Tutorial 7 for
 COMP 526 - Applied Algorithmics, Spring 2021

Problem 1 (Move-to-front transform)

Let $T=T[0 . .9)=$ ABBACBAAA be an input text over alphabet $\Sigma=\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$. Apply the move-to-front transform to this input with initial queue content $Q=[\mathrm{A}, \mathrm{B}, \mathrm{C}]$ and trace the content of Q throughout the execution.

Problem 2 (Lempel-Ziv-Welch compression)

Given word $w=$ ASNXASNASNA over the ASCII character set (relevant parts of ASCII are provided on the right).
Construct, step by step, the Lempel-Ziv-Welch (LZW) factorization of w (i.e., the phrases encoded by one codeword) and provide the compressed representation of w; it suffices to show the encoded text C using integer numbers (no need for binary encodings).

Code	Character
65	A
\ldots	\ldots
78	N
\ldots	\ldots
83	S
\ldots	\ldots
88	X
\ldots	\ldots

Problem 3 (No Free Lunch)

Prove the following no-free-lunch theorems for lossless compression.

1. Weak version: For every compression algorithm A and $n \in \mathbb{N}$ there is an input $w \in \Sigma^{n}$ for which $|A(w)| \geq|w|$, i. e. the "compression" result is no shorter than the input.
Hint: Try a proof by contradiction. There are different ways to prove this.
2. Strong version: For every compression algorithm A and $n \in \mathbb{N}$ it holds that

$$
\left|\left\{w \in \Sigma^{\leq n}:|A(w)|<|w|\right\}\right|<\frac{1}{2} \cdot\left|\Sigma^{\leq n}\right| .
$$

In words, less than half of all inputs of length at most n can be compressed below their original size.
Hint: Start by determining $\left|\Sigma^{\leq n}\right|$.
The theorems hold for every non-unary alphabet, but you can restrict yourself to the binary case, i.e., $\Sigma=\{0,1\}$.
We denote by Σ^{\star} the set of all (finite) strings over alphabet Σ and by $\Sigma^{\leq n}$ the set of all strings with size $\leq n$. As domain of (all) compression algorithms, we consider the set of (all) injective functions in $\Sigma^{\star} \rightarrow \Sigma^{\star}$, i.e., functions that map any input string to some output string (encoding), where no two strings map to the same output.

