 1 insert)
 - ▶ can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding: O(n + |C|)
- many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

Huffman coding – Discussion

- running time complexity: $O(\sigma \log \sigma)$ to construct code
 - build PQ + σ · (2 deleteMins and 1 insert)
 - ▶ can do $\Theta(\sigma)$ time when characters already sorted by weight
 - time for encoding: O(n + |C|)
- ▶ many variations in use (tie-breaking rules, estimated frequencies, adaptive encoding, ...)

optimal prefix-free character encodingvery fast decoding

needs 2 passes over source text for encoding
 one-pass variants possible, but more complicated

 \mathbf{n} have to store code alongside with coded text

Part II Compressing repetitive texts

Beyond Character Encoding

Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will **not** capture such repetitions
 - \rightsquigarrow Huffman won't compression this very much

Beyond Character Encoding

Many "natural" texts show repetitive redundancy

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

- character-by-character encoding will **not** capture such repetitions
 - \rightsquigarrow Huffman won't compression this very much
- \rightsquigarrow Have to encode whole *phrases* of *S* by a single codeword

7.4 Run-Length Encoding

simplest form of repetition: *runs* of characters

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

simplest form of repetition: runs of characters

000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
0001011001000001111110000000000011111000
0011111111100011111111100000001111111000
001111011010001110001111000011100000000
00110000000000000000111000111000000000
001100000000000000000011001110000000000
001100000000000000000000000000000000000
001101100000000000000111001100111110000
00111111110000000000011100111111111000
001110111110000000001110001111100111100
00000000111000000011100001110000001110
00000000111000000011000001110000001100
00000000011000000110000000110000001110
00000000011000001110000001110000001100
000000001110001110000000000110000001110
00000000110000111000000000111000011100
0011011111100011110111010000111111111000
011111111100011111111111000011111110000
000101100000001010011001000000100100000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets

→ run-length encoding (RLE):

use runs as phrases: *S* = 00000 111 0000

simplest form of repetition: runs of characters

000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
0001011001000001111110000000000011111000
0011111111100011111111100000001111111000
00111101101000111000111100001110000000
0011000000000000000011100011100000000
001100000000000000000011001110000000000
00110000000000000000001100111000000000
001101100000000000000111001100111110000
001111111100000000000111001111111111000
001110111110000000001110001111100111100
00000000111000000011100001110000001110
00000000111000000011000001110000001100
00000000011000000110000000110000001110
00000000011000001110000001110000001100
0000000001110001110000000000110000001110
00000000110000111000000000111000011100
00110111111000111101110100000111111111000
01111111110001111011101000011111111000
000101100000001010011001000000100100000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets
- \rightarrow **run-length encoding (RLE)**: use runs as phrases: S = 00000 111 0000

- \rightsquigarrow We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - Note: don't have to store bit for later runs since they must alternate.

simplest form of repetition: runs of characters

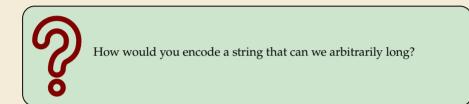
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000101100100000000000000000000000000000
00111111111000111111111000000011111111000
001111011010001110001111000011100000000
00110000000000000000111000111000000000
00110000000000000000011001110000000000
00110000000000000000011001110000000000
001100000000000000000000000000000000000
00111111110000000000011100111111111000
001110111110000000001110001111100111100
00000000111000000011100001110000001110
000000001110000001100000111000001100
00000000011000000011000000110000001100
00000000011000001110000001110000001100
00000000111000111000000000110000001110
00000000110000111000000000111000011100
00110111111000111101101000011111111000
0111111111000111111111111000011111110000
000101100000001010011001000000100100000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

same character repeated

- here: only consider $\Sigma_S = \{0, 1\}$ (work on a binary representation)
 - can be extended for larger alphabets
- \rightarrow **run-length encoding (RLE)**: use runs as phrases: S = 00000 111 0000

- \rightsquigarrow We have to store
 - ▶ the first bit of *S* (either 0 or 1)
 - the length each each run
 - Note: don't have to store bit for later runs since they must alternate.
- ► Example becomes: 0, 5, 3, 4
- ▶ **Question**: How to encode a run length *k* in binary? (*k* can be arbitrarily large!)

Clicker Question



Click on "Polls" tab

- ▶ Need a *prefix-free* encoding for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- But that's simple! Just use *unary* encoding!

- ▶ Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, ..., \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- But that's simple! Just use *unary* encoding!

Much too long

(wasn't the whole point of RLE to get rid of long runs??)

- Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- But that's simple! Just use *unary* encoding!

Much too long

► (wasn't the whole point of RLE to get rid of long runs??)

► Refinement: *Elias gamma code*

- Store the **length** ℓ of the binary representation in **unary**
- Followed by the binary digits themselves

- Need a *prefix-free encoding* for $\mathbb{N} = \{1, 2, 3, \dots, \}$
 - must allow arbitrarily large integers
 - must know when to stop reading
- But that's simple! Just use *unary* encoding!

Much too long

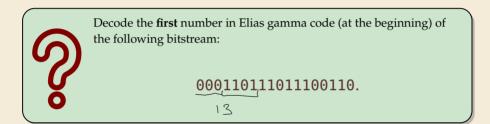
(wasn't the whole point of RLE to get rid of long runs??)

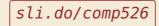
- ► Refinement: *Elias gamma code*
 - Store the **length** ℓ of the binary representation in **unary**
 - Followed by the binary digits themselves
 - little tricks:
 - always $\ell \geq 1$, so store $\ell 1$ instead
 - **b** binary representation always starts with 1 \rightarrow don't need terminating 1 in unary
 - \rightsquigarrow Elias gamma code = $\ell 1$ zeros, followed by binary representation

Examples: $1 \mapsto 1$, $3 \mapsto 011$, $5 \mapsto 00101$, $30 \mapsto 000011110$

codecuord leusth for number k < 2 [lg k]

Clicker Question





Click on "Polls" tab

 $C = \mathbf{1}$

Decoding:
 C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding:
 C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding:
 C = 00001101001001010

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding:
 C = 00001101001001010
 b = 0

► Encoding:

C = 10011101010000101000001011

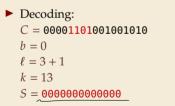
Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 0 ℓ = 3 + 1

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$



► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding: C = 0000110100100100 b = 1 l = 2 + 1 k = S = 0000000000000

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 1 ℓ = 2 + 1 k = 4 S = 0000000000001111

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 0 ℓ = 0 + 1 k = S = 0000000000001111

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

Decoding: C = 00001101001001010 b = 0 l = 0 + 1 k = 1

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 1 ℓ = 1 + 1 k = S = 00000000000011110

► Encoding:

C = 10011101010000101000001011

Compression ratio: $26/41 \approx 63\%$

► Decoding: C = 00001101001001010 b = 1 ℓ = 1 + 1 k = 2 S = 0000000000001111011

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- used in some image formats (e.g. TIFF)

Run-length encoding – Discussion

- extensions to larger alphabets possible (must store next character then)
- ▶ used in some image formats (e.g. TIFF)

fairly simple and fast

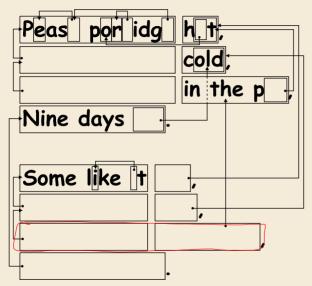
for extreme case of constant number of runs

negligible compression for many common types of data

- No compression until run lengths $k \ge 6$
- expansion for run length k = 2 or 6

7.5 Lempel-Ziv-Welch

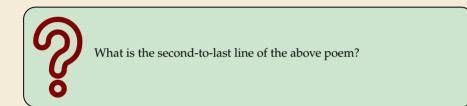
Warmup

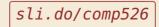


https://www.flickr.com/photos/quintanaroo/2742726346

https://classic.csunplugged.org/text-compression/

Clicker Question





Click on "Polls" tab

Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- **• Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - in HTML: "<a href", "<img src", "
>"

Lempel-Ziv Compression

- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- **• Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - in HTML: "<a href", "<img src", "
>"
- **Lempel-Ziv** stands for family of *adaptive* compression algorithms.
 - ► Idea: store repeated parts by reference!
 - \rightsquigarrow each codeword refers to
 - either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).

