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Noisy Communication

» most forms of communication are “noisy”

» humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages

s N

» How do humans cope with that?
» slow down and/or speak up

> ask to repeat if necessary

UGH, PEOPLE ARE MAD AT ME AGAIN
BECHU;GE THEY DON'T READ CAREFULLY.
» But how is it possible (for us) L i ) BTy G €
to decode a message in the presence of noise & errors? mm;ug,s 5:uH$51L|ngU'RE

Bcaesue it semes taht ntaurul lanaguge has a lots fo redundancy bilt itno it! %Eﬁﬁ?i%g%

~»  We can k>

1. detect errors “This sentence has aao pi dgsdho gioasghds.”

2. correct (some) errors “Tiny errs ar corrrected automaticly.” ‘

(sometimes too eagerly as in the Chinese Whispers / Telephone)
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Noisy Channels

> computers: copper cables &
electromagnetic interference

> transmit a binary string = wviesseqe
» but occasionally bits can “flip”

~ want a robust code

» We can aim at
1. error detection ~» can request a re-transmit
2. error correction ~» avoid re-transmit for common types of errors

» This will require redundancy: sending more bits than plain message

~ goal: robust code with lowest redundancy that's the opposite of compression!



Clicker Question

What do you think, how many extra bits do we need to detect a single
bit error in a message of 100 bits?

o
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Clicker Question

What do you think, how many extra bits do we need to correct a
single bit error in a message of 100 bits?

o

sli. dO/ Comp526 Click on “Polls” tab
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Block codes

» model:

> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (6 — 1 resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~~ what errors can be detected and/or corrected?
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Block codes

» model:
> want to send message S € {0, 1}* (bitstream) across a (communication) channel

» any bit transmitted through the channel might flip (6 — 1 resp.1 — 0)
no other errors occur (no bits lost, duplicated, inserted, etc.)

» instead of S, we send encoded bitstream C € {0, 1}*
sender encodes S to C, receiver decodes C to S (hopefully)

~~ what errors can be detected and/or corrected?

» all codes discussed here are block codes
» divide S into messages m € {0, 1} of k bits each (k = message length)
» encode each message (separately) as C(m) € {0, 1}" (n = block length, n > k)
~+ can analyze everything block-wise

invalid code

> between 0 and 7 bits might be flipped

»> how many flipped bits can we definitely detect?
» how many flipped bits can we correct without retransmit?

i.e. decoding m still possible
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» each block code is an injective function C : {0, 1}¥ — {0,1}"

k
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Code distance

m#m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}¥ — {0,1}"

» define C = set of all codewords = C({0, 1}¥)

~ € c{0,1}" [|€ | = 2% out of 2" n-bit strings are valid Codewords]
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Code distance

m#m’ = C(m)# C(m’)

» each block code is an injective function C : {0, 1}¥ — {0,1}"

> define @ = set of all codewords = C({0, 1}*)

~ € c{0,1}" [|€| = 2K out of 2" n-bit strings are valid codewords

» decoding = finding closest valid codeword

» distance of code:
d = minimal Hamming distance of any two codewords = mir(l du(x,y)
x,yeC

Implications for codes

1. Need distance d to detect all errors flipping up tod — 1 bit?
2. Need distance d to correct all errors flipping up to L%J Dits.

=) g@r AL(‘—P(KAVB I bil evioes ~D mi QSSL@MLKQ

g\e< (-D\'JECRAM-S \(’)A exrorS ~> VLUA é}ALOMu g
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> proof sketch: We have 2k codeswords with distance d

after deleting the first d — 1 bits, all are still distinct
but there are only 2" ~(¢=1) such shorter bitstrings.




Lower Bounds

» Main advantage of concept of code distance:
can prove lower bounds on block length

> Singleton bound: 2F <2~V <« p>k+d-1

> proof sketch: We have 2k codeswords with distance d
after deleting the first d — 1 bits, all are still distinct
but there are only 2" ~(¢=1) such shorter bitstrings.

