

Machines \& Models

7 February 2022
Sebastian Wild

Learning Outcomes

1. Understand the difference between empirical running time and algorithm analysis.
2. Understand worst / best /average case models for input data.
3. Know the RAM machine model.
4. Know the definitions of asymptotic notation (Big-Oh classes and relatives).
5. Understand the reasons to make asymptotic approximations.

Unit 1: Machines \mathcal{E} Models

6. Be able to analyze simple algorithms.

Outline

1
 Machines \& Models

1.1 Algorithm analysis
1.2 The RAM Model
1.3 Asymptotics \& Big-Oh

What is an algorithm?

An algorithm is a sequence of instructions.

More precisely:

1. mechanically executable \rightsquigarrow no "common sense" needed

2. finite description \neq finite computation!
3. solves a problem, i.e., a class of problem instances

$$
x+y, \text { not only } 17+4
$$

typical example: bubblesort
not a specific program but underlying idea

What is a data structure?

A data structure is

1. a rule for encoding data (in computer memory), plus
2. algorithms to work with it (queries, updates, etc.)
typical example: binary search tree

1.1 Algorithm analysis

Good algorithms

Our goal: Find good (best?) algorithms and data structures for a task.
Good "usually" means
can be complicated in distributed systems

- fast running time
- moderate memory space usage

Algorithm analysis is a way to

- compare different algorithms,
- predict their performance in an application

Running time experiment

Why not simply run and time it?

- results only apply to
- single test machine
- tested inputs
- tested implementation
- ...

\neq universal truths
- instead: consider and analyze algorithms on an abstract machine
\rightsquigarrow provable statements for model
survives Pentium 4
\rightsquigarrow testable model hypotheses
$\rightsquigarrow \quad$ Need precise model of machine (costs), input data and algorithms.

Data Models

Algorithm analysis typically uses one of the following simple data models:

- worst-case performance:
consider the worst of all inputs as our cost metric
- best-case performance:
consider the best of all inputs as our cost metric
- average-case performance:
consider the average/expectation of a random input as our cost metric

Usually, we apply the above for inputs of same size n.
\rightsquigarrow performance is only a function of n.

1.2 The RAM Model

Machine models

The machine model decides

- what algorithms are possible
- how they are described (= programming language)
- what an execution costs

Goal: Machine model should be
detailed and powerful enough to reflect actual machines, abstract enough to unify architectures, simple enough to analyze.

Random Access Machines

Random access machine (RAM)

- unlimited memory MEM[0], MEM[1], MEM[2], ...
- fixed number of registers $R_{1}, \ldots, R_{r} \quad($ say $r=100)$
- memory cells MEM[i] and registers R_{i} store w-bit integers, i. e., numbers in $\left[0 . .2^{w}-1\right]$ w is the word width/size; typically $w \propto \lg n \rightsquigarrow 2^{w} \approx n$
- Instructions:
- load \& store: $R_{i}:=\operatorname{MEM}\left[R_{j}\right] \quad \operatorname{MEM}\left[R_{j}\right]:=R_{i}$
- operations on registers: $R_{k}:=R_{i}+R_{j} \quad$ (arithmetic is modulo $2^{2 v}$!)
also $R_{i}-R_{j}, R_{i} \cdot R_{j}, R_{i} \operatorname{div} R_{j}, R_{i} \bmod R_{j}$
C-style operations (bitwise and/or/xor, left/right shift)
- conditional and unconditional jumps
- cost: number of executed instructions
\rightsquigarrow The RAM is the standard model for sequential computation.

Pseudocode

Typical simplifications for convenience:

- more abstract pseudocode to specify algorithms
code that humans understand (easily)
- count dominant operations (e.g. array accesses) instead of all operations

In both cases: can go to full detail if needed.
1.3 Asymptotics \& Big-Oh

Why asymptotics?

Algorithm analysis focuses on (the limiting behavior for infinitely) large inputs.

- abstracts from unnecessary detail
- simplifies analysis
- often necessary for sensible comparison

Asymptotics $=$ approximation around ∞

Example: Consider a function $f(n)$ given by
$2 n^{2}-3 n\left\lfloor\log _{2}(n+1)\right\rfloor+7 n-3\left\lfloor\log _{2}(n+1)\right\rfloor+120 \sim 2 n^{2}$

Asymptotic tools - Formal \& definitive definition

- "Tilde Notation:" $f(n) \sim g(n)$ iff $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$
"f and g are asymptotically equivalent"
- "Big-Oh Notation:" $\quad f(n) \in O(g(n)) \quad$ iff $\left|\frac{f(n)}{g(n)}\right|$ is bounded for $n \geq n_{0}$ $\begin{array}{r}\text { need supremum sine limit might not exist! } \\ \text { iff } \\ \limsup \\ n \rightarrow \infty\end{array}\left|\frac{f(n)}{g(n)}\right|<\infty$
Variants: "Big-Omega"

$$
\begin{array}{llll}
-f(n) & =\Omega(g(n)) & \text { iff } & g(n)=O(f(n)) \\
-f(n) & =\Theta(g(n)) & \text { iff } & f(n)=O(g(n)) \text { and } f(n)=\Omega(g(n)) \\
\begin{array}{cll}
\text { "Big-Theta" }
\end{array} & &
\end{array}
$$

- "Little-Oh Notation:"

$$
\begin{aligned}
& f(n)=o(g(n)) \quad \text { iff } \quad \lim _{n \rightarrow \infty}\left|\frac{f(n)}{g(n)}\right|=0 \\
& f(n)=\omega(g(n)) \text { if } \lim =\infty
\end{aligned}
$$

Asymptotic tools - Intuition

- $f(n)=O(g(n)): \quad f(n)$ is at $\operatorname{most} g(n)$ up to constant factors and for sufficiently large n

- $f(n)=\Theta(g(n)): \quad f(n)$ is equal to $g(n)$
up to constant factors and for sufficiently large n

Asymptotics - Example 1

Basic examples:

- $20 n^{3}+10 n \ln (n)+5 \sim 20 n^{3}=\Theta\left(n^{3}\right)$
- $3 \lg \left(n^{2}\right)+\lg (\lg (n))=\Theta(\log n)$
- $10^{100}=O(1)$

Use wolframalpha to compute/check limits.

Asymptotics - Frequently used facts

- Rules:
- $c \cdot f(n)=\Theta(f(n))$ for constant $c \neq 0$
- $\Theta(f+g)=\Theta(\max \{f, g\})$ largest summand determines order of growth
- Frequently used orders of growth:
- logarithmic $\Theta(\log n)$

Note: $a, b>0$ constants $\rightsquigarrow \Theta\left(\log _{a}(n)\right)=\Theta\left(\log _{b}(n)\right)$

- linear $\Theta(n)$
- linearithmic $\Theta(n \log n)$
- quadratic $\Theta\left(n^{2}\right)$
- polynomial $O\left(n^{c}\right)$ for constant c
- exponential $O\left(c^{n}\right)$ for constant c Note: $a>b>0$ constants $\rightsquigarrow b^{n}=o\left(a^{n}\right)$

Asymptotics - Example 2

Square-and-multiply algorithm
for computing x^{m} with $m \in \mathbb{N}$
Inputs:

```
double pow(double base, boolean[] exponentBits) {
    double res = 1;
    for (boolean bit : exponentBits) {
        res *= res;
        if (bit) res *= base;
    }
    return res;
}
```

- Cost: $C=\#$ multiplications
- $C=n$ (line 4) + \#one-bits binary representation of m (line 5)
$\leadsto n \leq C \leq 2 n$