Lempel-Ziv Compression

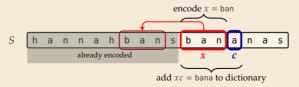
- ▶ Huffman and RLE mostly take advantage of frequent or repeated *single characters*.
- **• Observation**: Certain *substrings* are much more frequent than others.
 - ▶ in English text: the, be, to, of, and, a, in, that, have, I
 - in HTML: "<a href", "<img src", "
>"
- Lempel-Ziv stands for family of *adaptive* compression algorithms.
 - ► Idea: store repeated parts by reference!
 - $\rightsquigarrow~each~codeword~refers$ to
 - either a single character in Σ_S ,
 - or a *substring* of *S* (that both encoder and decoder have already seen).
 - Variants of Lempel-Ziv compression
 - "LZ77" Original version ("sliding window")
 Derivatives: LZSS, LZFG, LZRW, LZP, DEFLATE, ...
 DEFLATE used in (pk)zip, gzip, PNG
 - "LZ78" Second (slightly improved) version Derivatives: LZW, LZMW, LZAP, LZY, ... LZW used in compress, GIF

Lempel-Ziv-Welch

- ► here: *Lempel-Ziv-Welch* (*LZW*) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have *k* bits (typical: k = 12) \rightarrow fixed-length
 - but they represent a variable portion of the source text!

Lempel-Ziv-Welch

- ▶ here: *Lempel-Ziv-Welch* (*LZW*) (arguably the "cleanest" variant of Lempel-Ziv)
- variable-to-fixed encoding
 - ▶ all codewords have *k* bits (typical: k = 12) \rightsquigarrow fixed-length
 - but they represent a variable portion of the source text!
- **•** maintain a **dictionary** D with 2^k entries \rightsquigarrow codewords = indices in dictionary
 - initially, first $|\Sigma_S|$ entries encode single characters (rest is empty)
 - **add** a new entry to *D* **after each step**:
 - Encoding: after encoding a substring x of S, add xc to D where c is the character that follows x in S.



 \rightsquigarrow new codeword in D

D actually stores codewords for x and c, not the expanded string

LZW encoding – Example

Input: Y0! Y0U! Y0UR Y0Y0!

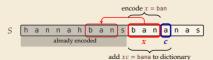
$$\Sigma_S$$
 = ASCII character set (0–127)

C =

Code	String					
32	Ц					
33	!					
79	0					
	32 33 ! 79 0 82 R 85 U					
82	R					
85	U					
89	Y					

D =

Code	String
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	



LZW encoding – Example

Input: Y0!_Y0U!_Y0UR_Y0Y0!

Σ_S = ASCII character set (0–127)

String

Code

Y C = 89

Code	String							
32	Ц							
33	!	1						
79	0							
82	R							
85	U							
89	Y							

D =

								ç		er		le x	= b	an			
S	h	а	n	n	а	h	b	а	n	S	b	а	n	а	n	а	s
				alre	ady	enco	ded	l			_	x		с			
	add xc = bana to dictionary																

Input: Y0! YOU! YOUR YOYO!

 $\begin{array}{c} Y\\ C = 89 \end{array}$

S

 Σ_S = ASCII character set (0–127)

String Code 32 ш 33 79 0 D =82 R 85 U encode x = ban89 Υ annahbansban h anas already encoded x C add xc = bana to dictionary

Code	String
128	Y0
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0!..Y0U!..Y0UR..Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

String

Y0

Y 0
$$C = 89$$
 79

Code	String		Code
			128
32	Ц		129
33	!		130
			131
79	0		132
			133
82	R		134
			135
85	U		136
			137
89	Y		138
			139
	32 33 79 82 85	32 □ 33 ! 33 ! 79 0 82 R 85 U	32

add xc = bana to dictionary

Input: Y0!_Y0U!_Y0UR_Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

String

Y0

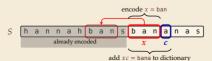
0!

$$Y = 0$$

 $C = 89 = 79$

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
	133	
82	R	134
		135
85	U	136
		137
89	Y	138
		139

D =



Input: Y0! Y0U! Y0UR Y0Y0!

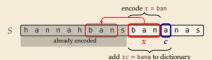
 Σ_S = ASCII character set (0–127)

String YO 0!

$$Y = 0$$
!
 $C = 89$ 79 33

	Code	String	Code
			128
	32	Ц	129
	33	!	130
			131
	79	0	132
=		133	
	82	R	134
		135	
	85	U	136
			137
	89	Y	138
			139

D :



Input: Y0! Y0U! Y0UR Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

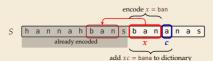
String

Y0 0!

	Y	0	!
C =	89	79	33

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139

D =



ш

Input: Y0! Y0U! Y0UR Y0Y0!

Y 0 !

~ ~

S

$$\Sigma_S$$
 = ASCII character set (0–127)

С	=	89		79	33	32						
											Code	String
											32	
											33	!
											79	0
									Ľ) =		••
											82	R
												••
											85	U
					_	encode	x = bar	1				
h	а	n n	а	h	o a n	s b a	na	aln	a s	1	89	Y

Code	String
128	Y0
129	0!
130	!
131	
132	
133	
134	
135	
136	
137	
138	
139	

Input: Y0! YOU! YOUR YOYO!

 Σ_S = ASCII character set (0–127)

 String

 Y0

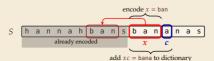
 0!

 !__

 ...

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139
	••	107

D =



Input: Y0! Y0U! Y0UR Y0Y0!

Y	0	!	ц	Y0
C = 89	79	33	32	128

 Σ_S = ASCII character set (0–127)

 String

 Y0

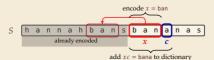
 0!

 !__

 ...Y

Code	String		Code	
			128	Γ
32	Ц		129	Γ
33	!		130	
			131	
79	0		132	
			133	
82	R		134	
			135	
85	U		136	
	•••		137	
89	Y		138	
			139	
	32 33 79 82 85	32 □ 33 ! 79 0 82 R 85 U	32 33 ! 79 0 82 R 85 U	128 32 33 ! 33 ! 130 131 131 79 0 133 132 133 82 R 134 135 85 136 137 89 Y

D =

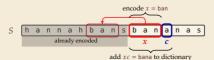


Input: Y0!,Y0U!,Y0UR,Y0Y0!

Y	0	!	ц	Y0
C = 89	79	33	32	128

 Σ_S = ASCII character set (0–127)

Code	String		Code	String
			128	Y0
32	Ц	1	129	0!
33	!		130	!
		1	131	٦
79	0		132	YOU
			133	
82	R		134	
			135	
85	U		136	
			137	
89	Y		138	
			139	



Input: Y0! Y0U! Y0UR Y0Y0!

Y	0	!	ц	Y0	U
C = 89	79	33	32	128	85

 Σ_S = ASCII character set (0–127)

 String

 Y0

 0!

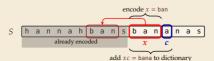
 !_

 Y0

 Y0

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139

D =



Input: Y0! Y0U JOUR Y0Y0!

Y	0	!	ц	Y0	U
C = 89	79	33	32	128	85

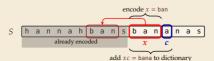
 Σ_S = ASCII character set (0–127)

String Y0 0! ...Y Y0U

U!

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139

D =



Input: Y0! Y0U! Y0UR Y0Y0!

 Y
 0
 !
 YO
 U
 !

 C = 89 79
 33
 32
 128
 85
 130

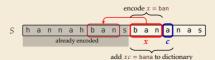
 Σ_S = ASCII character set (0–127)

String

Y0 0! !_ _Y Y0U

U!

	Code	String		Code
				128
	32	Ц		129
	33	!		130
				131
	79	0		132
=			133	
	82	R		134
			135	
	85	U		136
		••		137
	89	Y		138
				139



Input: Y0! Y0U! Y0UR Y0Y0!

