Tutorial 4 for
 COMP 526-Applied Algorithmics, Spring 2021

Problem 1 (Parallel And)

We consider the problem of computing the logical and of an array $B[0 . . n-1]$ of n Boolean values (n bits), i.e., the result should be true if and only if all n entries are true. (We assume here that each bit is stored as a full word.)
a) Design a CREW-PRAM parallel algorithm for computing the "logical and" of $B[0 . . n-1]$. Your algorithm should have $\mathcal{O}(\log n)$ time (span) and $\mathcal{O}(n \log n)$ work.
b) Can you make the algorithm work-efficient?
c) Now consider a CRCW-PRAM; you can choose a write-conflict resolution rule that is convenient for your purposes. Design a constant-time parallel algorithm for computing the logical and.

Problem 2 (Fibonacci language and failure function)

The sequence of Fibonacci words $\left(w_{i}\right)_{i \in \mathbb{N}_{0}}$ is defined recursively:

$$
\begin{aligned}
& w_{0}=\mathrm{a} \\
& w_{1}=\mathrm{b} \\
& w_{n}=w_{n-1} \cdot w_{n-2} \quad(n \geq 2)
\end{aligned}
$$

Unfolding the recursion yields $w_{2}=\mathrm{ba}, w_{3}=\mathrm{bab}, w_{4}=\mathrm{babba}$, an so on.
(Note that the lengths $\left|w_{0}\right|,\left|w_{1}\right|,\left|w_{2}\right|, \ldots$ are Fibonacci numbers $\left[^{7}\right.$, hence the name. More precisely, we have $\left|w_{n}\right|=F_{n+1}$, with the Fibonacci numbers defined as $F_{0}=0$, $F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$, for $n \geq 2$.)
a) Construct the transition function δ of the string-matching automaton for w_{6} and draw the string-matching automaton.
b) Construct the prefix function F and the draw the KMP automaton with failure links for w_{6}.