» Hamming bound: 2 < L(dj) n @ °
@

» proof idea: consider “balls” of bitstrings around codewords
count bitstrings with Hamming-distance < t = |(d —1)/2]
correcting t errors means all these balls are disjoint
so 2k - ball size < 2"

~ We will come back to these.
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Parity Bit

» simplest possible error-detecting code: ~ add a parity bit

[011011110]0
—_—— B {O if number of ones is even

1 if number of ones is odd

elelelolelele®ldl =0

XOR
~» code distance 2
> can detect any single-bit error (actually, any odd number of flipped bits)

» used in many hardware (communication) protocols
» PCI buses, serial buses
» caches

» early forms of main memory
|ﬁ) very simple and cheap

l@ cannot correct any errors



Clicker Question

What do you think, how many extra bits do we need to detect a single
bit error in a message of 100 bits?

o

sli. dO/ Comp526 Click on “Polls” tab




Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM
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but in always-on server with lots of RAM, it happens!
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Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM
» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

267 7

2  Can we correct a bit error without knowing where it occurred? How?



Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM
» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

267 7

2  Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!
» upon read, do majority vote

» if only one bit flipped, the other two (correct) will still win



Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM
» bits can randomly flip (e g., by cosmic rays)
» individually very unlikely,
but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

267 7

2  Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!
» upon read, do majority vote

» if only one bit flipped, the other two (correct) will still win
[@ triples the cost!

Y You want WHAT!?!



Error-correcting codes

any downtime is expensive!
> typical application: heavy-duty server RAM

» bits can randomly flip (e g., by cosmic rays)

» individually very unlikely,

but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic- rays-v2

267 7

2  Can we correct a bit error without knowing where it occurred? How?

> Yes! store every bit three times!
» upon read, do majority vote
» if only one bit flipped, the other two (correct) will still win
[@ triples the cost!

Y You want WHAT!?!

<> ¢ instead of 200% (!)
SI/@ Can do it with 11% extra memory!

-]
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How to locate errors?

> Idea: Use several parity bits
> each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cy = B4 ® Bs @ Bg @ By

| | | C1 = B, ® B3z ® B @ By

Co = Bi®B;®Bs® B

(1l [ ISR [ Lo ’
1

111,
By

110,
Be

101,
Bs

1

By

2

11,
B3

B>

2

12

o O O



How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits

» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cy B4 ® B5 ® By ® By
| Cq B, & B3 & B¢ & By

( E r { 7 Co = Bi®B3®Bs® By
111, 110, 101, 1 zé 10, 001,

B2 BN B 2- I 5. 5530 B> 8 B;
ﬂng — C;\:O‘Cy:co:[

Observe:

» No error (all 7 bits correct) ~~ C = CpC1Co =000, =0, \/
» What happens if (exactly) 1 bit, say B; flips?

o

o O



How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cy = B4 ® Bs @ Bg @ By

| | | C1 = B, ® B3z ® B @ By

Co = Bi®B;®Bs® B

(1l [ ISR [ Lo ’
111, 110, 101, 100, 11, 10, 1,

By Be Bs By B3 By Bq

Observe:
» No error (all 7 bits correct) ~~ C = CpC1Co =000, =0, \/
» What happens if (exactly) 1 bit, say B; flips?

Cj =1 iff jthbitin binary representation of i is 1]
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How to locate errors?

> Idea: Use several parity bits
» each covers a subset of bits
» clever subsets ~- violated/valid parity bit pattern narrows down error
A flipped bit can be one of the parity bits!

» Consider n = 7 bits By, ..., By with the following constraints:

Cy = B4®Bs®Bs @By = 0
|
Ci = Bb®B3®Bs®By =0
|
( E ( {( { ( Co = Bi®B3®Bs®By =0
111, 110, 101, 100, 011, 010, 1,

By Be Bs By B3 By Bq

Observe:
» No error (all 7 bits correct) ~~ C = CpC1Co =000, =0, \/
» What happens if (exactly) 1 bit, say B; flips?

Cj =1 iff jthbitin binary representation of i is 1] ~+ C encodes position of error!




4+3 Hamming Code

» How can we turn this into a code?

Cy = By ® Bs @ B @ By
( ( ( C1 = B, ® B3z ® B @ By
(( | 7 T | 7 Co = B1® B3 ® Bs @ By

111, 110, 101, 100, 011, 010, 001,
B7 Bg B5 B4 B3 BZ Bl

[N N



@3 Hamming Code

» How can we turn this into a code?

€
C
“ r — o
Tl ( [ [
111, 110, 101, 100, 011, 01
B, B¢ Bs By B3 By B

E—— —_—

B4 @& Bs & Bg & By
B, & B3 & Bg & By
B1 @ B3 ® B5 ® By

o=l ={l==
[eNeNo}

» B4, B> and B; occur only in one constraint each ~» define them based on rest!

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1D of length k =4



4+3 Hamming Code

» How can we turn this into a code?

€
C
“ r — o
Tl ( [ [
111, 110, 101, 100, 011, 01
B, B¢ Bs By B3 By B

B4 @& Bs & Bg & By
B, & B3 & Bg & By
B1 @ B3 ® B5 ® By

o=l ={l==
[eNeNo}

D; Dy D Dy

» B4, B> and B; occur only in one constraint each ~» define them based on rest!