Y 0 ! . Y0 U !. C = 89 79 33 32 128 85 130 Σ_S = ASCII character set (0–127)

String

Y0

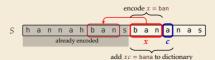
<u>י</u> ער

YOU

U! !...Y

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139

D =

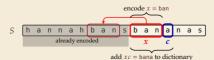


Input: Y0! Y0U! Y0UR Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

Υ Y0 U YOU 0! !.. ы C = 89 79 33 32 128 85 130 132

 		1 1		
Code	String		Code	String
			128	Y0
32	Ц		129	0!
33	!	1	130	!
			131	٦
79	0	1	132	YOU
		1	133	U!
82	R		134	۲ _ل !
			135	
85	U		136	
			137	
89	Y		138	
			139	



Input: Y0!_Y0U!_Y0UR_Y0Y0!

 Σ_S = ASCII character set (0–127)

 String

 Y0

 0!

 !_

 Y0

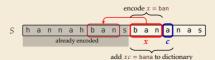
 Y0

U! !_Y YOUR

Y0!YOU!YOUC = 8979333212885130132

D =

		 	_
Code	String	Code	
		128	Γ
32	Ц	129	Γ
33	!	130	
		131	
79	0	132	Γ
		133	Γ
82	R	134	
		135	
85	U	136	
		137	
89	Y	138	
		139	



Input: Y0!_Y0U!_Y0UR_Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

String

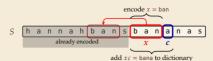
Y0 0! !_ _Y Y0U

U! !_Y YOUR

 Y
 0
 !
 YO
 U
 !
 YOU
 R

 C = 89
 79
 33
 32
 128
 85
 130
 132
 82

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139



Input: Y0! Y0U! Y0UR Y0Y0!

 Σ_S = ASCII character set (0–127)

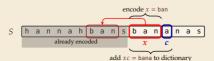
String

Y0 0! !_ _Y Y0U

U! !_Y YOUR R_

Y 0 ! J Y0 U ! Y0U R C = 89 79 33 32 128 85 130 132 82

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139



Input: Y0!_Y0U!_Y0UR_Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

String

Y0

<u>י</u> ער

YOU

U!

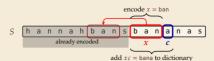
!..Y

YOUR

R

Y0!YOU!YOURYC = 897933321288513013282131

Code	String		Code
			128
32	Ц		129
33	!		130
			131
79	0		132
			133
82	R		134
			135
85	U		136
			137
89	Y		138
			139



Input: Y0!_Y0U!_Y0UR_Y0Y0!

$$\Sigma_S$$
 = ASCII character set (0–127)

String

Y0 0! !_ _Y Y0U

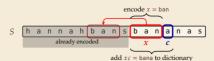
U! !_Y YOUR R_

_Y0

 Y
 0
 !
 YO
 U
 !
 YOU
 R
 Y

 C = 89 79
 33
 32
 128
 85
 130
 132
 82
 131

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139



Input: Y0!_Y0U!_Y0UR_Y0Y0!

 Σ_S = ASCII character set (0–127)

 String

 Y0

 0!

 !__

 Y0

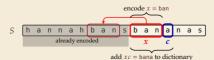
 Y0

U! !_Y YOUR R_

..Y0

Y0!YOU!YOURY0C = 89793332128851301328213179

Code	String	Code
		128
32	Ц	129
33	!	130
		131
79	0	132
		133
82	R	134
		135
85	U	136
		137
89	Y	138
		139

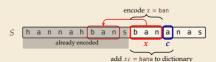


Input: Y0!,Y0U!,Y0UR,Y0Y0!

 Σ_S = ASCII character set (0–127)

Υ Y0 YOU R LY 0 . . . U !.. 0 ы C = 89 79 33 32 128 85 132 82 131 79 130

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	YOU
		133	U!
82	R	134	!_Y
		135	YOUR
85	U	136	R
		137	٦٨0
89	Y	138	0Y
		139	

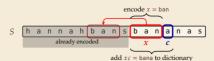


Input: Y0!,Y0U!,Y0UR,Y0Y0!

 $\Sigma_{\rm S} = \text{ASCII character set (0-127)}$

Υ Y0 YOU R LY Y0 0 - ! U !.. 0 ы *C* = 89 79 33 32 128 85 130 132 131 79 128 82

Code	String	Code	String
		128	Y0
32	Ц	129	0!
33	!	130	!
		131	٦
79	0	132	YOU
		133	U!
82	R	134	۲ _ل !
		135	YOUR
85	U	136	R
		137	٦٨0
89	Y	138	0Y
	••	139	

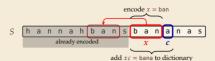


Input: Y0!,Y0U!,Y0UR,Y0Y0!

 $\Sigma_{\rm S} = \text{ASCII character set (0-127)}$

Υ Y0 YOU R LY Y0 0 - ! U !.. 0 ы C = 89 79 33 32 128 85 130 132 131 79 128 82

	Code	String	Code	String
Ī			128	Y0
ſ	32	Ц	129	0!
ſ	33	!	130	!
			131	٦
Γ	79	0	132	YOU
			133	U!
Γ	82	R	134	۲ _ل !
			135	YOUR
	85	U	136	R
			137	٦٨0
	89	Y	138	0Y
			139	Y0!
	79 82 85	! R U	131 132 133 134 135 136 137 138	Y YOU U! !_Y YOUR R YO OY



Input: Y0!, Y0U!, Y0UR, Y0Y0!, YI Σ_S = ASCII character set (0–127) Υ Y0 YOU R LY Y0 0 - ! U !.. 0 1 ы $C = 89 \quad 79 \quad 33$ 32 128 79 85 130 132 82 131 128 33 L String Code Code String 32 128 Y0 32 129 0! ш Y 33 130 !.. 131 цΥ 131 79 0 132 YOU 0 D =133 U! (3) 82 R 134 !..Y 135 YOUR 85 U 136 R encode x = ban137 ..Y0 89 138 0Y Υ annah bansbananas S h already encoded 139 Y0! x C add xc = bana to dictionary

LZW encoding – Code

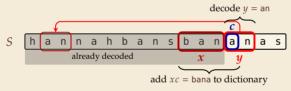
```
<sup>1</sup> procedure LZWencode(S[0..n])
       x := \varepsilon // previous phrase, initially empty
2
      C := \varepsilon // output, initially empty
3
       D := dictionary, initialized with codes for c \in \Sigma_S // stored as trie
4
       k := |\Sigma_S| // next free codeword
5
      for i := 0, ..., n - 1 do
6
            c := S[i]
7
            if D.containsKey(xc) then
8
                 x := xc
9
            else
10
                 C := C \cdot D.get(x) // append codeword for x
11
                 D.put(xc, k) // add xc to D, assigning next free codeword
12
                 k := k + 1: x := c
13
       end for
14
       C := C \cdot D.get(x)
15
       return C
16
```

LZW decoding

Decoder has to replay the process of growing the dictionary!

