
Department of Computer Science
Sebastian Wild

Date: 2021-04-14
Version: 2021-04-14 12:55

Tutorial 6 for
COMP526 –Applied Algorithmics, Spring 2021

Problem 1 (Suffix trees and friends)

Consider the text T = abbabbaa$.

What is n here? (exactly follow the convention from the lecture!)

Construct/Draw the

1. standard (not compacted) trie of all suffixes of T ,

2. suffix tree of T (human version) with string labels on edges and leaves,

3. suffix tree of T (computer version) as it is stored, i.e., offsets in nodes, starting
index in leaves, first characters on edges,

4. suffix array L[0..n] of T ,

5. the inverse suffix array R[0..n], and

6. the LCP array.

7. Annotate the internal nodes in the suffix tree with their string depth. Explain the
connection between string depths and the LCP array.

8. Use the above structures to find the longest repeated substring in T .

Problem 2 (Suffix links)

In this exercise, we extend suffix trees by so-called suffix links. These allow further
efficient algorithms on (generalized) suffix trees and are based on the following theorem.

Theorem SL: Let T be the suffix tree for a string T [0..n). Let further v be an internal
node of T , i.e., a node with at least 2 children, which is reached by traversing along the
string w = w[0..m) in T . If m ≥ 1, then traversing along w[1..m) in T also leads to an
internal node v in T .

Prove Theorem SL.



Tutorial 6 COMP526 –Applied Algorithmics

Why care for Theorem SL? The usefulness of this result lies in the ability to store
at each internal node w a pointer to the corresponding internal node v; these pointers
are called suffix links.

These can be used as another efficient string matching algorithm, using the suffix tree
for the pattern P [0..m). Conceptually, we traverse this pattern suffix tree with each text
suffix T [i..n) and check if we reach the leaf for the entire pattern P [0..m).

Implemented naively like this, it would correspond to just the brute-force string match-
ing, but we can instead use suffix links as a shortcuts: We traverse with the text suffix
T [i..n) in the pattern suffix tree, following links as long as they match the next text
character. Upon a mismatch, we use one suffix link to take use directly to the internal
node where we would have ended when traversing with T [i + 1..n) right away. If the
mismatch happens “inside” an edge, we use the suffix link of the parent and re-traverse
from there.

An amortized analysis shows that we spend constant time per text suffix on average,
even though we only have suffix links for internal nodes and occasionally might have
to re-traverse a long path after following a suffix link: Whenever we traverse down, we
increase the string depth of our current position (the internal node we are at). We only
ever decrease that depth when following a suffix link, and by exactly 1 only; we do that
n times. Since the depth is always between 0 and m, the total number of re-traversals
can only exceed the total number of suffix links followed by m.

2 / 2


	Problem 1 (Suffix trees and friends)
	Problem 2 (Suffix links)