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
2. copy D3D>D1Dg to ByB¢BsB3



4+3 Hamming Code

» How can we turn this into a code?

C2=B4€BB5@B(,€BB7%O
( ( ( Cq =B2®B3$B6$B7$0
({ | 7 T | 7 Co = Bi®B3®Bs® By =0

111, 110, 101, 100, 011, 01
B7 B6 B5 B4 B3 BZ Bl

\ \\\\ \\ \\%
= P, = D3® D, & D,
3

¢ 9 Py = D3@ D, ® Dy
Ds D Dy P, Dy P Py Py D3 @ D1 & Dy

» B4, B> and B; occur only in one constraint each ~» define them based on rest!

» 4+ 3 Hamming Code — Encoding
1. Given: message D3D,D1Dy of length k = 4
2. copy D3D>D1Dg to ByB¢BsB3
3. compute PpP1Py = B4BB1 so that C =0



4+3 Hamming Code

» How can we turn this into a code?

“ ( ([
(Tl ( 1 (
111, 110, 101, 100, 011, 010, 001,
B7 B6 B5 B4 B3 BZ Bl
L )
N\ X, =
= )
\2 \Z A2
D3 D, Dy P; Dy Py Py

P,
Py
Py

» B4, B> and B; occur only in one constraint each ~~

» 4+ 3 Hamming Code — Encoding

1. Given: message D3D,D1Dy of length k = 4

2. copy D3D>D1Dg to ByB¢BsB3
3. compute PpP1Py = B4BB1 so that C =0
4

. send D3D,D1P,DgP1 Py

B4 @& Bs & Bg & By
B, & B3 & Bg & By
B1 @ B3 ® B5 ® By

I=11=11-=
ocoo

= D3 & D, ® D,
D3 @ Dy & Dy
D3 @ D1 & Dy

define them based on rest!



4+3 Hamming Code — Decoding

> 4 +3 Hamming Code — Decoding

1,
28
3.

Given: block ByBsB5B4B3ByB1 of lengthn =7
compute C (as above)

if C = 0 no (detectable) error occurred
otherwise, flip B¢ (the Cth bit was twisted)

return 4-bit message ByBgB5B3

10



Clicker Question

What is the code distance of 4 + 3 Hamming code?

3

o

sli. dO/ Comp526 Click on “Polls” tab




4+3 Hamming Code — Properties

» Hamming bound:
» 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~» each codeword covers 8 of all possible 7-bit strings

> 24.23 =27 . exactly cover space of 7-bit strings
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4+3 Hamming Code — Properties

» Hamming bound:

» 2% valid 7-bit codewords (on per message)
» any of the 7 single-bit errors corrected towards valid codeword
~» each codeword covers 8 of all possible 7-bit strings

> 24.23 =27 . exactly cover space of 7-bit strings

> distance d =3
» can correct any 1-bit error

» How about 2-bit errors?

» We can detect that something went wrong.

» But: above decoder mistakes it for a (different!) 1-bit error and “corrects” that

» Variant: store one additional parity bit for entire block
~ Can detect any 2-bit error, but not correct it.

11



Hamming Codes — General recipe

> construction can be generalized:

» Start witmbits for { € N (we had ¢ = 3)

> use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits
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Hamming Codes — General recipe

> construction can be generalized:

» Start with n = 2! — 1 bits for £ € N (we had ¢ = 3)
> use the ¢ bits whose index is a power of 2 as parity bits
» the other 1 — { are data bits

» Choosing ¢ = 7 we can encode entire word of memory (64 bit) with 11% overhead
(using only 64 out of the 120 possible data bits)

[ﬁ simple and efficient coding / decoding
[& fairly space-efficient

12



Outlook

> Indeed: (2/—¢-1)+¢ Hamming Code is “perfect”

~» cannot use fewer bits . . . = matches Hamming lower bound

> if message length is 20— ¢ —1forf eNs»
i.e.,,oneof1,4,11,26,57,120,247,502,1013, ...

» and we want to correct 1-bit errors
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Outlook

> Indeed: (2/—¢-1)+¢ Hamming Code is “perfect”

~s cannot use fewer bits . . . = matches Hamming lower bound

> if message length is 20— ¢ —1forf eNs»
i.e.,,oneof1,4,11,26,57,120,247,502,1013, ...

» and we want to correct 1-bit errors

» For other scenarios, finding good codes is an active research area

» information theory predicts that almost all randomly chosen codes are good(!)
» but these are inefficient to decode

~~ clever tricks and constructions needed

13