→ **Decoding**:

after decoding a substring *y* of *S*, add *xc* to *D*, where *x* is previously encoded/decoded substring of *S*, and c = y[0] (first character of *y*)



 \rightsquigarrow Note: only start adding to *D* after *second* substring of *S* is decoded

- ► Same idea: build dictionary while reading string.
- **Example:** 67 65 78 32 66 129 133

	Code #	String				
					decodes	
	32	Ц		input	to	C
	65	А				
D =	66	В				
	67	С				
	78	N				
	83	S	ĺ			

	decodes		String	String
input	to	Code #	(human)	(computer)

- ► Same idea: build dictionary while reading string.
- **Example:** 67 65 78 32 66 129 133

	Code #	String		
	32	Ц		
D =	65	A		
	66	В		
	67	С		
	78	Ν		
	83	S		

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			

- ► Same idea: build dictionary while reading string.
- **Example:** 67 65 78 32 66 129 133

	Code #	String			
	32	Ц			
	65	А			
) =	66	В			
	67	С			
	78	Ν			
	83	S			

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	Α	128	CA	67, A

- ► Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

	Code #	String			
	32	Ц			
) =	65	А			
	66	В			
	67	С			
	78	Ν			
	83	S			

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	А	128	CA	67, A
78	N	129	AN	65, N

- ► Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

	Code #	String	
0 =			
	32	Ц	
	65	А	
	66	В	
	67	С	
	78	N	
	83	S	

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	А	128	CA	67, A
78	N	129	AN	65, N
32	L L	130	N	78, 🗆

- ► Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

	Code #	String	
0 =			
	32	Ц	
	65	А	
	66	В	
	67	С	
	78	Ν	
	83	S	

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	А	128	CA	67, A
78	N	129	AN	65, N
32	u	130	N	78, 🗆
66	В	131	υB	32, В

- ► Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

	Code #	String	
	32	Ц	
	65	А	
) =	66	В	
	67	С	
	78	Ν	
	83	S	

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65, N
32	u	130	N	78, 🗆
66	В	131	ыB	32, В
129	AN	132	BA	66, A

- ► Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

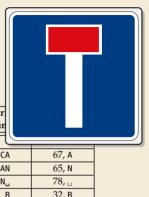
	Code #	String	
	32	Ц	
	65	А	
) =	66	В	
	67	С	
	78	Ν	
	83	S	

	decodes		String	String
input	to	Code #	(human)	(computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65, N
32	u	130	N	78, 🗆
66	В	131	ыB	32, В
129	AN	132	BA	66, A
133	???	133		

- ► Same idea: build dictionary while reading string.
- ► Example: 67 65 78 32 66 129 133

) =	Code #	String	
0 =			
	32	Ц	
	65	А	
) =	66	В	
	67	С	
	78	N	
	83	S	

input	decodes to	Code #	Str (hur		
67	С				
65	A	128	CA	67, A	
78	N	129	AN	65, N	
32	u	130	N	78, 🗆	
66	В	131	ыB	32, В	
129	AN	132	BA	66, A	
133	???	133			



LZW decoding – Bootstrapping

example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

LZW decoding – Bootstrapping

• example: Want to decode 133, but not yet in dictionary!

decoder is "one step behind" in creating dictionary

→ problem occurs if *we want to use a code* that we are *just about to build*.

LZW decoding – Bootstrapping

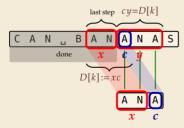
• example: Want to decode 133, but not yet in dictionary!

A decoder is "one step behind" in creating dictionary

~ problem occurs if *we want to use a code* that we are *just about to build*.

But then we actually know what is going on:

- Situation: decode using *k* in the step that will define *k*.
- decoder knows last phrase x, needs phrase y = D[k] = xc.



1. en/decode x.

2. store D[k] := xc

3. next phrase y equals D[k] $\rightsquigarrow D[k] = xc = x \cdot x[0]$ (all known)

LZW decoding – Code

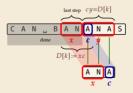
1 procedure LZWdecode(C[0..m]) $D := \text{dictionary} [0..2^d) \rightarrow \Sigma_c^+$, initialized with codes for $c \in \Sigma_S // \text{stored as array}$ 2 $k := |\Sigma_S| // next unused codeword$ 3 q := C[0] // first codeword4 y := D[q] // lookup meaning of q in D5 S := y // output, initially first phrase 6 for i := 1, ..., m - 1 do 7 x := y // remember last decoded phrase8 q := C[i] // next codeword9 if q == k then 10 $u := x \cdot x[0] // bootstrap case$ 11 else 12 u := D[a]13 $S := S \cdot y //append$ decoded phrase 14 $D[k] := x \cdot y[0] // store new phrase$ 15 k := k + 116 end for 17 return S 18

LZW decoding – Example continued

► Example: 67 65 78 32 66 129 133 83

	Code #	String		
	32	Ц		
	65	А		
D =	66	В		
	67	С		
	78	Ν		
	83	S		

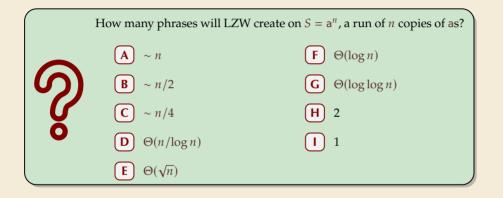
input	decodes to	Code #	String (human)	String (computer)
	10	Coue #	(iiuiiiaii)	(computer)
67	С			
65	A	128	CA	67, A
78	N	129	AN	65, N
32	u	130	N	78, 🗆
66	В	131	ыB	32, в
129	AN 2	132	BA	66, A
(133)	ANA	133	ANA	129, A
83	S	134	ANAS	133, S



- **1.** en/decode x.
- **2.** store *D*[*k*] := *xc*

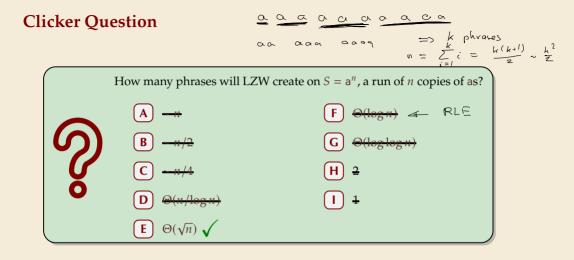
3. next phrase y equals D[k] $\rightarrow D[k] = xc = x \cdot x[0]$ (all known)

Clicker Question



sli.do/comp526

Click on "Polls" tab



sli.do/comp526

Click on "Polls" tab

LZW – Discussion

• As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.

 \rightsquigarrow use another encoding for $\$ code numbers \mapsto binary, $\$ e.g., Huffman

need a rule when dictionary is full; different options:

- increment $d \rightarrow$ longer codewords
- "flush" dictionary and start from scratch ~~ limits extra space usage
- often: reserve a codeword to trigger flush at any time

• encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)

LZW – Discussion

• As presented, LZW uses coded alphabet $\Sigma_C = [0..2^d)$.

 \rightsquigarrow use another encoding for $\$ code numbers \mapsto binary, $\$ e.g., Huffman

need a rule when dictionary is full; different options:

- increment $d \rightarrow$ longer codewords
- "flush" dictionary and start from scratch ~~ limits extra space usage
- often: reserve a codeword to trigger flush at any time

• encoding and decoding both run in linear time (assuming $|\Sigma_S|$ constant)

fast encoding & decoding

works in streaming model (no random access, no backtrack on input needed)

isignificant compression for many types of data

C captures only local repetitions (with bounded dictionary)

Compression summary

Huffman codes	Run-length encoding	Lempel-Ziv-Welch
fixed-to-variable	variable-to-variable	variable-to-fixed
2-pass	1-pass	1-pass
must send dictionary	can be worse than ASCII	can be worse than ASCII
60% compression on English text	bad on text	45% compression on English text
optimal binary character encopding	good on long runs (e.g., pictures)	good on English text
rarely used directly	rarely used directly	frequently used
part of pkzip, JPEG, MP3	fax machines, old picture-formats	GIF, part of PDF, Unix compress

Part III Text Transforms

Text transformations

- compression is effective is we have one the following:
 - ► long runs 😽 RLE
 - ▶ frequently used characters \rightsquigarrow Huffman
 - ▶ many (local) repeated substrings → LZW

Text transformations

- compression is effective is we have one the following:
 - ► long runs 😽 RLE
 - frequently used characters \rightsquigarrow Huffman
 - ▶ many (local) repeated substrings → LZW
- but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant dictionary already flushed
 - ▶ Huffman: changing probabilities (local clusters) 🦻 averaged out globally
 - RLE: run of alternating pairs of characters \$ not a run

Text transformations

- compression is effective is we have one the following:
 - ► long runs 😽 RLE
 - frequently used characters \rightsquigarrow Huffman
 - ▶ many (local) repeated substrings → LZW
- but methods can be frustratingly "blind" to other "obvious" redundancies
 - LZW: repetition too distant 🐓 dictionary already flushed
 - ▶ Huffman: changing probabilities (local clusters) 🦻 averaged out globally
 - RLE: run of alternating pairs of characters \$ not a run

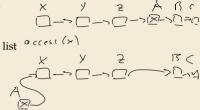
Enter: text transformations

- invertible functions of text
- do not by themselves reduce the space usage
- but help compressors "see" existing redundancy
- $\rightsquigarrow\,$ use as pre-/postprocessing in compression pipeline

7.6 Move-to-Front Transformation

Move to Front

- *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - →→ list "learns" probabilities of access to objects makes access to frequently requested ones cheaper



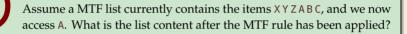
Move to Front

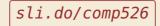
- *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - → list "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- Here: use such a list for storing source alphabet Σ_S
 - ▶ to encode *c*, access it in list
 - encode c using its (old) position in list
 - then apply MTF to the list
 - \rightsquigarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$

Move to Front

- *Move to Front (MTF)* is a heuristic for *self-adjusting linked lists*
 - unsorted linked list of objects
 - whenever an element is accessed, it is moved to the front of the list (leaving the relative order of other elements unchanged)
 - → list "learns" probabilities of access to objects makes access to frequently requested ones cheaper
- Here: use such a list for storing source alphabet Σ_S
 - ▶ to encode *c*, access it in list
 - encode c using its (old) position in list
 - then apply MTF to the list
 - \rightsquigarrow codewords are integers, i. e., $\Sigma_C = [0..\sigma)$
- \rightsquigarrow clusters of few characters \rightsquigarrow many small numbers

Clicker Question





Click on "Polls" tab

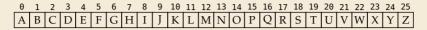
MTF – Code

Transform (encode):

¹ **procedure** MTF-encode(S[0..n]) 1 procedure MTF-decode(C[0..m]) L :=list containing Σ_S (sorted order) -2 L := list containing Σ_S (sorted order) 2 $C := \varepsilon$ $S := \varepsilon$ 3 **for** i := 0, ..., n - 1 **do for** j := 0, ..., m - 1 **do** 4 4 c := S[i]p := C[i]5 5 p := position of c in Lc := character at position p in L6 $C := C \cdot p$ $S := S \cdot c$ 7 7 Move *c* to front of *L* Move *c* to front of *L* 8 end for end for 9 0 return C return S 10 10

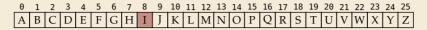
Inverse transform (decode):

Important: encoding and decoding produce same accesses to list



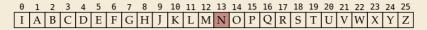
S = INEFFICIENCIES

C =



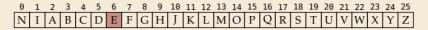
S = INEFFICIENCIES

C = **8**



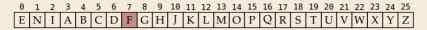
S = INEFFICIENCIES

 $C = 8 \, 13$



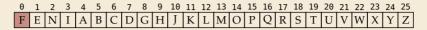
S = INEFFICIENCIES

 $C = 8 \, 13 \, 6$



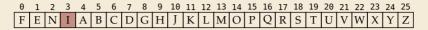
S = INEFFICIENCIES

 $C = 8\,13\,6\,7$



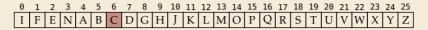
S = INEFFICIENCIES

 $C = 8 \, 13 \, 6 \, 7 \, 0$



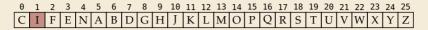
S = INEFFICIENCIES

 $C = 8 \, 13 \, 6 \, 7 \, 0 \, 3$



S = INEFFICIENCIES

 $C = 8 \, 13 \, 6 \, 7 \, 0 \, 3 \, 6$



S = INEFFICIENCIES

 $C = 8\,13\,6\,7\,0\,3\,6\,1$

$$S = INEFFICIENCIES$$

$$C = 8 1367 0 36134 333 18$$

• What does a run in *S* encode to in *C*?
$$\rightarrow O_{S} \rho$$

▶ What does a run in *C* mean about the source *S*?

MTF – Discussion

- MTF itself does not compress text (if we store codewords with fixed length)
- $\rightsquigarrow\,$ prime use as part of longer pipeline
- ▶ two simple ideas for encoding codewords:
 - ► Elias gamma code → smaller numbers gets shorter codewords works well for text with small "local effective" alphabet
 - Huffman code (better compression, but need 2 passes)
- ▶ but: most effective after BWT (\rightarrow next)

7.7 Burrows-Wheeler Transform

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - ▶ But: coded text is (typically) more compressible with MTF(!)

Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - But: coded text is (typically) more compressible with MTF(!)
- Encoding algorithm needs **all** of *S* (no streaming possible).
 - $\rightsquigarrow \ \text{BWT is a block compression method.}$

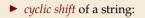
Burrows-Wheeler Transform

- ▶ Burrows-Wheeler Transform (BWT) is a sophisticated text-transformation technique.
 - coded text has same letters as source, just in a different order
 - But: coded text is (typically) more compressible with MTF(!)
- Encoding algorithm needs **all** of *S* (no streaming possible).
 - $\rightsquigarrow \ BWT \ is \ a \ block \ compression \ method.$

BWT followed by MTF, RLE, and Huffman is the algorithm used by the bzip2 program. achieves best compression on English text of any algorithm we have seen:

```
4047392 bible.txt
1191071 bible.txt.gz
888604 bible.txt.7z
845635 bible.txt.bz2
```

BWT transform



Т

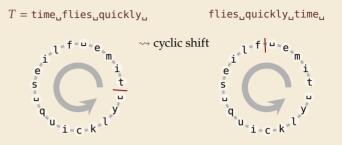
BWT transform

- *cyclic shift* of a string:
- add end-of-word character \$ to S (as in Unit 6)
- → can recover original string

 $T = time_uflies_uquickly_u$ flies_uquickly_utime_u

BWT transform

- *cyclic shift* of a string:
- add end-of-word character \$ to S (as in Unit 6)
- → can recover original string



- ▶ The Burrows-Wheeler Transform proceeds in three steps:
 - **1.** Place *all cyclic shifts* of *S* in a list *L*
 - **2.** Sort the strings in *L* lexicographically
 - 3. *B* is the *list of trailing characters* (last column, top-down) of each string in *L*

BWT transform – Example

 $S = alf_eats_alfalfa$

1. Write all cyclic shifts

alf.eats.alfalfa\$ lf.eats.alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf ats_alfalfa\$alf.e ts_alfalfa\$alf_ea s_alfalfa\$alf_eat _alfalfa\$alf_eats alfalfa\$alf.eats. lfalfa\$alf_eats_a falfa\$alf_eats_al alfa\$alf..eats..alf lfa\$alf_eats_alfa fa\$alf_eats_alfal a\$alf.eats.alfalf \$alf.eats.alfalfa

 $\xrightarrow{}$ sort

BWT transform – Example

$S = alf_ueats_alfalfa$

- **1**. Write all cyclic shifts
- 2. Sort cyclic shifts

alf, eats, alfalfa\$ lf, eats, alfalfa\$a f_eats_alfalfa\$al _eats_alfalfa\$alf eats_alfalfa\$alf.. ats,alfalfa\$alf.e ts..alfalfa\$alf..ea s.,alfalfa\$alf.,eat ..alfalfa\$alf..eats alfalfa\$alf_eats_ lfalfa\$alf..eats..a falfa\$alf..eats..al alfa\$alf_eats_alf lfa\$alf,eats,alfa fa\$alf..eats..alfal a\$alf,eats,alfalf \$alf..eats..alfalfa

 $\sqrt{}$ \$alf.eats.alfalfa .alfalfa\$alf.eats __eats_alfalfa\$alf a\$alf_eats_alfalf alf_eats_alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf.eats.. \rightarrow ats.alfalfa§alf.e sort eats.alfalfa\$alf f.eats.alfalfa\$al fa\$alf_eats_alfal falfa\$alf..eats..al lf_eats_alfalfa\$a lfa\$alf.eats.alfa lfalfa\$alf.eats.a s,alfalfa\$alf,eat ts.alfalfa\$alf.ea

BWT transform – Example

$S = alf_ueats_alfalfa$

- **1**. Write all cyclic shifts
- 2. Sort cyclic shifts
- 3. Extract last column

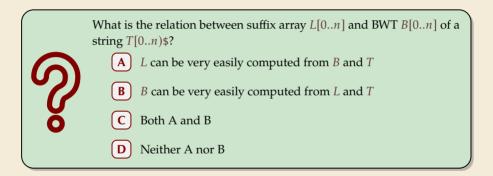
alf, eats, alfalfa\$ lf.eats.alfalfa\$a f..eats..alfalfa\$al _eats_alfalfa\$alf eats, alfalfa\$alf. ats,alfalfa\$alf.e ts.alfalfa\$alf.ea s.alfalfa\$alf.eat ...alfalfa\$alf..eats alfalfa\$alf.eats... lfalfa\$alf_eats_a falfa\$alf.eats_al alfa\$alf..eats..alf lfa\$alf..eats..alfa fa\$alf_eats_alfal a\$alf..eats..alfalf \$alf..eats..alfalfa

 $\xrightarrow[sort]{}$

\$alf.eats.alfalfa .alfalfa\$alf.eats _eats_alfalfa\$alf → @salf_eats_alfalf alf.eats.alfalfa\$ alfa\$alf_eats_alf alfalfa\$alf.eats.. ats alfalfa§alf e eats.alfalfa\$alf f_eats_alfalfa\$al fa\$alf_eats_alfal falfa\$alf_eats_al lf_eats_alfalfa\$a lfa\$alf.eats.alfa lfalfa\$alf.eats.a s..alfalfa\$alf..eat ts..alfalfa\$alf..ea

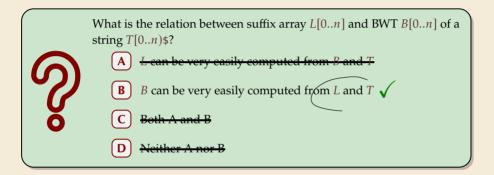
BWT

Clicker Question



Click on "Polls" tab

Clicker Question



Click on "Polls" tab

BWT – Implementation & Properties

Compute BWT efficiently:

- cyclic shifts $S \cong$ suffixes of S
- BWT is essentially suffix sorting!
 - ▶ B[i] = S[L[i] 1] (L = suffix array!) (if L[i] = 0, B[i] = \$)
 - \rightsquigarrow Can compute *B* in *O*(*n*) time

```
\lfloor L[r]
                       r
alf, eats, alfalfa$
                       0
                          $alf, eats, alfalfa
                                               16
lf.eats.alfalfa$a
                          .alfalfa$alf.eats
                                                8
f.eats.alfalfa$al
                          ...eats..alfalfa$alf
                                                3
...eats..alfalfa$alf
                       3
                          a$alf,eats,alfalf
                                               15
eats, alfalfa$alf,
                          alf.eats.alfalfa$
                                                0
ats, alfalfa$alf, e
                       5
                          alfa$alf,eats,alf
                                               12
ts.alfalfa$alf.ea
                          alfalfa$alf..eats..
                                                9
                       6
s.alfalfa$alf.eat
                          ats.alfalfa$alf.e
                                                5
...alfalfa$alf..eats
                          eats alfalfa$alf.
                       8
                                                4
alfalfa$alf.eats.
                          f.eats.alfalfa$al
                                                2
lfalfa$alf.eats.a
                      10 fa$alf,eats,alfal
                                               14
falfa$alf..eats..al
                      11 falfa$alf,eats_al
                                               11
alfa$alf..eats..alf
                      12 lf_eats_alfalfa$a
                                               1
lfa$alf,eats,alfa
                      13 lfa$alf,eats,alfa
                                               13
fa$alf..eats..alfal
                      14
                          lfalfa$alf..eats..a
                                               10
a$alf,_eats_alfalf
                      15 s.alfalfa$alf.eat
                                               7
$alf, eats, alfalfa
                      16
                          ts.alfalfa$alf.ea
                                                6
```

BWT – Implementation & Properties

Compute BWT efficiently:

- cyclic shifts $S \cong$ suffixes of S
- BWT is essentially suffix sorting!
 - ▶ B[i] = S[L[i] 1] (L = suffix array!) (if L[i] = 0, B[i] = \$)
 - \rightsquigarrow Can compute *B* in *O*(*n*) time

Why does BWT help?

- sorting groups characters by what follows
 - Example: If always preceded by a
- \rightsquigarrow *B* has local clusters of characters
 - that makes MTF effective

```
sha
```

- repeated substring in $S \rightarrow runs$ of characters in B
 - picked up by RLE

```
\downarrow L[r]
                       r
alf, eats, alfalfa$
                       0
                          $alf, eats, alfalfa
                                               16
lf.eats.alfalfa$a
                          ..alfalfa$alf.eats
                                                8
f.eats.alfalfa$al
                       2
                          ...eats..alfalfa$alf
                                                3
                       3
...eats..alfalfa$alf
                          a$alf,eats,alfalf
                                               15
eats.alfalfa$alf.
                          alf.eats.alfalfa$
                                                0
ats, alfalfa$alf, e
                       5
                          alfa$alf,eats,alf
                                               12
ts.alfalfa$alf.ea
                       6
                          alfalfa$alf..eats..
                                                9
s.alfalfa$alf.eat
                          ats.alfalfa$alf.e
                                                5
...alfalfa$alf..eats
                          eats.alfalfa$alf.
                       8
                                                4
alfalfa$alf.eats.
                          f,eats,alfalfa$al
                                                2
lfalfa$alf.eats.a
                       10 fa$alf,eats,alfal
                                               14
falfa$alf..eats..al
                          falfa$alf,.eats..al
                      11
                                               11
alfa$alf..eats..alf
                      12 lf_eats_alfalfa$a
                                                1
lfa$alf,eats,alfa
                      13 lfa$alf.eats.alfa
                                               13
fa$alf..eats..alfal
                      14 lfalfa$alf..eats..a
                                               10
a$alf,_eats_alfalf
                      15 s.alfalfa$alf.eat
                                                7
$alf, eats, alfalfa
                       16
                          ts.alfalfa$alf.ea
                                                6
```

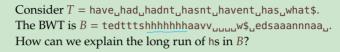
Bigger Example

have..had..hadnt..hasnt..havent..has..what\$ ave, had, hadnt, hasnt, havent, has, what\$h ve.,had,,hadnt,,hasnt,,havent,,has,,what\$ha e.,had,hadnt,hasnt,havent,has,what\$hav ..had..hadnt..hasnt..havent..has..what\$have had, hadnt, hasnt, havent, has, what\$have, ad hadnt hasnt havent has whatshave h d.,hadnt,hasnt,havent,has,what\$have,ha _hadnt_hasnt_havent_has_what\$have_had hadnt.hasnt.havent.has.what\$have.had. adnt.hasnt_havent_has_what\$have_had_h dnt.hasnt.havent.has.what\$have.had.ha nt.hasnt.havent.has.what\$have.had.had t.hasnt.havent.has.what\$have.had.hadn hasnt havent has what have had hadnt hasnt, havent, has, what\$have, had, hadnt, asnt.havent.has.what\$have.had.hadnt.h snt.,havent.,has,,what\$have,,had,,hadnt,,ha nt havent has whatshave had hadnt has t. havent. has. what\$have. had. hadnt. hasn ..havent..has..what\$have..had..hadnt..hasnt havent has what have had hadnt hasnt avent.,has.,what\$have.,had.,hadnt.,hasnt.,h vent.has.what\$have.had.hadnt.hasnt.ha ent.has.what\$have.had.hadnt.hasnt.hav nt..has..what\$have..had..hadnt..hasnt..have t.has.what\$have.had.hadnt.hasnt.haven ..has.what\$have..had..hadnt..hasnt..havent has what shave had hadnt hasnt havent as.,what\$have..had..hadnt..hasnt..havent..h s.what\$have.had.hadnt.hasnt.havent.ha what\$have_had_hadnt_hasnt_havent_has what\$have..had..hadnt..hasnt..havent..has. hat\$have_had_hadnt_hasnt_havent_has_w at\$have..had..hadnt..hasnt..havent..has..wh t\$have had hadnt hasnt havent has wha Shave had hadnt hasnt havent has what

\$have.had.hadnt.hasnt.havent.has.what had hadnt hasnt havent has what\$have .,hadnt,,hasnt,,havent,,has,,what\$have,,had ...has..what\$have..had..hadnt..hasnt..havent ...hasnt..havent..has..what\$have..had..hadnt .,havent, has, what\$have, had, hadnt, hasn t whatshave had hadnt hasnt havent has /ad.,hadnt,hasnt,havent,has,what\$have,h adnt_hasnt_havent_has_what\$have_had_h as.what\$have.had.hadnt.hasnt.havent.h asnt.havent.has.what\$have.had.hadnt.h at\$have..had..hadnt..hasnt..havent..has..wh ave.had.hadnt.hasnt.havent.has.what\$h avent_has_what\$have_had_hadnt_hasnt_h d.hadnt.hasnt.havent.has.what\$have.ha dnt.,hasnt.,havent.,has,,what\$have,,had,,ha e.had.hadnt.hasnt.havent.has.what\$hav ent.,has.,what\$have.,had.,hadnt.,hasnt.,hav had, hadnt, hasnt, havent, has, what \$have ... hadnt.hasnt.havent.has.what\$have.had. has.what\$have.had.hadnt.hasnt.havent. hasnt.havent.has.what\$have.had.hadnt. hat\$have.had.hadnt.hasnt.havent.has.w have..had..hadnt..hasnt..havent..has..what\$ havent.has.what\$have.had.hadnt.hasnt.. nt.,has.,what\$have.,had.,hadnt.,hasnt.,have nt. hasnt. havent. has. what\$have. had. had nt.,havent.,has.,what\$have.,had.,hadnt.,has s.what\$have.had.hadnt.hasnt.havent.ha snt..havent..has..what\$have..had..hadnt..ha t\$have..had..hadnt..hasnt..havent..has..wha t has what shave had hadnt hasnt have n t.,hasnt.,havent.,has.,what\$have.,had.,had n t havent has what shave had hadnt has n ve..had..hadnt..hasnt..havent..has..what\$ha vent.has.what\$have,had,hadnt,hasnt,ha what\$have_had_hadnt_hasnt_havent_has...

T = have___had__hadnt__hasnt__havent__has__what\$
B = tedtttshhhhhhhaavv____w\$__edsaaannnaa_
MTF(B) = 85520087000007090800010929987001000105

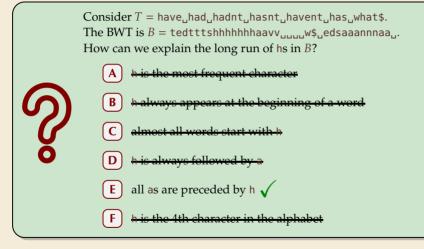
Clicker Question



- A) h is the most frequent character
 - h always appears at the beginning of a word
 - almost all words start with h
- **D** h is always followed by a
- **E**) all as are preceded by h
 - h is the 4th character in the alphabet

Click on "Polls" tab

Clicker Question



sli.do/comp526

Click on "Polls" tab

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

not even obvious that it is at all invertible!

"Magic" solution:

- Create array *D*[0..*n*] of pairs:
 D[*r*] = (*B*[*r*], *r*).
- **2.** Sort *D stably* with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

9 (a, 9)

10 (b, 10) 11 (b, 11)

"Magic" solution: o (a, 0) **1.** Create array D[0..n] of pairs: 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2. Sort *D* stably with з (\$, 3) respect to *first entry*. 4 (r, 4) **3.** Use *D* as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) 7 (a, 7) **Example:** 8 (a, 8) B = ard\$rcaaaabb

S =

D

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

	D	sorted D
		char next
Magic" solution:	o (a, 0)	o (\$, 3)
1. Create array $D[0n]$ of pairs:	1 (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort <i>D</i> stably with	з (\$, 3)	з (а, 7)
respect to <i>first entry</i> .	4 (r, 4)	4 (a, 8)
3. Use <i>D</i> as linked list with	5 (c, 5)	5 (a, 9)
(char, next entry)	6 (a, 6)	6 (b,10)
Example:	7 (a, 7)	7 (b,11)
B = ard\$rcaaaabb	8 (a, 8)	8 (c, 5)
S =	9 (a, 9)	9 (d, 2)
	10 (b,10)	10 (r, 1)
	11 (b,11)	11 (r, 4)

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

"Magic" solution:

- Create array *D*[0..*n*] of pairs:
 D[*r*] = (*B*[*r*], *r*).
- **2.** Sort *D stably* with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabbS = a

not even obvious that D it is at all invertible! sorted D char next (\$, 3)o (a, 0) 0 1 (r, 1) 1 (a, D (a, 6)2 (d, 2) з (\$, 3) з (a, 7) 4 (r, 4) 4 (a, 8) 5 (c, 5) 5 (a, 9) 6 (a, 6) 6 (b,10) 7 (a, 7) 7 (b,11) 8 (c, 5) 8 (a, 8) 9 (d, 2) 9 (a, 9) 10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

"Magic" solution:

- Create array *D*[0..*n*] of pairs:
 D[*r*] = (*B*[*r*], *r*).
- **2.** Sort *D stably* with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabbS = ab

not even obvious that D it is at all invertible! sorted D char next o (a, 0) 0 (\$, 3) 1 (r, 1) 1 (a, 0) 2 (d, 2) 2 (a, 6) з (\$, 3) 3 (a, 7)-4 (r, 4) 4 (a, 8) 5 (c, 5) 5 (b, 10)6 (a, 6) 7 (a, 7) (b,11) 8 (c, 5) 8 (a, 8) 9 (a, 9) 9 (d, 2) 10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

	D	sorted D
		char next
Magic" solution:	o (a, 0)	o (\$, 3)
1. Create array $D[0n]$ of pairs:	1 (r, 1)	ı (a, 0)
D[r] = (B[r], r).	2 (d, 2)	2 (a, 6)
2. Sort <i>D</i> stably with	з (\$, 3)	з (a, 7)
respect to <i>first entry</i> .	4 (r, 4)	4 (a, 8)
3. Use <i>D</i> as linked list with	5 (c, 5)	5 (a, 9)
(char, next entry)	6 (a, 6)	6 (b,10)
Example:	7 (a, 7)	7 (b,11)
B = ard\$rcaaaabb	8 (a, 8)	8 (c, 5)
S = abr	9 (a, 9)	9 (et, 2)
	10 (b,10)	10 (r, 1)
	11 (b,11)	→ 11 (r, 4)

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

8

9

▶ "Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

S = abra

D sorted D char next o (a, 0) 0 (\$, 3) 1 (a, 0) 1 (r, 1) 2 (d, 2) 2 (a, 6) з (\$, 3) з (a, 7) 4 (r, 4) (a, 8) (a, 9) 5 (c, 5) 5 6 (a, 6) (b, 10)6 7 (a, 7) (b,11) (a, 8) 8 2) (a, 9) 9 (d, (r, 1) 10 (b, 10) 10 11 (b, 11) (r, 4)11

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

11 (b,11)

		D	
"Magic" solution:	Θ	(a, 0)	
1. Create array $D[0n]$ of pairs:	1	(r, 1)	
D[r] = (B[r], r).	2	(d, 2)	
2. Sort <i>D</i> stably with	3	(\$, 3)	
respect to <i>first entry</i> .	4	(r, 4)	
3. Use <i>D</i> as linked list with	5	(c, 5)	
(char, next entry)	6	(a, 6)	
Example:	7	(a, 7)	
B = ard\$rcaaaabb	8	(a, 8)	
S = abrac	9	(a, 9)	
	10	(b, 10)	

not even obvious that it is at all invertible!

sorted D

char next 0 (\$, 3) 1 (a, 0) 2 (a, 6) 3 (a, 7) 4 (a, 8)-

> (b,11) (c, 5)

11 (r, 4)

4 (a, 5 (a, 6 (b,

▶ 8 (c, 5)
 9 (d, 2)
 10 (r, 1)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

▶ "Magic" solution: o (a, 0) **1.** Create array D[0..n] of pairs: 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2. Sort *D* stably with з (\$, 3) respect to *first entry*. 4 (r, 4) **3.** Use *D* as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) 7 (a, 7) **Example:** 8 (a, 8) B = ard\$rcaaaabb9 (a, 9) S = abraca10 (b, 10)

not even obvious that D it is at all invertible! sorted D char next 0 (\$, 3) 1 (a, 0) 2 (a, 6) з (a, 7) 4 (a, 8) (a, 9) 5 (b, 10) (b, \mathbf{N}) 7 8 (c, 5) (d, 2) 9 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

▶ "Magic" solution: o (a, 0) **1.** Create array D[0..n] of pairs: 1 (r, 1) D[r] = (B[r], r).2 (d, 2) 2. Sort *D* stably with з (\$, 3) respect to *first entry*. 4 (r, 4) **3.** Use *D* as linked list with 5 (c, 5) (char, next entry) 6 (a, 6) 7 (a, 7) **Example:** 8 (a, 8) B = ard\$rcaaaabb9 (a, 9) S = abracad10 (b, 10)

not even obvious that D it is at all invertible! sorted D char next 0 (\$, 3) 1 (a, 0) 2 (a, 6) з (a, 7) 4 (a, 8) (a, 9)-5 6 (b, 10)7 (c, 5) (d, 2) 9 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

8

9

▶ "Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

S = abracada

not even obvious that D it is at all invertible! sorted D char next o (a, 0) 0 (\$, 3) 1 (r, 1) 1 (a, 0) 2 (d, 2) (a, 6) з (\$, 3) (a, 7)3 4 (r, 4) (a, 8)5 (c, 5) 9) (a. 6 (a, 6) 6 (b 7 (a, 7) (b, 11) 7 (c, 5) (a, 8) 8 (d, 2) (a, 9) 9 10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

52

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

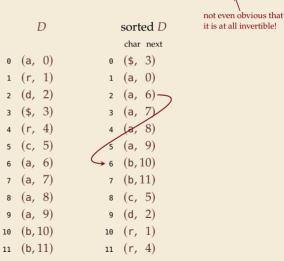
"Magic" solution:

- Create array *D*[0..*n*] of pairs:
 D[*r*] = (*B*[*r*], *r*).
- **2.** Sort *D stably* with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

S = abracadab



▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

	D	sorted D
"Magic" solution:	o (a, 0)	char next 0 (\$, 3)
1. Create array $D[0n]$ of pairs:	1 (r, 1)	1 (a, 0)
D[r] = (B[r], r). 2. Sort <i>D</i> stably with	2 (d, 2) 3 (\$, 3)	2 (a, 6) 3 (a, 7)
respect to <i>first entry</i>.3. Use <i>D</i> as linked list with (char, next entry)	4 (r, 4) 5 (c, 5)	4 (a, 8) 5 (a, 9)
	6 (a, 6)	(a, 9) 6 $(b, 10)$
Example:	7 (a, 7) 8 (a, 8)	7 (b, 11) 8 (c, 5)
B = a r d rcaaaabb S = a b racadab r	9 (a, 9)	9 (d, 2)
	10 (b,10) 11 (b,11)	$\rightarrow 10$ (r, 1) 11 (r, 4)

not even obvious that it is at all invertible!

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

7

8

9

▶ "Magic" solution:

- **1.** Create array D[0..n] of pairs: D[r] = (B[r], r).
- 2. Sort *D* stably with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ard\$rcaaaabb

S = abracadabra

not even obvious that D it is at all invertible! sorted D char next o (a, 0) 0 (\$, 3) 1 (r, 1) (a, 0) 2 (d, 2) (a, 6) 2 з (\$, 3) (a, 7)3 4 (r, 4) (a, 8) 5 (c, 5) 9) 5 а. 6 (a, 6) (b, 10)6 (a, 7) (b,11 7 (c, 5) (a, 8) 8 (d, 2) (a, 9) 9 10 (b, 10) 10 (r, 1) 11 (b, 11) 11 (r, 4)

▶ Great, can compute BWT efficiently and it helps compression. But how can we decode it?

0 (a,

2 (d,

1 (r,

з (\$,

4 (r,

5 (C,

6 (a, 7 (a,

8 (a,

9 (a,

10 (b, 1

11 (b, 1

"Magic" solution:

- Create array *D*[0..*n*] of pairs:
 D[*r*] = (*B*[*r*], *r*).
- **2.** Sort *D stably* with respect to *first entry*.
- **3.** Use *D* as linked list with (char, next entry)

Example:

B = ardsrcaaaabb

S = abracadabra

)		sor	ted D
		cha	r next
0)	$\rightarrow 0$	(\$,	3)
1)	1	(a,	0)>
2)	2	(a,	6)
3)	3	(a,	7)
4)	4	(a,	8)
5)	5	(a,	9)
6)	6	(b,	10)
7)	7	(b,	11)
8)	8	(c,	5)
9)	9	(d,	2)
LO)	10	(r,	1)
1)	11	(r,	4)
		1 /	

not even obvious that it is at all invertible!

- ► Inverse BWT very easy to compute:
 - only sort individual characters in *B* (not suffixes)
 - $\rightsquigarrow O(n)$ with counting sort
- ▶ but why does this work!?

- ► Inverse BWT very easy to compute:
 - only sort individual characters in *B* (not suffixes)
 - $\rightsquigarrow O(n)$ with counting sort
- ▶ but why does this work!?
- decode char by char
 - ▶ can find unique \$ →→ starting row

▶ to get next char, we need

- (i) char in *first* column of *current row*
- (ii) find row with that char's copy in BWT
- $\rightsquigarrow~$ then we can walk through and decode

- ► Inverse BWT very easy to compute:
 - only sort individual characters in *B* (not suffixes)
 - $\rightsquigarrow O(n)$ with counting sort
- ▶ but why does this work!?
- decode char by char
 - ▶ can find unique \$ → starting row
- to get next char, we need
 - (i) char in *first* column of *current row*
 - (ii) find row with that char's copy in BWT
 - $\rightsquigarrow~$ then we can walk through and decode
- for (i): first column = characters of B in sorted order

- ► Inverse BWT very easy to compute:
 - only sort individual characters in *B* (not suffixes)
 - $\rightsquigarrow O(n)$ with counting sort
- ▶ but why does this work!?
- decode char by char
 - can find unique \rightarrow starting row
- to get next char, we need
 (i) char in *first* column of *current row* (ii) find row with that char's copy in BWT
 - $\rightsquigarrow~$ then we can walk through and decode
- ▶ for (i): first column = characters of *B* in sorted order
- for (ii): relative order of same character stays same: ith a in first column = ith a in BWT
 - \rightsquigarrow stably sorting (*B*[*r*], *r*) by first entry enough

L[r] 9 5 7 3 1 6 0 8 4 2	T _{L[r]} B[r] \$bananaba n aban\$bana n an\$banana b anaban\$ba n ananaban\$b ban\$banana a banabanaba \$ ban\$banana a maban\$ba a naban\$ba a naban\$ba a

5

6

8 9

BWT – Discussion

- **•** Running time: $\Theta(n)$
 - encoding uses suffix sorting
 - decoding only needs counting sort
 - $\rightsquigarrow decoding much simpler \& faster \quad (but same \Theta-class)$

BWT – Discussion

- **•** Running time: $\Theta(n)$
 - encoding uses suffix sorting
 - decoding only needs counting sort
 - $\rightsquigarrow decoding much simpler \& faster \quad (but same \Theta-class)$

 \bigcirc typically slower than other methods

need access to entire text (or apply to blocks independently)

BWT-MTF-RLE-Huffman pipeline tends to have best compression

Summary of Compression Methods

 Huffman Variable-width, single-character (optimal in this case)
 RLE Variable-width, multiple-character encoding
 LZW Adaptive, fixed-width, multiple-character encoding Augments dictionary with repeated substrings
 MTF Adaptive, transforms to smaller integers should be followed by variable-width integer encoding
 BWT Block compression method, should be followed by MTF